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We consider integer linear programming problems with a fixed coefficient matrix and varying 

objective function and right-hand-side vector. Among our results, we show that, for any optimal 

solution to a linear program max{ wx: Ax,,;; b}, the distance to the nearest optimal solution to the 

corresponding integer program is at most the dimension of the problem multiplied by the largest 

subdeterminant of the integral matrix A. Using this, we strengthen several integer programming 

'proximity' results of Blair and Jeroslow; Graver; and Wolsey. We also show that the Chvatal 

rank of a polyhedron { x: Ax,,;; b} can be bounded above by a function of the matrix A, independent 

of the vector b, a result which, as Blair observed, is equivalent to Blair and Jeroslow's theorem 

that 'each integer programming value function is a Gomory function.' 
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1. Introduction 

For a given integer program max{ wx: Ax::;;; b, x integral}, how does the set of 

optimal solutions change as the vectors w and b are varied? Early work on this 

topic was carried out by Gomory [14, 15], who considered the connection between 

optimal solutions to an integer program and its linear programming relaxation for 

a range of right-hand-side vectors b. His work was continued and extended by 

Wolsey [28]. Other studies have been made by Blair and Jeroslow [1, 2, 3]. 
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In this paper, we consider several different aspects of the problem. We first show 
(Theorem 1) that, for any optimal solution to a linear program max{wx: Ax~ b}, 
where A is an integral matrix, the distance to the nearest optimal solution to the 
corresponding integer program is at most the number of variables multiplied by the 
largest subdeterminant of A. This implies results of Blair and Jeroslow [2], von zur 
Gathen and Sieveking [ 10], and Wolsey [28]. Next (Theorem 5), we sharpen a result 
of Blair and Jeroslow [1], which implies that a change in the right-hand-side vector 
cannot produce more than an affine change in the optimal value of an integer 
program. We then show (Theorem 6) that for any nonoptimal integral solution to 
max{ wx: Ax~ b, x integral} there exists an integral solution nearby (for a fixed 
matrix A) which has a greater objective value. This improves a result of Graver 
[16] and Blair and Jeroslow [3]. Finally, we show (Theorem 10) that the Chvatal 
rank of a polyhedron {x: Ax~ b} can be bounded above by a function of the matrix 
A, independent of the vector b. 

We assume throughout the paper that all polyhedra, matrices, and vectors are 
rational. The loo-norm of a vector x = (xi. ... , Xn) is denoted by jjx!!oo= 
max{jx;j: i = 1, ... , n} and the 11-norm is denoted by l!xl! 1 =I {jxd: i = 1, ... , n}. For 
a matrix A, we denote by Ll(A) the maximum of the absolute values of the 
determinants of the square submatrices of A. If A is an m x n matrix and b is an 
m-component vector, then (Ajb) denotes the matrix obtained by adjoining b, as an 
n + lst column, to A. The greatest integer less than or equal to a number f3 is denoted 
by L/3J. 

For basic results in the theory of polyhedra and integer linear programming, the 
reader is referred to Schrijver [26] and Stoer and Witzgall [27]. 

2. Proximity results 

We begin with a theorem on the distance between optimal solutions to an integer 
program and its linear programming relaxation. 

Theorem 1. Let A be an integral m x n matrix and let b and w be vectors such that 
Ax~ b has an integral solution and max{ wx: Ax:,;;;; b} exists. Then 

(i) for each optimal solution x to max{ wx: Ax:,;;;; b} there exists an optimal solution 

z* to max{ wx: Ax~ b, x integral} with llx -z*i1 00 ~ n.1(A) 
and 

(ii) for each optimal solution z to max{ wx: Ax~ b, x integral} there exists an optimal 
solution x* to max{wx: Ax~ b} with !lz-x*l!ro,;;; n.1(A). 

Proof. Let x and z be optimal solutions to max{wx: Axo;;; b} and max{wx: Ax~ 
b, x integral} respectively. Split A into submatrices A 1 , A 2 such that A 1.X;;;.: A1z and 
A 2x < A 2z. Since a;.X < b; for each inequality a;x ~ b;, of Ax~ b, with a; a row of 
A 2 , the dual variables corresponding to the rows of A2 are equal to zero in every 
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optimal solution to the dual linear program of max{ wx: Ax.,.;; b }. So there exists a 
vector y' ~ 0 such that y 1 A 1 = w. This implies that wx ~ 0 for each vector x in the 
cone C = {x: A 1x ~ 0, A 2x.,.;; O}. Let G be a finite set of integral vectors which 
generates C (so C is the set of vectors which can be written as a nonnegative linear 
combination of vectors in G).Using Cramer's rule, we may assume that llgll 00 .s; .:1 (A) 
for each g E G. As x - z E C, there exists, by Caratheodory's theorem, a set 
{g1, ... , g'} <;::; G and numbers Ai~ 0, i = 1, ... , t, such that x- z = A1g 1 + · · · + A,g', 
where t is the dimension of C. 

To verify (i), let 

z*=z+ lAiJg1+·. ·+ lA,jg'=x-(A1- lAiJ)g1-·. ·-(A,- lAtj)g'. (1) 

Since z is integral and g1, ... , g' are integral, z* is also integral. Furthermore, 

Aiz* = A1z + LA iJ A2g1 + · · · + lA,j A 2g'.,.;; A 2 z and 

A1z* = A1x-(A1 - lA1J )A1g1 - ... -(A,- lA,J )A1g' .s;A1X. 

So Az*.,.;; b. Now since wgi ~ 0 for i = 1, ... , t, we h~ve that wz* ~ wz and, hence, 
that z* is an optimal solution to max{ wx: Ax:::;:; b, x integral}. (This implies that 
wgi = 0 for all i E {1, ... , t} with Ai~ 1, a fact which is used below.) Finally, 

llx - z*lloo = ll(A1 - LA1J)g1 + · · ·+(A, - lA,j)g' lloo.s; llg1 lloo+ · · ·+Ilg' !loo· (2) 

So llx-z*lloo.s;t.:l(A)::s;;n.i:l(A). 
To verify (ii), let 

x* = x - LAiJ g 1 - · · · - lA,j g' = z + (A 1 - lAd )g1 + · · ·+(A, - LA,j)g1• 

(3) 

Using the above arguments, it follows that Ax*:::;; band llz-x*ll 00 ::s;; n.:l(A). Since 
wgi = 0 for all i E {1, ... , t} with Ai~ 1, we have wx* = wx. So x* is an optimal 
solution to max{wx: Ax.s;b}. D 

This result strengthens a theorem of Blair and Jeroslow [2, Theorem 1.2], who 
showed that for any fixed matrix A and fixed vector w, there exists a constant T 
such that for any optimal solution x to max{ wx: Ax.,.;; b}, there exists an optimal 
solution z to max{wx: Ax..; b, x integral} such that llx-zlloo::s;; T (assuming that 
Ax.,.;; b has an integral solution). (In fact, an analysis of Blair and Jeroslow's proof 
(see also the proof of [1, Theorem 2.1(1)]) will show that T is independent of w.) 
Similarly, the following consequence of Theorem 1 strengthens a result of Blair and 
Jeroslow [1, Theorem 2.1(2), 3, Corollary 4.7] on the difference between the optimal 
value of an integer program and its linear programming relaxation. 

Corollary 2. Let A be an integral m x n matrix and let b and w be vectors such that 
Ax:::;:; b has an integral solution and max{ wx: Ax.,.;; b} exists. Then 

max{ wx: Ax.,.;; b}-max{ wx: Ax..; b, x integral}~ n.:1(A)llwll 1. D (4) 
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Another consequence of Theorem l is the following result of von zur Gathen and 

Sieveking [10] (which implies that integer programming (feasibility) is in the class 

NP). 

Corollary 3. Let A be an integral m x n matrix and b an integral m-component vector. 

Then !f Ax .s; b has an integral solution, then it has one with components at most 

(n+ l)J((Alb)) in absolute value. 

Proof. Suppose that Ax .s; b has an integral solution. There exists a vector x with 

Ax .s; b such that the nonzero components of x are given by B- 1 b for some sub matrix 

B of A and some part b of b. We have llxllro.s; Ll((Alb)). By Theorem 1, there exists 

an integral vector z such that Az,,;;; b and 11 z - x 11 co,,;;; nLl (A). So 

llzll,_,.s; llz-xll,_,+ llxll,_,,,;;; nLl(A) +Ll((Alb)),,;;; (n + l)Ll((Alb)). D (5) 

A third consequence of Theorem 1 is a result of Wolsey [28], which shows that 

an integer program can be solved by first solving its linear programming relaxation 

and then checking a finite set of lower dimensional 'correction vectors'. Wolsey [28] 

works with linear programs of the form max{ wx: Ax= b, x ~ O}, where A is an m x n 

matrix of rank m. If such a linear program has an optimal solution, then it has one 

of the form x8 =B-1 b, xN = 0 where B is a basis of A (that is, a m x m nonsingular 

submatrix of A), x 8 are those variables corresponding to columns of B and xN are 

those variables corresponding to columns of N (the submatrix of A formed by those 

columns not in B). Such a basis B is an optimal basis. 

Corollary 4. Let A be an integral m x n matrix of rank m. Then there exists a finite 

set V of nonnegative, integral ( n - m )-component vectors such that: For any vectors 

b and w for which max{ wx: Ax= b, x ~ O} has an optimal solution and any, optimal 

basis B, if Ax = b, x;;,, 0 has an integral solution then for some vector v E Van optimal 

solution to max{ wx: Ax= b, x ~ 0, x integral} is XN = v, Xn = B- 1b- s- 1 Nv. 

Proof. Let v = { v E zn-m: II v lloo,,;;; nLl (A), v ~ O}. Suppose that B is an optimal basis 

for max{ wx: Ax= b, x ~ O} and let i 8 = s- 1 b, xN = 0 be the corresponding optimal 

solution. By Theorem 1, there exists an optimal solution z to max{ wx: Ax= b, 

x;;,,O,xintegral} with llx-zlloo.s;nL1(A). Thus llzNIL,o.s;;nL1(A), which implies that 
ZN E v. D 

For a fixed matrix A, Theorem 1 shows that optimal solutions to an integer 

program max{ wx: Ax .s; b, x integral} and its linear programming relaxation are near 

to each other. Our next theorem, which is a sharpened form of the integer program­

ming 'strong proximity result' of Blair and J eroslow [ 1 ], shows that for small changes 

in the right-hand-side vector b, optimal solutions to the corresponding integer 

programs are near to each other. Assertion (i) extends results of Hoffman [ 19] and 
Mangasarian [23]. 
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Theorem 5. Let A be an integral m x n matrix and let b, b', and w be vectors such 
that max{ wx: Ax~ b} and max{ wx: Ax~ b'} each have optimal solutions. Then 

(i) for each optimal solution x to max{ wx: Ax~ b} there exists an optimal solution 
x' to max{wx: Ax~ b'} with llx-x'lloo~ n.d(A)llb-b'lloo, and 

(ii) if Ax :s;; band Ax,.;:; b' each have integral solutions, then for each optimal solution 
zto max{wx: Ax~ b, x integral} there exists an optimal solution z' to max{wx: Ax~ b', 
x integral} with 11 z - z'lloo ~ n.d (A)( 11 b - b'lloo + 2). 

Proof. We first show part (i) in the case where w is the zero vector, that is, if x is 
a solution of Ax~b then Ax'~b' for some x' with llx-x'lloo~n.d(A)JJb-b'lloo· 
Suppose such an :X' does not exist. Then the system 

Ax~b', 

x~x+e1, (6) 

-x~ -x+e1 

(where e = n.d(A)llb-b'lloo and 1 = (1, ... , l)T) has no solution. By Farkas' Lemma, 
we have 

yA+u-v=O, yb'+ u(x+ el) + v(-x+ el) < 0 (7) 

for some nonnegative vectors y, u, v. As Ax~ b' has a solution, we have u + v f:. 0. 
We may assume II u + v 11 1 = 1. We may also assume, by Caratheodory's theorem, that 
the positive components of y correspond to linearly independent rows of A. So the 
positive part of y is equal to B- 1(-u +ii) for some parts u, i5 of u, v and some 
submatrix B of A. Hence, llYll 1 ~ n.d(A)llu -viii.,;;;; n.d(A)llu +viii= n.d(A). Now we 
have the contradiction 

0> yb'+ u(x+ el)+ v(-x+ el) = yb'-yAX+ ellu+vll1 

;a.: y(b' - b) + e ;a.: -llYll1llb- b'lloo+ e ""'0. (8) 

We next show part (i) in general. Let x be an optimal solution to max{ wx: Ax~ b} 
and let x* be any optimal solution to max{ wx: Ax~ b'}. Let A 0x:,,;; b0 be those 
inequalities from Ax:,,;; b that are satisfied by x with equality. Then yA0 = w for 
some y ;a.: 0 (by the duality theorem of linear programming). Since x satisfies: 

Af..;b, (9) 

and since x* is a solution of [Ax~ b', A 0 x;;:.:: A 0x*], we have from above that 
[Ax'..;b',A0x';;i:.A0x*] for some x' with Jlx-x'lloo~n.d(A)llb-b'lloo· As wx'= 
yA0x';;i:. yA0x* = wx*, we have that x' is an optimal solution to max{wx: Ax~ b'}. 

Finally, we show part (ii). Suppose that Ax:,,;; b and Ax:,,;; b' each have integral 
solutions and let zbe an optimal solution to max{ wx: Ax:,,;; b, x integral}. By Theorem 
l(ii), there exists an optimal solution x* to max{ wx: Ax~ b} with llz-x*lloo""' n.d(A). 
Part (i), above, implies that there exists an optimal solution x' to max{ wx: Ax~ b'} 
with llx*-x'll 00 ~n.d(A)llb-b'lloo· Now, by Theorem l(i), there exists an optimal 
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solution i' to max{ wx: Ax~ b', x integral} with llx' - z'lloo,,,;; n..1 (A). Putting this 

together, we have 

l\z-z'll"°~ llz-x*llro+ llx*-x'lloo+ llx'- z'lloo 

~ n.1 (A)( II b - b'lloo + 2). 0 (10) 

A result related to Theorem 1 was proven by Graver [16] (see also Blair and 

Jeroslow [3, Lemma 4.3]), who showed that for every integral matrix A there exists 

a finite 'test set' L of integral vectors such that: For any objective vector w and 

right-hand-side vector b and any nonoptimal feasible solution z to the integer 

program max{ wx: Ax~ b, x integral} there exists a vector l EL such that z + l is a 

feasible solution with.greater objective value. The following result shows that if A 

is an m x n integral matrix, then we can take as a 'test set' simply the set of integral 

vectors with components at most n.1(A) in absolute value. (An analysis of Blair 

and Jeroslow's proof [3, Lemma 4.3} will give a similar result.) 

Theorem 6. Let max{ wx: Ax~ b, x integral} be an integer program with A an integral 

m x n matrix. Then.for each integral solution z of Ax~ b, either z is an optimal solution 

to the integer program or there exists an integral solution z of Ax,,,;; b with II z - z\! 00 ,,,;; 

nLl(A) and wz> wz. 

Proof. Let z be an integral solution of Ax~ b. If z is not an optimal solution to 

max{ wx: Ax~ b, x integral}, then there exists an integral solution z* of Ax~ b with 

wz* > wz. Split A into submatrices A 1 , A2 such that A 1z* ~ A 1z and A 2 z* < A2z. As 

in the proof of Theorem 1, we have z*-z=A 1g1 +· · ·+A,g' for some numbers 

Ai~ 0, i = 1, ... , t, and integral vectors g 1, ••• , g' contained in the cone C = 

{x: A1x ~ 0, Azx ~ O} with llgt.u ~ L1 (A) for i = 1, ... , t, where t is the dimension 

of C. 
If A 1 ~1, then we have that z + g1 = z* -(A 1 - l)g 1 -A2g2 - • · • - A,g' is an integral 

solution of Ax~ b. So if A 1 ~1 and wg 1 > 0, then we may set z = z+ g 1• Thus, we 

may assume that wgi ~ 0 for all i E {l, ... , t} such that Ai~ 1. Let 

z= z*- lA,j g' - · · · - lA,J g' = z+(A, - lAd )g'+ · · ·+(A, - LA,j)g'. 
( 11) 

We have that z is an integral solution of Ax,,,;; b with 

II z - zlloo ~(A, - lA,j) Ilg' lloo + ... +(A, - lA,J) Ilg' lloo ~ nLl (A). (12) 

Since wgi~O for each iE{l, ... , t} such that l.A;J >O, we have wz~wz*. Thus 
wz> wz. O 

For a linear system Ax~ b, let { x: Ax~ b} 1 denote the convex hull of its integral 

solutions. The following result of Wolsey [28, Theorem 2'], on the defining systems 

of {x: Ax~ b} r as b varies, will be used in the next section. We use the proof 
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technique of Blair and Jeroslow (3, Theorem 6.2], together with Theorem 6 to prove 
this result, as this allows us to bound the size of certain coefficients, as stated below. 

Theorem 7. For each integral m x n matrix A, there exists an integral matrix M, with 
entries at most n2 nLl(A)n in absolute value, such that for each vector b for which Ax,,.. b 

has an integral solution there exists a vector db such that {x: Ax o;;; b} 1 = {x: Mx,,.. db}. 

Proof. We may assume that A 7':- 0. Let K be the cone generated by the rows of A. 
If b is a vector such that Ax o;;; b has an integral solution, then, by linear programming 
duality, max{ wx: Ax o;;; b, x integral} exists if and only if w E K. Let L = 
{z E zn: llzllo:i"" nLl(A)} and for each Ts L let G( T) be a finite set of integral vectors 
which generates the cone C( T) = { w: wz o;;; 0 for all z E T} n K. Finally, let M be 
the matrix with rows U{G(T): TsL}. 

Suppose that b is a fixed vector such that Ax,,.. b has an integral solution. By 
replacing b by Lb j if necessary, we may assume that b is integral. Let db be the 
minimal vector (with respect to the ,,.. ordering) such that {x: Ax,.. b} 1 s 
{x: Mx o;;; db}. (Since each row of M is in the cone K, each component of db is 
finite.) To prove that {x: Axo;;; b}1 2{x: Mxo;;; db}, we will show that each valid 
inequality for {x: Ax o;;; b} 1 is implied by Mx o;;; db. 

Let wx o;;; t be an inequality such that w f:. 0 and {x: Ax o;;; b} 1 s {x: wx o;;; t}. We 
may assume that t = max{ wx: Ax o;;; b, x integral}. Let z be an integral solution of 
Axo;;;b such that wz=t. Now let f={zEL:A(z+z)o;;;b}. Since z is an optimal 
solution to max{ wx: Ax o;;; b, x integral}, we have that w EC( f). So there exist 
nonnegative numbers Ag, for g E G( f), such that L: {Agg: g E G( T)} = w. By Theorem 
6, z is an optimal solution to max{gx: Ax o;;; b, x integral} for each g E G( f). Thus, 
letting g( b) = max{gx: Ax o;;; b, x integral} for each g E G( f), we have 

L: {Agg(b ): g e G( f)} = L: {A8gz: g E G( f)} = wz = t. (13) 

So wx o;;; t is a nonnegative linear combination of inequalities in Mx o;;; db, and, hence, 
is implied by Mx o;;; db. 

To bound the size of the entries in M, notice that Cramer's rule implies that there 
exists an integral matrix D such that K = {x: Dx o;;; O} and each entry of D having 
absolute value at most Ll (A). Thus, for each T £. L the cone C ( T) is defined by a 
linear system Fx o;;; 0 for some integral matrix F with entries at most nLl(A) in 
absolute value. Using Cramer's rule, it follows that for each Ts L the cone C(T) 
can be generated by a finite set of integral vectors, each of which has components 
which are at most n!(nLl(A))"o;;;n 2nLl(At in absolute value. D 

For an integral matrix A, the bound given above on the size of the entries in M 
is polynomial in n and the size of the largest entry in A, and is independent of the 
number of rows of A. Thus, this bound implies the result, of Karp and Papadimitriou 
(21], that if a polyhedron P £. Qn can be defined by a system of integral linear 
inequalities, each of which has size at most cr, then the convex hull of the integral 
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points in P can be defined by a system of linear inequalities, each of which has 
size bounded above by a polynomial function of n and (J". 

Remarks. (1) Blair and Jeroslow [l, 2] proved their results in the more general 
context of mixed integer programming. It is straightforward, however, to modify 
the proof of Theorem 1 to obtain the following mixed integer programming result: 

Let A be an integral m x k matrix, B an integral m x (n - k) matrix, and w, v, 

and b vectors such that max{ wx+ vy: Ax+ By,,;;; b, x integral} has an optimal sol­
ution. Then, for each optimal solution ( x1, y 1) to max{ wx + vy: Ax+ By:;::; b}, there 
exists an optimal solution (x2, y2) to max{ wx + vy: Ax+ By:;::; b, x integral} such that 
II (x1, y1) - (x2, y2 ) lloo:;::; ml( (AIB) ). And, for each optimal solution (x3, /) to 
max{ wx + vy: Ax+ By:;::; b, x integral}, there exists an optimal solution (x4 , y4 ) to 
max{ wx + vy: Ax+ By:;::; b} such that ll(x3, y3)- (x4 , y 4 ) lloo:;::; nLl ((Al B)). 

Using this, one can prove the mixed integer programming analogues of Corollary 
2, Corollary 3, and Theorem 5(ii). 

In a similar way, one can obtain an analogue of Theorem 6. Note, however, that 
the mixed integer programming version of Theorem 6 does not imply a finite 'test 
set' result for mixed integer programs. This is due to the fact that, unlike the integer 
programming case, there may exist infinitely many vectors in { (x, y): x in­
tegral, ll(x, y)lloo:;::; nLl(AiB)}. Thus one cannot use the proof of Theorem 7 to obtain 
an analogous result for mixed integer programming. (In fact, the mixed integer 
programming analogue of Theorem 7 is not true, since, for example, the convex 
hull of {(xi,x2):x1 ~0,x2 ~0,x1 +x2 :;::;1,x2 .::;a,x 1 integral}, for any a such that 
0<a<1, has x1 + (1/ a )x1 ,,,; 1 as a facet-inducing inequality.) Similarly, the mixed 
integer programming version of Theorem 1 does not imply a mixed integer analogue 
of Corollary 4. 

However, observe that if A, Band bare integral and max{wx+vy: Ax+ By,,; 

b, x integral} has an optimal solution then it has one such that the denominator of 
each component of the vector y is the determinant of a square submatrix of B. This 
observation can be used to prove a mixed integer analogue of Corollary 4 and a 
finite 'test set' consequence of Theorem 6 for the case where b is integral. This latter 
finite 'test set' result can be used to modify the proof of Theorem 7 to obtain the 

following: 

Let A be an integral m x k matrix and let B be an integral m x (n - k) matrix. 
Then there exist integral matrices M and N, each with entries at most 
n 2" L1 (B) 2 " L1 ((AIB))" in absolute value, such that for each integral vector b for which 
{ (x, y ): Ax+ By,,,; b, x integral} is nonempty, there exists a vector db such that 
{(x, y): Mx+ Ny,,; db} is equal to the convex hull of {(x, y): Ax+ By,,; b, x integral}. 

(2) The proof of Theorem 5(i) remains valid, even when A is an irrational matrix, 
if we replace Ll(A) by Ll'(A), the maximum, over all invertible submatrices B of A, 
of the absolute values of the entries of B- 1• 
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3. The Chvatal rank of matrices 

If all vectors in a polyhedron P satisfy the linear inequality ax:;;;; /3, where a is 
an integral vector and /3 is a number, then each integral vector in p satisfies the 
Chvatal cut ax.;;; L /3 J · Denote by P' the set of vectors which satisfy every Chvatal 
cut of P. It is easy to see that P1 s; P', where P1 denotes the convex hull of integral 
vectors in P. Schrijver [24], continuing the work of Chvatal (5) and Gomory [13], 
proved that P' is a polyhedron and that P(' 1 = P1 for some natural number t where 

(0) - (i) - (i-1)' . . , 
P - P and P - P for all z;;. i. The least number t such that pui = P1 is the 
Chvatal rank of P. Results on the Chvatal rank of combinatorially described 
polyhedra can be found in Boyd and Pulleyblank [ 4] and Chvatal [5, 6, 7]. 

We define the Chvtital rank of matrix A to be the supremum over all integral 
vectors b of the Chvatal rank of {x: Ax.;; b}. It is convenient also to define the 
strong Chvtital rank of A, which is the Chvatal rank of the matrix 

Then the well-known theorem of Hoffman and Kruskal [20] is that an integral 
matrix has strong Chvatal rank 0 if and only if it is totally unimodular. Moreover, 
Hoffman and Kruskal showed that an integral matrix A has Chvatal rank 0 if and 
only if AT is unimodular. (A matrix C is called unimodular if for each submatrix 
B consisting of r (:=rank C) linearly independent columns of C, the g.c.d. of the 
subdeterminants of B of order r is 1.) In Edmonds and Johnson [9] and Gerards 
and Schrijver (11], characterisations of classes of matrices having Chvatal rank 1 
are given. The main result of this section is that every matrix has a finite Chvatal rank. 

To prove this result we need the following theorem of Cook, Coullard, and Turan 
[8]. For completeness, a proof of this result is given below. In the proof, we use a 
lemma of Schrijver [24] which implies that if F is a face of a polyhedron P then 
p<kl n F s; p<kl for all k ~ O. We also use the fact that if T is an affine transformation 

from Q" to Q" which maps Z" onto Z", then for any polyhedron P <; Q" we have 
T(P<kl) = T(P)<kl for all k ~ 0. 

. n (n2n2n3) 

Theorem 9. If P s; Q" is a polyhedron with P n Z = 0, then P = 0. 

Proof. The proof is by induction on n. It is easy to see that the result is true for 
n = 1. Suppose n ~ 2 and that for all polyhedra G s; Q"- 1 with G n Z"- 1 =0, we 

( ) ( l)2(n-1)2(n-1)3 
have G Y,.-i = 0, where 'Yn-i = n - · 

Let P s Q" be a polyhedron with P n Z" = 0. It follows from a result of Grotschel, 
Lovasz, and Schrijver [18] that there exists a nonzero integral vector w such that 
lw(x-x')l<n(n+1)2< 112>"2 for all x, x'EP. (In the case where Pisa bounded 
polyhedron, the existence of such a vector w was shown by Lenstra [22], see also 
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Grotschel, Lovasz, and Schrijver [ 17].) Let 

T'n = n 2"2" 3 ~n(n+1)2(!/Zln\ T'n-1+1) + 1. (14) 

We will complete the proof by showing that pC.,,") = 0. 
We may assume that the components of w are relatively prime integers. Let 

f3 = lmax{ wx: x E P}J. It follows that p<I) £ {x: wx,,;;; {3}. If pCI) = 0 we are finished, 
so suppose not. Let G = p<O n {x: wx = /3}. Since {x: wx = /3} contains integral 
vectors there exists an affine transformation T which maps Z" onto Z" and 
{x:wx~/3} onto {x:x.=0}. Let G={(x1, ... ,X.-1)EQ"-1 :(xi, ... ,x._1,0)E 
T(G)}. By assumption, c]b"_,)=0. But this implies that T(G)(.,,"_,l=0 and hence 
that o<Yn-• 1=0. Thus, by the lemma of Schrijver [24] mentioned above, we have 
ptYn+1+11nG=0. So p<Yn- 1+2ls;{x:wx:!;;{3-l}: Since Ps;{x:wx> 
f3 - n(n + l)i 1! 2>"'}, repeating this procedure at most n ( n + 1)2<112)•' -1 times, we 
obtain the empty set. Hence p<.,,"l = 0. D 

We will also make use of the following consequence of this theorem. 

Corollary 9. Let P s; Q" be a polyhedron such that P n Z" ~ 0 and let w be an integral 
vector such that q=max{wx:xEPr} exists. Then p<rls;{x: wx,,;;;q}, where r= 
(n 2"2"' + 1)( lmax{ wx: X E P}J - q) + 1. 

Proof. Let f3 = lmax{ wx: x E P} J, which exists since q exists. We have pOl s; 
{x: wx,,;;; {3}. If q = f3 we are finished, so suppose q < {3. Let G = pOl n {x: wx = {3}. 
Since G n Z" = 0, we have o<n'"2"3 l = 0, by Theorem 8. Using the lemma of Schrijvet 

• • ( '"2"3 +I) (n'"2"3+2) [24], this implies that P" n {x: wx = /3} = 0. So P s; {x: wx,,;;; f3 -1}. 
Repeating this operation ({3-q-1) times, we have p<'>s;{x: wx,,;;;q}. D 

We are now ready to prove our finite Chvatal rank theorem. 

Theorem 10. The Chvatal rank of an integral m x n matrix A is at most 
2 n 3+1 ns"L\(A)"+1. 

Proof. Let M be an integral matrix satisfying the conditions given in Theorem 7, 
for the matrix A. We have max{ II m Iii: m is a row of M},,;;; n2 "+ 1 L\ (A)". Let 

k=(n 2"2"3 +l)(n 2"+2L\(A)"+1)+1 (15) 

and let P={x: A.x,,;;;b} for some vector b. Since k,,;;;2"'+ 1n5"L\(A)"+1, it suffices to 
show that p<kl =Pr. If P n Z" = 0, then, by Theorem 8, p<kl = 0 =Pr. Suppose 
P n Z" ~ 0. We have Pr = {x: Mx,,;;; db} for some vector db. Let m be a row of M 
and let q=max{mx: xEPr}. By Corollary 2, 

(16) 

Thus, by Corollary 9, p<kl s; {x: mx,,;;; q }. So p<kl s; {x: Mx,,;;; db}, which implies that 
p(kJ=Pr. D 
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Remarks. ( 1) A consequence of Theorem l 0 is that the number of Chvatal cuts that 
must be added to a linear system Ax~ b to obtain a defining system for {x: Ax.,,; b} 1 

can be bounded above by a function of the matrix A, independent of the right-hand­
side vector b. Indeed, for each linear system Ax~ b with A an integral m x n matrix 

of Chvatal rank t, the polyhedron {x: Ax~ b} 1 is the solution set of a system of 
inequalities 

Ax:.;; b, 

a;x:.;;{3; (i=l, ... ,N) 
(17) 

where N:.;; 2"tn 1" S" (with S denoting the maximum of the absolute values of the 

entries of A) and for each k = 1, ... , N, the inequality akx ~ f3k is a Chvatal cut for 

the polyhedron {x: Ax:.;; b, a;x ~ /3;, i = 1, ... , k -1}. To prove this, we use the result 
of Schrijver [24] that if P = {x: Mx ~ d}, where Mis integral and Mx ~dis a totally 
dual integral system, then P'={x: Mx~ ldJ}. (A linear system Mx~d is a totally 

dual integral system if min{yd: yM = w, y ~ O} can be achieved by an integral vector 

for each integral w for which the minimum exists.) Giles and Pulleyblank [15] 

proved that every polyhedron can be defined by such a totally dual integral :;ystem 
(see also Schrijver [25]). Their proof, together with Caratheodory's theorem, implies 

that if Dx :.;; f is a linear system with D an integral m x n matrix, each entry of 
which has absolute value at most T, then there exists a totally dual integral system 
D'x~f' with {x: D'x:.s;j'}={x: Dx~f} such that each entry of D' is an integer 

with absolute value at most nT. This implies that if P = {x: Ax~ b }, then for each 
i = 1, ... , t the polyhedron p(il can be defined by a linear system Mix~ b; where 

each inequality is a Chvatal cut for pli-ll and where Mi is an integral matrix having 

at most (2n;S)" rows. (This technique for bounding the size of Mi is also used in 

Boyd and Pulleyblank [ 4 ].) 
(2) Professor C. Blair pointed out to us several relations of his and Jeroslow's 

work with our results. Especially, the fact that each matrix has a finite Chvatal rank 
can be seen to be equivalent to their result that 'each integer programming value 

function is a Gomory function'. Here we shall discuss this relation. 
A function f: Qm -7 Q is a Gomory function if there exist rational matrices 

M1, ... , M, so that M 1, ... , M,_1 are nonnegative, and so that, for each b E Om, 

f(b) = max(M1 f M1f · · · f M,b l· · · ll)i 
j 

( 18) 

(here f, l denotes component-wise upper integer parts; M, has m columns, and Mi 
has the same number of rows as Mi-t has columns (i = 2, ... , t); the maximum 

ranges over all coordinates j of the vector ( M; f M1 f · · · f M,b l · · · l l) ·) 

Blair and Jeroslow [3, Theorems 5.1 and 5.2] showed: 

Blair-Jeroslow Theorem. For each rational m x n-matrix A and row vector c E O" with 

min{cx: Ax= 0, x ~ O} finite, there exist Gomory functions f, g: Orn -7 0 so that, for 
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each b E 1Q(', 

(i) /(b) ~ 0 if and only if {x Ix~ O; Ax= b; x integral} is nonempty; 

(19) 

(ii) g(b) = min{cx Ix~ O; Ax= b; x integral} iff(b) ~ 0. 

Proposition. The Blair-leroslow theorem is equivalent to each rational matrix having 

finite Chvtital rank. 

Proof (sketch). I. We first show that the Blair-Jeroslow theorem implies that each 

rational matrix has a finite Chvatal rank. One easily checks that it suffices to derive 

from the Blair-Jeroslow theorem that for each rational matrix A and vector b, the 

Chvatal rank of the polyhedron {x Ix~ O; Ax= b} has an upper bound only depend­

ing on A. 
Choose a rational matrix A. By Theorem 7, there exists a matrix C so that for 

each vector b there exists a vector db with {x Ix~ O; Ax= b} / = {x Ix~ O; Cx ~ db}. 

Take any row c of C. By the Blair-Jeroslow theorem there exist Gomory functions 

f and g with the properties described in (19). Hence there exist matrices M 1 , ••. , M, 

and N1, ... , N,,, so that M1' ... , Ml-I• N1, ... ' Nr'-1 ~ 0 and, for each b E am, 

min{ ex Ix~ O; Ax= b; x integral}= max{ uM1 r M2 ... r M,b l ... l 

+ vN1 r N1 · · · r N,.b l · · · 11u~O;v~0; vl = l}. (20) 

Without loss of generality, t = t' (otherwise add some matrices /). By taking for b 

any column of A one sees that for each u ~ 0, v ~ 0 with vl = 1 one has: 

uM1 r M2 · · · r M,A l · · · l + vN1 r N 2 · · · r N,A l · · · l ~ c. (21) 

Hence, for each b, 

min{ ex Ix~ O; Ax= b; x integral} 

~max{wrP2 ••• rP,bl···llw~O;wrP2 ••· rP,Al···l~c}, (22) 

where 

P;:= [M; OJ (i=2, ... , t-1), 
0 N; 

((22) follows by taking w := (uM1vN1)). 

By applying LP-duality to the maximum in (22) we see that for each b: 

min{ ex Ix~ O; Ax= b; x integral} 

(23) 

~ min{ ex Ix~ O; r P2 ... r P,A l ... l x ~ r P2 ... r P,b l ... l}. (24) 

Hence equality follows. 

Let tmax be the maximum of the t above when c runs over all rows of C. Then 

we know that the Chvatal rank of { x Ix~ O; Ax = b} is at most tmax, for each b E om. 
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II. W~ next show t_he reverse implication. Choose matrix A and vector c. As, bv 

assumpt10n, the matnx " 

has finite Chvatal rank, we know that there exist matrices P1, ... , P, so that 

P1, ... , P,_1 ~ 0 and so that, for each bi:: 11:r, 

{x Ix~ O; Ax= b} I = {x Ix~ O; r P1 r ... r P,A l · . · lx 

~fP1f···fP1bl···l}. (25) 

Hence, with LP-duality, 

min{ ex Ix~ O; Ax= b; x integral} 

= min{ ex Ix~ O; r P1 ... r P,A l · . · lx ~ r P1 ... r P,b l ... l} 

= max {y f P1 · · · f P,b l · · · 11 y ~ O; y f P1 • • • f P,A l · · · 1-,s c}. ( 26) 

Let the rows of the matrix M, say, be the vertices of the polyhedron {y ~ 

Oly f P1 · · · f P,A l · · · 1-,s; e}, and let the rows of the matrix N, say, be the extremal 

(infinite) rays of this polyhedron. Then the maximum in (26) is equal to: 

max { uN f P1 · · · f P,b l · · · l + vM f P1 • • • f P,b l · · · 11 u ~ O; v ~ O; v l = 1}. 

(27) 

Hence defining, for b E ir:r, 

(28) 
g(b) := max(M f P1 · · · f P,b l · · · l)J, 

J 

gives Gomory functions satisfying (19). 0 
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