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REMARKS ON A THEOREM OF REDE! 

L. LOY Asz and A. SCHRUVER 

Dedicated to the memory of Ldsz/6 Redei 

In his monograph [I], Redei developed a theory which led to a characterization 
of certain fully reducible lacunary polynomials over finite fields. His book concludes 
with a selection of very interesting and highly non-trivial applications of the theory 
to various problems in algebra and number theory, such as the Hajos theory of 
abelian groups, divisibility maximum properties of gaussian sums etc. He raises 
the problem whether a more direct proof of any of these applications can be given. 
In this note we give a rather simple proof of one of these applications, and show 
that some of the others can be obtained from this. We also give two new applications, 
one motivated by design theory and the other one concerning automorphism groups 
of graphs. Some other results obtained by Redei as applications of his theory seem 
to need the full strength of the theory. 

1. A theorem on affine planes 

The following result is essentially equivalent to Theorem 24' in [1]. 

THEOREM I. Let p be a prime and let X be a subset of the affine plane AG(2, p ), 
such that IXI= p and X is not a line. Then X determines at least (p+3)/2 
directions. 

Here we say that a direction is determined by X if X contains two points 
spanning a line in this direction. . 

Clearly, if IXI >p then X determines all the p+ l directions, since in this 
case at least one line from every parallel class contains more than one point of X. 

PROOF. We may assume that X does not determine all directions. Then 
AG(2, p) can be coordinatized in such a way that 

(1) X = {(k, bJ: kEGF(p)} 

where b0 , ... , bP_1E GF(p). Let U be the collection of directions determined by X, 
where each direction is identified by its "slope", i.e. 

(2) { bk-bm. } -U = k-m . k, mEGF(p), k;:: m . 
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To derive a contradiction suppose that JUJ</; 3 . Consider the polynomials 

(3) 

for j=O, ... , p-2. Since 

(4) Z ki = 0 iff j = 0 or p -11 j, 
kEGF{p) 

we have deg F1~j- l for j r=.O. 
If x~ U, then the elements bk-kx (kEGF(p)) are all distinct. Hence by (4), 

Fi(x)=O if x~ U. Since deg F1 ~j- l, it follows that Fi is the! zero polynomial 
ifj-l<p-JUI, in particular if j~(p-1)/2'. . 

Using that every function Qver G F(p) is a polynomial of degree at most p-1_, 
we may write · 

(5) 

where cmr=O, m~p-1. Since X is not a line, we have m?:2. Let 

(6) p-1 = am+b, 

where a>O and O~b~m-1. As m~2, it follows easily that a+b~(p-1)/2. 
So Fa+b=O, in particular the coefficient of xb is 0 in Fa+b· This coefficient is 

(7) 

with some field elements d1, by (5). Using (4) we get for this same coefficient 

(8) (a+b) a "i>'kP-1--(a+b) a 0 b Cm £J - b Cm ;,: • 
k 

This is a contradiction. 

SUPPLEMENT. If ap-element subset X of AG(2,p) determines exactly (p+3)/2 
directions, then in a suitable coordinate system it can be written in the form 

p+l 

(9) X= {(k, fc"2): kEGF(p)}. 

(Hence, X is contained in the lines x= y and x= --,-y.) 

PROOF. Applying .linear transformations if necessary, we may assume that in 
(5) we have Cm=l and cm-i:::;=c1 =c0 =0. ·· 

If a and b defined by (6) satisfy a+b<(p-1)/2 then we get a contradiction 
in the same way as before. So suppose that a+b=(p-:-1)/2. It is easy to see that this 
is possible only if either m=2 or m=(p+ 1)/2, In the first case we have the set 
X = {(k, k2): kEGF(p)}, which determines p directions. So we must have 
m=(p+ 1)/2. It suffices to show that in (5) all coefficients bµt the first vanish. 
Suppose indirectly that this is not the case, _and let cm-t be the first non-vanishing 
coefficient after the leading term. By the assumptions made above, we have 2 ~ t ~ 
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;§m-2. Consider the coefficient of xr- 2 in Fr. This must vanish, since t~m-2= 
=(p-3)/2. But this coefficient is 

(10) .f (~) b~kt- 2 = (~)? (kP+1+2cm-tkP+l-t+P:~t-l djki) kt-2 

with some field-elem~nts d1 . Using (4) we get 

(11) -(~) 2cm-t ,,= 0, 
a contradiction. 

2. Applications 

2.1. Redei's formulation of Theorem 1 is the following: 

If f: GF(p)-..GF(p) is non-linear then the difference quotient 

(12) f(x)-f(y) (x, yEGF(p); x ,,= y) 
x-y 

assumes at least (p + 3)/2 distinct values. 

This clearly follows from Theorem 1 by considering the "graph" of f 

2.2. Another one of Redei's applications of his theory, specialized here for 
the case of prime fields, is the following. 

Let f: GF(p)XGF(p)---GF(p) be a mapping such that (i) f is linear in its 
first variable, and (ii) the number of values of the first variable for which f is one-to
one in the second variable is at least (p+ 1)/2. Then f(x, y)=gi(x)h(y)+g2(x), 
where g1 and g2 are linear and h is one-to-one. 

This can be obtained from Theorem 1 as follows. Write, by (i), 

(13) 

and let 
f(x, y) = a(y)x+b(y), 

X= {(a(y), b(y)): yEGF(p)}. 

We claim that X determines at most (p+ 1)/2 directions. In fact, if a "non
vertical" direction with slope t is determined by X, then 

(14) 

and hence 
(15) 

b(y)-b(z) = t 
a(y)-a(z) 

a(y)t-b(y) = a(z)t-b(z), 

and thus /( -t, y) is not a one-to-one function of y. So by (ii), there are at most 
(p-1)/2 non-vertical slopes determined by X. With the possible vertical slope, 
there are at most (p+ 1)/2 directions determined by X. Hence by Theorem 1, 
X must be a line, i.e. (a(y), b(y))=h(y)(a, b)+(c, d) for some (a, b),,=(O, 0), (c, d), 
and some one-to-one mapping h. Setting g1(x)=ax+b and g2(x)=cx+d, the 
result follows. 
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Applying the Supplement to Theorem l, the same argument proves that if 
inste::id of (ii) we assume that the number of values of the first variable for which 
f is one-to-one in the second variable is exactly (p -1 )/2, then 

p+l 

(16) f(x, y) = g1 (x)h(y)-2-+g2(x)h(y)+g3 (x) 

where g1 , g~, g3 are linear and h is one-to-one. This statement is essentially the 
same as Theorem 22 in Redei's book. 

2.3. Let G be an additively written abelian group and A, B'ii= G. We write 

(17) G=A+B 

if every element of G can be written uniquely as a+b, aEA, bEB. Motivated by 
Haj6s' theorem, Redei proved the following: 

IjG:E.ZpffiZp then in every decomposition (17) such that OEA, B, one of A and 
B is a subgroup. 

It is quite natural to try to deduce this result from Theorem 1, since G is 
naturally isomorphic with AG(2, p). From G=A+B it easily follows that apart 
from trivial cases, !Al= IBI= p. Furthermore, no direction is determined by both 
A and B. For, consider e.g. the "horizontal" direction and let ~(g) denote the 
first coordinate of gEG. Let, further, e be a primitive ih root of unity. Then 

p-1 

('Z eW>)(Z eW>) = P z ei = o, 
a EA bEB j=O 

and so one of the factors on the left, say the first, is 0. But then ~(a) (aEA) ranges 
through all residue classes mod p, i.e. the horizontal direction is not determined 
by A. 

Thus one of A and B determines at most half of all directions, i.e. at most 
(p+ 1)/2 directions. By Theorem 1, this subset is a line, i.e. in Git is a coset of a sub
group. Since it contains 0, it is a subgroup. 

Further on, Redei proves the following result: 
Let G ~ ZP ffi ZP and let A 'ii= G, IA I= p. Assume that A is not a subgroup. 

Then there are at most (p- 1 )/2 subsets B containing 0 for which (17) holds. 
By the preceding, every such subset B must be a subgroup of order p. But 

then B corresponds in AG(2, p) to a line through the origin. (17) easily implies 
that every line parallel to B must intersect A, and hence the direction of B is 
not determined by A. By Theorem 1, there are at most (p-1)/2 such directions. 

3. Two more applications 

3.1. J. H. Van Lint has the following conjecture. If q is a prime power and 
xr;;;, GF(q2) such that IX! =q, 0, lEX and the difference of any two elements in 
X is the square of an element of GF(q2), then X=GF(q). This conjecture was 
proved for q= p a prime by Van Lint and F. J. Mac Williams (unpublished). 
We show here that it follows also from Theorem 1. (The case of general q remains 
open.) 
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In fact, GF(p2) may be considered as an affine plane over GF(p). Since 
every element of G F(p) is a square, for x, yE G F(p2) the fact whether or not 
x-y is a square depends only on the direction of the line of this affine plane 
connecting x and y. It is easy to see that there are (p+ 1)/2 directions which 
correspond to squares this way and (p+ 1)/2 directions which do not. Hence 
X determines at most (p+ 1)/2 directions and thus by Theorem 1, it is a line. 
Since O,lEX, it follows that X=GF(p). 

3.2. The Paley graph of order p (p is a prime of the form 4k+ 1) is the graph 
whose vertices are the elements of GF(p), two of them being adjacent iff their 
difference is a square in GF(p). It is clear that if a, bEGF(p), then 

(18) 

is an automorphism of the Paley graph. It follows from the work of Carlitz [2] 
and McConnel [3] (see also [4]) that the Paley graph has no other automorphisms. 
This can be derived also from Theorem 1 (or, rather, from the result in 2.1) rather 
easily. For let 

(19) j: GF(p) >-+ GF(p) 

be an automorphism of the Paley graph. Then if x-y is a square then f(x)- f(y) 
is a square and if x-y is a non-square then f(x)- f(y) is a non-square. Thus 
it follows that 

(20) 
f(x)-f(y) 

x-y 

is always a square. So the difference quotient (20) takes at most (p-1)/2 values 
(it is never 0 since f is one-to-one). By 2.1, this implies that 

f(x) = cx+b 

for some b, cEGF(p). Since (20) must be a square, c must be a square, i.e. c=a2 

for some aEGF(p). 

4. Concluding remarks 

4.1. The main difficulty in Redei's results is in the case when the underlying 
finite field is not a prime field. Whether or not the proof method of this paper can be 
extended to this case is not clear. The formulation of the results is certainly more 
complex. 

EXAMPLE. Let 

(21) X = GF(p) X GF(p) ~ GF(p2) X GF(p2) = AG(2, p2). 

Then the slope of any line determined by X is either 00 or an element of G F(p ). 
Thus X determines only p +I directions. 

For the formulation of the corresponding generalization of Theorem 1 we 
refer to Redei's book (Theorem 24). 

13 
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4.2. But even for the case of prime fields Redei's theory yields more than 
Theorem 1. One of his results is the following 

p • p-l 
THEOREM. Let a1 , ... ,apEGF(p) be such that Zaf=O for ;=l, ... ,-2-. 

l=l 
Then either all the a1 are equal or all of them are distinct. 

In spite of the striking similarity with the proof of Theorem 1, we could not 
deduce this result from Theorem 1. 
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