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Let f(k) be the largest number such that each k-regular bipartite graph with 2n vertices has 
at least f(k)n I-factorizations. We prove that f(k).;; k!2/kk, and that equality holds if k contains 
no other prime factors than 2 and 3. We conjecture equality for each k. 

Introduction 

We are interested in lower bounds for the number of edge-colourings (1-
factorizations) of regular bipartite graphs. Let f(k, n) be the smallest possible 
number of k-edge-colourings of a k-regular bipartite graph with 2n vertices. (A 
k-edge-colouring is an ordered partition of the edge set into perfect matchings. In 
this paper, graphs are allowed to have multiple edges.) In particular, we are 
interested in the largest possible number f(k) such that f(k, n);;. f(k)n for each n, 
i.e., in 

f(k):= inf -O'f(k, n)= lim iYf(k, n) (1) 
neN 

(the second equality follows from "Fekete's lemma", as f(k, n1 + n2 )::::;; 

f (k, ni) · f(k, n1)). 

We show that 

(2) 

and that equality holds if k = 2a3b_ We conjecture that equality holds for each 
natural number k. This would follow from a conjecture made in [3]: the number 
of perfect matchings in a k-regular bipartite graph with 2n vertices is at least 

( (k - l)k-l)n 
e-2 . (3) 

As corollaries we derive some results on the number of latin squares and on 
permanents, namely Bang's [1] lower bound of e-" for permanents of doubly 
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stochastic matrices of order n. In fact the methods in this paper have been 

inspired to a large extent by the paper of Bang and by discussions with W.G. 

Valiant on a related paper of Friedland [2]. 

Results 

Theorem 1. f(k, n)~ k!2nn!k/(nk)!. 

Proof. Let X = {l, ... , kn}, and let II be the collection of all ordered partitions 

s1 =(Ai, ... , An) of X into n classes of size k. If s1 and 973 are in II, denote by 

c(s1, 03) the number of partitions C€ =(Ci. ... , Ck) of X into k classes of size n 

such that 

(4) 

for i = 1, ... , n; j = 1, ... , k (i.e., each Ci is a common system of distinct 

representatives (SDR) for .sd and 973). It is easy to see that c(d, 03) is the number 

of k-edge-colourings of the k-regular bipartite graph with vertices, say, 

a1 , ••• ,~,b1 , ••• ,bm where a; and bi are connected by \A 1 nBi\ edges, 
for i, j = 1, ... , n. In particular, c(d, fJ<l)~ f(k, n). 

Now fix some .sd in ll, and consider the sum 

I c(.sd, fJ<l). (5) 
"1len 

This sum may be evaluated in two ways. First 

(nk)! L c(si, 973) ~\II\ · f (k, n) =-kin · f (k, n ). 
OOEII • 

(6) 

Alternatively, there are k!" possible partitions <g = (Ci, ... , Ck) of X with 

\Ai n Ci I= 1 for i = 1, ... , n; j = 1, ... , k. For each such partition there are n !k 

partitions 973 in II such that \B; n Cil = 1, for i = 1, ... , n; j = 1, ... , k. So the sum 
(5) is equal to k !n · n !k. Combining this with (6) yields the required upper bound 

for f(k, n) 0 

Proof. Apply Stirling's asymptotical formula for n ~ oo to Theorem 1. 0 

Theorem 2 

( (kl)! )2n I 
f(kl, n) ~ k !'. l!k · f(l, kn)· f(k, n). 

Proof. Let G = (V, E) be a kl-regular bipartite graph with 2n vertices, having 
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exactly f(kl, n) kl-edge-colourings. Consider all possible graphs G' arising from G 
as follows. Each vertex of G is replaced by k new vertices, while each edge e of G 
is replaced by one new edge connecting two of the new vertices replacing the 
endpoints of the original edge e, in such a way that the new graph g' is l-regular. 
So the number of graphs G' arising from G in this way is equal to 

( (kl)!)2n 
l !k ' (7) 

since for each vertex v of G we have to partition, arbitrarily, the edges incident 
with v into k classes of size l. 

Let II be the collection of all partitions (E1, ••. , E1) of the edge set of G into l 
classes such that each class Ei induces a k-regular subgraph of G. Now any l
edge-colouring (E1, ••• , E1) of a derived graph G' yields a partition in II. 
Conversely, each partition in II arises in this way from an Z-edge-colouring of 
k! 21n graphs G'. Hence, by (7), 

k!2ln ·\II\~ c~!ltrn. f(l, kn). (8) 

Now each class Ei of a partition 'i in II can be refined to a k-edge-colouring of 
the graph (V, EJ in at least f(k, n) ways. So 'i can be refined in at least f(k, nY 
ways to a kl-edge-colouring of G. Therefore, the total number f(kl, n) of 
kl-edge-colourings of G is at least \II\· f(k, n)1, that is, by (8), at least the 
required lower bound. D 

Corollary 2a 

( (kl)! ) 2 ( I k 
f(kl)~ k!I. Ilk . f k) . f(l). 

Proof. Directly from the definition of f(k) and Theorem 2. D 

A natural function seems to be 

g(k):= (f~~)rk. (9) 

Corollary 1 a states that g(k) ~ k, while Corollary 2a asserts that g(kl) ~ 
g(k) . g(I). 

Corollary 2b. If f(k) = k !2 /kk fork= k1 and fork= k2, then also fork= k1k2. 

Proof. Directly from Corollaries la and 2a. D 
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Proof. By Corollaries la and lb it suffices to show that f (2);;;. 1 and f (3) ;;;.1. The 

former inequality is trivial, while the latter follows from the result of Voorhoeve 

[ 4] that the permanent of a nonnegative, integral matrix of order n with line sums 

3 is at least (1)'', i.e., that the number of perfect matchings in a 3-regular bipartite 

graph with 2n vertices is at least C1t. Hence f (3, n) ~ (1)n. D 

Let p(k, n) be the smallest possible permanent of a nonnegative, integral matrix 

of order n with line sums k, i.e., the smallest possible number of perfect 

matchings of a k-regular bipartite graph with 2n vertices. Van der Waerden's 

conjecture (recently proved by Falikman (added in proof)) says 

p(k, n)~ (~r. n!, 

while in [3] it was conjectured that 

( (k - l)k-l)n 
p(k, n)~ e-2 . 

(10) 

(11) 

(Note that the first bound is asymptotical for k ~ oo, while the second one is 

asymptotical for n ~ oo.) Now one easily sees that 

f(k, n)~ p(k, n) · p(k-1, n) · · · · · p(l, n). (12) 

So conjecture (11) implies our conjecture that 

( k !2)n 
f(k, n)~ kk . (13) 

Let L(n) denote the number of latin squares of order n. Since L(n) is equal to 

the number of n-edge-colourings of the complete bipartite graph Kn.m we know 

that L(n) ~ f(n, n) ~ p(n, n) · p(n -1, n) · · · · · p(l, n). Both Van der Waerden's 

conjecture (10) and conjecture (11) imply that 

(14) 

(cf. Wilson [5]), so both conjectured lower bounds support some evidence to each 

other. In fact, the lower bound (14) indeed can be proved if n has no other prime 

factors than 2 and 3. 

Corollary 2d. If n = 2a3b, then there are at least n !2"/n n° latin squares of order n. 

Proof. Directly from Corollary 2c. D 

Finally we derive the following result of Bang [1]. 

Corollary 2e. The permanent of a doubly stochastic matrix of order n is at least 
e-". 
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Proof. Since the dyadic doubly stochastic matrices form a dense subset of the 
space of all doubly stochastic matrices it suffices to prove the lower bound for 
dyadic matrices only. So let M = (m,i) be a dyadic doubly stochastic matrix of 
order n. Let u be a natural number such that 2uM is integral, and let for each 
t;;;,: u, G, be the 2'-regular bipartite graph with vertices, say, a 1, ••• , an, bi. ... , bm 
where there are 2'm,i edges connecting a, and bi, for i, j = 1, ... , n. This means 
that for t::;. u, G, arises from Gu by replacing each edge by 2'-" parallel edges. 
Hence the number µ of perfect matchings in Gu is equal to 

µ =2'"' ·per M. 

Moreover, the number ')', of 2'-edge-colourings of G, satisfies 

1'r,,,;;;; µ 2• • (2'-")!2"n, 

(15) 

(16) 

since each colouring is determined by 2' perfect matchings in G.,, together with an 
ordering of the 2' ~u "copies" in G, of each of the edges of Gu. But by Corollary 
2c 1't also satisfies 

(17) 

Combining (15), (16) and (17) we obtain a lower bound for per M, which tends to 
e-n if t-+ oo by Stirling's asymptotical formula. D 

Corollary 2f. If G is a k-regular bipartite graph with 2n vertices, then G has at 
least (k/e)n perfect matchings, i.e., p(k, n);;;,: (k/et. 

Proof. Directly from Corollary 2e. D 

Corollary 2g. f(k);;;,: k !/ek. 

Proof. Directly from (12) and Corollary 2f. D 
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