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L. G. Khachiyan recently published a polynomial algorithm to check feasibility of a system of 
linear inequalities. The method is an adaptation of an algorithm proposed by Shor for non-linear 
optimization problems. In this paper we show that the method also yields interesting results in 
combinatorial optimization. Thus it yields polynomial algorithms for vertex packing in perfect 
graphs; for the matching and matroid intersection problems; for optimum covering of directed cuts 
of a digraph; for the minimum value of a submodular set function; and for other important com
binatorial problems. On the negative side, it yields a proof that weighted fractional chromatic 
number is NP-hard. 

O. Introduction 

A typical problem in combinatorial optimization is the following. Given 
a finite set S of vectors in Rn and a linear objective function cT x, find 

(1) 

Generally S is large (say exponential in n) but highly structured. For example, 
S may consist of all incidence vectors of perfect matchings in a graph. We are 
interested in finding the value of (1) by an algorithm whose running time is pol
ynomial in n. Therefore, enumerating the elements of S is not a satisfactory 
solution. 

The following approach was proposed by Edmonds [1965], Ford and Fulkerson 
[1962] and Hoffman [1960], and is the classical approach in combinatorial optimiza
tion. Let P denote the convex hull of S. Then clearly 

(2) max {cTxlxES} = max {cTxjxEP}. 

The right hand side here is a linear programming problem: maximize a linear ob
jective function on a polytope. Of course, to be able to apply the methods of linear 
programming, we have to represent Pas the set of solutions of a system of linear 
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inequalities. Such a representation, of course, always exists, but our ability to find 
the necessary inequalities depends on the structure of S. However, in many cases 
these inequalities (the facets of P) can be described. There are some beautiful theo
rems of this kind, e.g. Edmonds' [1965] description of the matching polytope. In 
these cases, the methods of linear programming can be applied to solve (1). How
ever, until about a year ago there were two main obstacles in carrying out the above 
program even for nice sets S like the set of perfect matchings. First, no algorithm 
to solve linear programming with polynomial running time in the worst case was 
known. Second, the number of inequalities describing Sis typically large (exponen
tial in n) and hence even to formulate the linear program takes exponential space 
and time. Indeed, the well-known efficient combinatorial algorithms, like Edmonds' 
matching algorithm [1965] or Lucchesi's algorithm to find optimum coverings for 
directed cuts [1976] are based on different - ad hoe - ideas. 

A recent algorithm to solve linear programs due to L. G. Khachiyan [1979], 
based on a method of Shor [1970], removes both difficulties. Its running time is 
polynomial; also, it is very insensitive to the number of constraints in the following 
sense: we do not need to list the faces in advance, but only need a subroutine which 
recognizes feasibility of a vector and if it is infeasible then computes a hyperplane 
separating it from P. Searching for such a hyperplane is another combinatorial 
optimization problem which is often much easier to solve. So this method, the 
Ellipsoid Method, reduces one combinatorial optimization problem to a second one. 
One might try to use this again to further transform the problem; but - inter
estingly enough - the method applied the second time leads back to the original 
problem. (However, sometimes after a simple transformation of this second problem 
the repeated application of the Ellipsoid Method may further simplify the problem.) 

The main purpose of this paper is to exploit this equivalence between 
problems. After formulating the optimization problem in Chapter 1 exactly, we 
survey the Ellipsoid Method in Chapter 2. In Chapter 3 we prove the equivalence 
of the optimization and the separation problem, and their equivalence with other 
optimization problems. So we show that optimum dual solutions can be obtained 
by the method (since the dual problem has, generally in combinatorial problems, 
exponentially many variables, the method cannot be applied to the dual directly). 
Chapter 4 contains applications to the matching, matroid intersection, and branching 
problems, while in Chapter 5 we show how to apply the method to minimize a sub
modular set function and, as an application, to give algorithmic versions of some 
results of Edmonds and Giles [1977] and Frank [1979]. These include an algorithm 
to find optimum covering of directed cuts in a graph, solved first by Lucchesi [1976]. 

It is interesting to point out that these applications rely on the deep theorems 
characterizing facets of the corresponding polytope. This is in quite a contrast to 
previously known algorithms, which typically do not use these characterizations 
but quite often give them as a by-product. 

The efficiency of the algorithms we give is polynomial but it seems much 
worse than those algorithms developed before. Even if we assume that this efficiency 
can be improved with more work, we do not consider it the purpose of our work 
to compete with the special-purpose algorithms. The main point is that the ellipsoid 
method proves the polynomial solvability of a large number of different combinat
orial optimization problems at once, and hereby points out directions for the search 
for practically feasible polynomial algorithms. 
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Chapter 6 contains an algorithm to find maximum independent sets in perfect 
graphs. The algorithm makes use of a number 9(G) introduced by one of the 
authors as an estimation for the Shannon capacity of a graph (Lovasz [1979]). 
Finally, in Chapter 7 we note that the vertex-packing problem of a graph is in a 
sense equivalent to the fractional chromatic number problem, and comment on 
the phenomenon that this latter problem is an example of a problem in NP which 
is NP-hard but (as for now) not known to be NP-complete. 

1. Optimization on convex bodies: formulation of the problems and the results 

Let K be a non-empty convex compact set in Rn. We formulate the following 
two algorithmic problems in connection with K. 

(1) Strong optimization problem: given a vector cERn, find a vector x in K which 
maximizes cT x on K. 

(2) Strong separation problem: given a vector yERn, decide if yEK, and if not, 
find a hyperplane which separates y from K; more exactly, find a vector cERn 
such that cTy>max {cTxlxEK}. 

Examples. Let K be the set of solutions of a system of linear inequalities 

(3) af x :§ b; (i = I, ... , m) 

(aiERn, biER). Then the strong separation problem can be solved trivially: we sub
stitute x = y in the constraints. If each of them is satisfied, yEK. If constraint 
a[ x:§bi is violated, it yields a separating hyperplane. On the other hand, the 
optimization problem on K is just the linear programming problem. 

As a second example, let K be given as the convex hull of a set {vi, ... , vm} 
of points in R". Then the optimization problem is easily solved by evaluating the 
objective function at each of the given points and selecting the maximum. On the 
other hand, to solve the separation problem we have to find a vector c in R" such 
that 

(4) T T (" - I ) C y > C Vi l - , ••• , m 

So this problem requires finding a feasible solution to a system oflinear inequalities; 
this is again essentially the same as linear programming. 

Note that the convex hull of {vio ... , vm} is, of course, a polytope and so 
it can be described as the set of solutions of a system of linear inequalities as well. 
But the number of these inequalities may be very large compared to m and n, and 
so their determination and the checking is too long. This illustrates that the solvability 
of the optimization and separation problems depends on the way K is given and 
not only on K. 

We do not want to make any a priori arithmetical assumption on K. Thus 
it may well be that the vector in K maximizing cT x has irrational coordinates. In 
this case the formulation of the problem is not correct, since it is not clear how to 
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state the answer. Therefore we have to formulate two weaker and more complicated, 
but more correct problems. 

(5) (Weak) optimization problem: given a vector cEQn and a number e>O, find 
a vector yEQn such that d(y, K):§e and y almost maximizes cTx on K, i.e. 
for every xEK, cT x:§cT y+e. {Here d(y, K) denotes the euclidean distance 
of y from K.) 

(6) (Weak) separation problem: given a vector yEQn and a number e>O, conclude 
with one of the following: (i) asserting that d(y, K):§e; (ii) finding a vector 
cEQn such that llcll~l and for every xEK, cTx~cTy+e. 

We shall always assume that we are given a point a0 and O<r:§R such that 

(7) S(a0 , r) ~ K ~ S(a0 , R), 

where S(a0 , r) denotes the euclidean ball of radius r about a0 • The second inclusion 
here simply means that K is bounded, where a bound is known explicitly; this is quite 
natural to assume both in theoretical and in (possible) practical applications. The 
first assumption, namely that K contains an explicit ball, is much less natural and we 
make it for purely technical reasons. What it really means is that K is full-dimensional, 
or at least we are given the affine subspace it spans and also that we are given a 
ball in this subspace contained in K. At the end of Chapter 3 we shall show that 
some assumption like this must be made. 

So we define a convex body as a quintuple (K, n, a0 , r, R) such that n~2, K 
is a convex set in Rn, a0 EK, O<r:§R and (7) is satisfied. 

Let :f(' be a class of compact convex bodies. We assume that each KE% 
has some encoding. An input of the optimization problem for :fC is then the code 
of some member K of%, a vector cEQn, and a number e>O. Inputs of the other 
problems are defined similarly. The length of the input is defined in the (usual) 
binary encoding. Thus the length of the input is at least n + jlog r I+ jlog RI + jlog ej. 
An algorithm to solve the optimization problem for the class :f(' is called polynomial 
if its running time is bounded by some polynomial of the size of the input. 

The fact that the running time must be polynomial in jlog ej is crucial: it 
means that running the algorithm fore= 1/2, 1/4, ... we get a sequence of approxima
tions which converge exponentially fast in the running time. Other approximation 
algorithms for linear programming (Motzkin and Schoenberg [1954]) have only 
polynomial convergence speed. This exponential convergence rate enables Khachiyan 
to obtain an exact optimum in polynomial time (essentially by rounding) and us 
to give the combinatorial applications in this paper. 

2. The ellipsoid method 

Let us first describe the simple geometric idea behind the method. We start 
with a convex body Kin Rn, included in a ball S(a0 , R)=E0 , and a linear objective 
function cT x. In the k-th step there will be an ellipsoid Ek> which includes the set 
Kk of those points x of K for which c T x is at least as large as the best found so far. 
We look at the centre xk of Ek. If xk is not an element of K, then we take a hyper
plane through xk which avoids K. This hyperplane H cuts Ek into two halves; we 
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pick that one which includes Kk and include it in a new ellipsoid EH1 , which is 
essentially the ellipsoid of least volume containing this half of Ek> except for an 
allowance for rounding errors. Geometrically, this smallest ellipsoid can be de
scribed as follows. Let F=EknH, and let y be the point where a hyperplane 
parallel to H touches our half of Ek. Then the centre of this smallest ellipsoid divides 
the segment xky in ratio I :n, the ellipsoid intersects Hin F, and touches Ek in y. 
Ek+1 then arises by blowing up and rounding. If xkEK, then we cut with the hyper
plane cT x=cT xk similarly. The volumes of the ellipsoids Ek will tend to 0 ex
ponentially and this guarantees that those centres xk which are in K will tend to an 
optimum solution exponentially fast. 

In what follows, let !lxll denote the euclidean norm of the vector x and let 
llAll denote the norm of the matrix A, i.e. 

llAll = max {II Axil: llxll = 1 }. 

For symmetric matrices, llAll is the maximum absolute value of the eigenvalues 
of A, and also max {\xTAx\: llxll=l}. 

We turn to the exact formulation of the procedure. Let KcR" be a compact 
convex set, S(a0 , r)~K~ S(a0 , R), cTx a linear objective function and e>-0. 
Without loss of generality, assume that e-<r, llcll ~I, and n~2. Assume that 
there is a subroutine SEP to solve the (weak) separation problem for K. This means 
that given a vector yE Q" and () >-0, SEP either concludes that yE S(K, b) or yields 
a vector d such that 
(1) max {dTxjxEK} :§ dry+i5. 

To solve the weak optimization problem on K we run the following algorithm. Let 

(2) N = 4n2f1og 2R;!cll 1, 
(3) 

and 
(4) p = 5N. 

We now define a sequence x0 , x1 , ... of vectors and a sequence A0 , Ai, ... of positive 
definite matrices as follows. Let x0 =a0 and A0 =R2 I. Assuming that xk, Ak are 
defined, we run the subroutine SEP with y = xk and b. If it c_oncludes that xkE S (K, <5) 
we say that k is a feasible index, and set a=c. If SEP yields a vector dERn such 
that lldll ~ 1 and 
(5) max {dTx: xEK} :§ dTxk+lJ, 

then we call k an infeasible index and let a= -d. Next define 

(6) bk = Ak a/Y aT Aka, 

(7) 

(8) 
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(With 2n
2 

1 instead of 2n~~ 3 , we would get the smallest ellipsoid including the 
n - n 

appropriate half of Ek; see Gacs and Lovasz (1979]. Here we take this larger factor 
because of rounding errors.) Further let 

(9) 

where the sign ::::: means that the left hand side is obtained by rounding the right 
hand side to p binary digits behind the decimal point, taking care that Ak+1 is 
symmetric. 

The sequence (xk), k feasible, will give good approximations for the optimum 
solution of our problem. To prove this, we shall need some lemmas, which will 
also illuminate the geometric background of the algorithm. 

First we introduce some further notation. Let 

(10) 

and 

(11) 

(2.1) Lemma. The matrices A 0 , A1 , ... , AN are positive definite. Moreover, 

Proof. By induction on k. For k=O all the statements are obvious. Assume that 
they are true for k. Then note first that 

(13) (A*)-1 - 2n2 ( -1 2 aaT ) 
k - 2n2 +3 Ak +n-1° aTAka ' 

as it is easy to verify by computation, and hence At is positive definite. Using this 
it follows easily that 

(14) 

and so 

(15) 

Further, 

(16) 

and so 
1 1 

(17) llxH1il ~ llxkll + n+ 1 iibkll +llxk+1-xtll :::§ lla01! +R2k+ n+ 1 R2k+ yn2-P 

~ llaGll+R2k+l. 
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Let A.0 denote the least eigenvalue of Ak+1 and let v be a corresponding eigenvector, 
llvll =I. Then 

(19) A0 = vTAk+1v = vTAtv+vT(Ak+1 -A;)v ~ [l(At)-1 \\-1 -\IAH 1 -At!I 

n-1 n-l 
;;;,:; --l!A-1 \l-1 -n2-P;;;,:; --R24-k-n2-P > R24-Ck+ 1> 
- n+l k - n+I · 

This proves that Ak+1 is positive definite and also that 

(20) 

(2.2) Lemma. Let µ denote the n-dimensional volume. Then 

(21) 

Proof. The volwne of Et can be calculated from the volume of Ek; this is easy if 
one notices that it suffices to consider the case Ak=l. Rounding errors can be 
estimated similarly as in the previous proofs. I 

(22) 
and 
(23) 

Set 
'k = max {cT xilO ;§ j < k, j feasible}, 

(2.3) Lemma. Ek~Kk> for k=O, 1, ... , N. 

Proof. By induction on k. For k=O the assertion is obvious. Let xEKHi· Then 

(24) 
and also 
(25) 

where ak equals the auxiliary vector a used in step k (if k is a feasible index we do 
not even have the ()here). Write 

(26) 

where al y=O (since bk and ak are not perpendicular because of the positive de
finiteness of Ak> such a decomposition of x always exists). By (24), 
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Hence t;€; 1. On the other hand, (25) yields 

(28) 

Now we have 

(29) 

where the remainder term R1 can be estimated easily by similar methods to those 
in the proof of Lemma (2.1), and it turns out that R1 <1/12n2. For the main term 
we have by (13), (26), (27), (28) and (12): 

(30) (x-xt)TAt- 1(x-xt) = 2~~3 ( (t- n~ 1) bk+ Yr. 

:s 2n2 (~-2t(l-t)) 
- 2n2 +3 n2 - l n-1 

_ 2n4 4c5 2n 4c5 llA_ 111 s + +-- k 
- 2n4 +n2 -3 (n-l)YalAkak 2n4 +n2-3 n-1 

2n4 4c5R-2 4N 1 
:s + :Sl-~-- 2n4 +n2 -3 n-1 - 12n2 • 

Hence (x-xk+iY Ak"J1 (x-xk+J:§l, and so xEEk+i· I 
Now we are able to prove the main theorem in this section. 

(2.4) Theorem. Let j be a feasible index for which 

(31) 

Then cTxi~max {cTxjxEK}-e. 

Proof. Let us observe first that Lemmas (2.2) and (2.3) imply that 

(32) 

where Vn is the volume of the n-dimensional unit ball. On the other hand, let 

(33) 

and yEK such that cT y='· Consider the cone whose base is the (n-1)-dimensional 
ball of radius r and centre x0 in the hyperplane er x =er x0 and whose vertex is 
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Y· The piece of this cone in the half-space cTx?Ecrx. is contained in KN. The 
volume of this piece is 1 

(34) 

Hence 
n-1 

(35) (-cT xi :§ e-N/4n2R (, _cT Xo )-;;-( nV. )l/nllclll/n. 
r vn-1 

We still need an upper bound on(. Since 

(36) 

we finally have 

(37) 

3. Equivalence of optimization and other problems 

First we prove the equivalence of the (weak) separation problem and the 
(weak) optimization problem, for any given K. More exactly, this means the 
following. 

(3.1) Theorem. Let :/{ be a class of convex bodies. There is a polynomial algorithm 
to solve the separation problem for the members of :/{, if and only if there is a po
lynomial algorithm to solve the optimization problem for the members of$. 

A class :I{ such that there exists a polynomial algorithm to solve the op
timization problem (or the separation problem) for members of :I{ will be called 
solvable. 

Proof. (I) The "only if" part. In view of the results of Chapter 2, the only thing 
to check is that the algorithm described there is polynomial-bounded. This follows 
since by assumption, the subroutine SEP is polynomial, hence the number of 
digits in the entries of a is polynomial and so the computation of xk+l and Ak+1 

requires only a polynomial number of steps. All other numbers occurring have 
only a polynomial number of digits, by Lemma (2.1). The number of iterations is 
also polynomial. Hence the algorithm runs in polynomial time. 

(II) The "if" part. Without loss of generality assume that a0 =0. Let K* 
be the polar of K, i.e., 

(1) K* = {ul uTx :§ 1 for each xEK}. 

It is well-known that K* is a convex body, (K*)*=.K, and 

(2) S(O, 1/R) ~ K* ~ S(O, 1/r). 

If :I{ is a class of convex bodies with a0 =0, let :/{*= {K* IKE$}. 

6 
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(3.2) Lemma. The separation problem for a class f* of convex bodies with a0 =0 
is polynomially solvable if! the optimization problem is polynomially solvable for 
the class ;/[. 

Since (%*)*=%, this lemma immediately implies the "if" part of the 
theorem: if the optimization problem is polynomially solvable for ff then the 
separation problem is polynomially solvable for ff*. But then by part (I), the 
optimization problem is polynomially solvable for ff* and so using the lemma 
again, it follows that the separation problem is polynomially solvable for ~ 

Proof of the Lemma. (I) The "if" part. Let K*Ef*, vERn and e>O. Using the 
optimization subroutine for K, with objective function v and error sr, we get a vector 
zERn such that d(z, K);;§c:r, and 

(3) vT z ~ max {vTxlxEK}-er. 

1 
Now if vT z:§ I then vT x;;§ I +sr and hence v0=-1-- vEK*. Therefore llvoll ;;§ l/r, 

+er 
whence d(v, K*);;§flv-v0 fl:§e. 

On the other hand, if vT z> 1 then z is a solution of the separation problem 
for K*. In fact, let z0EK such that llz-z0 ll :§er. Then for every uEK*, !lull:§! l/r, 
and so 
(4) 

which proves that z is a solution of the separation problem for K*. 
(II) The "only if" part follows by the "if" part of the Theorem (which we 

already know). I 
Let % and .ft' be two classes of convex bodies. Define 

(5) % /\.ft'= {KnLJKE%, LE.ft', dimK = dimL, a0 (K) = a 0 (L)}. 

(3.3) Corollary. If% and .ft' are solvable then so is $'/\.ft'. 

Proof. The separation problem for ff /\.ft' goes trivially back to the separation 
problems for% and .ft'. I 

(3.4) Corollary. Let% be a class of convex bodies with a0=0. Then ff is solvable 
if!%* is solvable. 

The proof is trivial by Lemma (3.2). 
Let R1+ be the non-negative orthant in Rn. Next we study convex bodies 

K such that there are e >O, R >O with 

(6) Ri+ n S(O, (}) ~ K ~ R7+ n S(O, R), 

and if xEK, 0:§y;;§x, then yEK. 
The anti-blocker of K is defined by 

(7) A(K) = {yER7+JYT x ;;§ 1 for every xEK}. 

Moreover, A(%)={A(K)!KE%}. 

(3.5) Corollary. Let% be a class of convex bodies satisfying (6). Then ff is solvable 
iJJ A ( Jf") is solvable. 
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The proof is the same as that of Lemma (3.2). 
Next we want to show that without the assumption that K contains a ball, 

or even without the explicit knowledge of this ball, there is no algorithm at all to 
solve the optimization problem. More exactly, we consider a class of full-dimen
sional convex bodies in R2, and assume that for each of these bodies there is an 
"oracle" or "black box'', which, if we plug in a point yER2, tells us whether or 
not y is contained in the body and if not, prints out a separating hyperplane in 
the sense of the strong separation problem. We may require that the output is 
always rational but may allow arbitrary real vectors as input. Now we are given 
one of the black boxes together with the information that a0 =0 is contained in 
the body described by this black box, and that it is contained in some disc about 0. 
We are also given a linear objective function cT x which we would like to maximize 
in the sense of the weak optimization problem. Note that if, in addition, we would 
be given an r>O and the information that the body contains the disc of radius r 
about 0, then this problem could be solved: this is just the contents of Theorem (3.1). 
However, we are going to show by an "adversary" argument that there is no algo
rithm at all to solve the weak optimization problem if no ball contained in the 
bodies is explicitely known. 

Let L(t, <p) denote the segment of length t which ends in 0 and forms an 
angle of <p with the positive half of the x-axis. Let K( t, <p, r) denote the neighborhood 
of L(t, <p) of radius r. We assume that O<t;;§ 1, O<r;;§ 1, and 0;;§<p;;§90°, r, t, <pEQ. 
Our adversary designs one or more black boxes for every t, <p, and r; he does this 
so - and generously tells this to us - that if y~ K(t, <p, r) then the machine in 
the box checks whether or not yEK(I, <p, r) and if the answer is "no" the separating 
line it constructs will also separate y from K(l, <p, r ). Otherwise, the separating 
algorithm in the box may be arbitrary. 

Assume that we are given a box and the information that it is one of the 
boxes constructed above. Then we know that the convex body described by the 
box is contained in the disc of radius 2 about 0 and that it contains 0 in its interior. 
Suppose that we have an algorithm to solve the weak optimization problem with 
(say) the objective function x+y. By a usual argument, this algorithm must also 
work if our adversary is allowed to exchange one black box for the other during 
the run of the algorithm, provided this second black box would have given the same 
answers to the previous questions as the one used so far. So if we describe a strategy 
for the adversary to switch boxes so that after an arbitrary number of steps there 
are still two black boxes which would have given the same answers as obtained 
previously but for which the maxima of x + y over the corresponding convex bodies 
are essentially different (by more than 1/2, say), then the counterstrategy of the 
adversary is succesful and our algorithm is wrong. 

Now the strategy of our adversary is the following: he always gives us a box 
for some K(l, <p, r) and such that all the previously checked points are outside 
K(I, <p, r) (except for 0, if we had happened to ask this superiluus question). It is 
easy to see that he can do this: if we ask a point outside the current K(I, <p, r) he 
does not have to interfere, and if we ask a point inside, he can construct a K(l, l/J, s) 
which is contained inside K(l, <p, r) but avoids y, and can replace the current black 
box by a black box for K(l, ijl, s). 

It is clear that at each step, not only the current K(I, <p, r) but also K(t, <p, r) 
is compatible with all the previous answers, for every 0;;§t~l, but the maxima of 
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x + y over K(l, cp, r) and K ( ! , <p, r) differ by more than 1/2. This completes 

the proof. 
Let us remark that the same argument would show that the weak optimization 

problem is not solvable algorithmically, using a strong separation oracle, for the 
class of non-full-dimensional bounded convex bodies. 

Finally we show that for polytopes many of the results are even nicer. By 
a rational polytope we mean a quadruple (P; n, a0 , T) where Pisa full-dimensional 
polytope (in Rn), a0 Elnt P, and every component of a0 as well as of every vertex of 
P is a rational number with numerator and denominator not exceeding T in ab
solute value. (This definition is much in the spirit of our previous discussion: the 
vertices of P must be rational in order to be able to explicitly present them and 
explicit bounds must be known for their complexity.) 

(3.6)Theorem.Let(P; n,a0 , T)bearationalpolytope. Then S(a0,r)~P~S(a0 ,R), 
where R=2nT and r=(2T)-n2-n. Furthermore, every facet of P can be written 
as aT x ;§b, where a (;CO) is an integral vector, b is an integer, and the entries of 
a as well as b are less than T' = (nT)". 

Thus every rational polytope can be viewed as a convex body, with r and R 
as above. A certain converse of this assertion holds as well. 

(3.7) Theorem. Let P~R" be a polytope, a0Elnt P, and assume that every component 
of a0 is a rational number with numerator and denominator less than T in absolute 
value. Also assume that every facet of P can be written as aTx;§b, where a (;CO) 
is an integral vector, b is an integer and the entries of a as well as b are less than T 
in absolute value. Then (P; n, a0 , T') is a rational polytope where T' =(nT)". 

The proof of these two theorems is rather straightforward arithmetic and 
is omitted (cf. Lemmas 1-2 in Gacs and Lovasz [1981]). 

(3.8) Theorem. Let :Y( be a class of rational polytopes. Suppose that :Y( is solvable. 
Then the strong optimization problem and the strong separation problem are solvable 
for :Y( in time polynomial inn, log T, and log S, where Sis the maximum of the absolute 
values of the numerators and denominators occurring in c (in y, respectively). 

Proof. Let (P; n, a0 , T)Ef. cEZ", Q=2T2•+ 1 and 

(10) 

We prove that max {dT x I xEP} is attained at a unique vertex of P and that this 
vertex maximizes cT x as well. 

(11) 

For let x0 be a vertex of P maximizing dT x and let x1 be another vertex. Write 

1 
Xo-X1 = -z, 

('/. 

where 0<rx<T2" is an integer and z=(zl> ... , z.)T is an integral vector with 
lzil <2T2"+1 = Q. Then 

(12) 0 ;§ dT(x0 -xJ = ..!..{Q"crz+ Z Qi-1z1}. 
('/. j=l 
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Here er z~O, since it is an integer and if er z:=§ -1, then the first term in the bracket 
is larger in absolute value than the second. Hence 

(13) 

for every vertex x1 , i.e., x0 indeed maximizes the objective function er x over P. 
Also note that the second term in (12) is non-zero since z:r!O. Hence 

(14) ar (xo - x \ ;;;,, ..!.. ;;;,, -1-v - IX - y2n 

and so x0 is the unique vertex of P maximizing the objective function dT x. 
Now use the hypothesized polynomial algorithm to find a vector yERn 

such that 

(15) 

and dry~drx0 -e. 

(16) 

d(y, P) ~ s = :o lldlJ-1n-1/2y-2n-a 

We claim that 
I 

\\y-xo\I :§ 2y 2 • 

For let y 0 be the point of P next toy. Represent y0 as a convex combination of n+ 1 
vertices of P, one of which is x0 : 

(17) 

Hence 

(19) 

and 

n n 
Yo = _2 A.ix;, A;~ 0, Z Ai= 1. 

i=O i=O 

1-A. 
T2n ° ~ e(\\d\\ + 1) ~ 2e\\dll 

(20) \\Y-Xo\I :§ llY-Yo\\ +llYo-Xo\I :§ e+(l-Ao) Iii~ 1 ~~o X;-Xoll 

~ e+(l -A.0)2 YnT:5 e+4elldll ynr2n+ 1 ~ l/2T2. 

Now it is rather clear how to conclude: round each entry of y to the next rational 
number with denominator less than T; the resulting vector is x0 • The rounding can 
be done by using the technique of continued fractions. We leave the details to 
the reader. 

The separation algorithm can be obtained by applying the previous algorithm 
to P* (assuming that a0 =0, possibly after translation). I 

If the strong separation problem concludes that yEP then it is nice to have 
a "proof" of that, i.e., a representation of y as a convex combination of vertices of P. 
This problem can also be solved. 
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(3.9) Theorem. Let :% be a solvable class of rational polytopes. Then there exists 
an algorithm which, given (P; n, a0 , T)E:ft and a rational vector yEP, yields vertices 
x 0 ,xio ... ,x,, of P and coefficients A.0 ,A.1 , ••. ,A.,,~O such that ).0 +.A.1 + ... +A.,,=l 
and A.0 x0 +A.1 x1 + ... +A.,,x,,=y, in time polynomial inn, log T and log S, where S 
is the maximum absolute value of numerators and denominators of components of y. 

Proof. We construct a sequence x0 , x1 , ... , x,, of vertices, y0 , y1 , ... , y,, of points 
and F1 , F2 , ••• , F,, of facets of P as follows. Let x0 be any vertex of P, and let 
y0=y. Assume that Xi. Yt and F; are defined for i~j. Let Yi+l be the last point 
of P on the semi-line from xi through Yi• let 

(21) 

where O<s<(nT)- 3"1• Let FJ+1 be a facet separating Y}+i from P, and let xi-tl 
be a vertex of F1n ... n Fi+l · It is straightforward to prove by induction that 
X1>YtEFi for j~i,yEconv(x0 , ••• ,x;,y;), and dim(F1 n ... nF)=n-j. Hence 
x,,=y,, and so y is contained in the convex hull of x0 , ••• , x,,. 

The procedure described above is easy to follow with computation. The 
vertex of F1 n ... nF1 can be obtained as follows. Let alx~b; be the inequality 

( i )T 
corresponding to facet F;; then maximize the objective function 1~ a1 x. We 

leave the details to the reader. I 
The "dual" form of this theorem will also play an important role in the 

sequel. It shows that if we consider optimization on P as a linear program, an 
optimal dual basic solution can be found in polynomial time, if the class is solvable. 

(3.10) Theorem. Let :% be a solvable class of rational polytopes. Then there exists 
a polynomial-bounded algorithm which, given (P; n, a0 , T)EJt'; cEQ" provides facets 

n 

a[x~b1 (i=l, ... ,n) and rationals A.1 ~0 (i=I, ... ,n) such that Z A.1a1=c 
i=l 

n 
and Z A.1b1=max {cTxlxEP}. 

i=l 

The proof is easy by considering :% *. 

4. Matroid intersection, branchings and matchings 

We now apply the methods described in the previous chapters to a number 
of combinatorial problems. As said in the introduction our main aim is to show the 
existence of polynomial algorithms for certain combinatorial problems, and these 
algorithms are not meant as substitutes for the algorithms developed for these 
problems before (see Lawler [1976] for a survey). However, in the next chapters 
we shall show the existence of polynomial algorithms also for certain problems 
which were not yet solved in this sense. The algorithms found there, though pol
ynomial, in general do not seem to have the highest possible rate of efficiency, and 
the challenge remains to find better algorithms. 

First we apply the ellipsoid method to matroid intersection (cf. Edmonds 
[1970, 1979], Lawler [1970D. Note that given a matroid (V, r), the corresponding 
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matroid polytope is the convex hull of the characteristic vectors of independent 
sets. The idea .is very simple: given an integral "weight" function w on V, the trivial 
"greedy algorithm" finds an independent set V' maximizing Z w(v). That is, 
• vEV' 

it finds a vertex x of the corresponding matroid polytope maximizing the objective 
function wrx, in time bounded by a polynomial in !VI and log llwll. So the class 
of matroid polytopes is solvable. Therefore, by Corollary (3.3) also intersections of 
matroid polytopes are solvable. Since the intersection of two matroid polytopes 
has integer vertices again, this provides us with a polynomial algorithm for matroid 
intersection. (In fact, we obtain a polynomial algorithm for common "fractional" 
independent sets for any number ofmatroids.) Obviously, we may replace "matroid" 
by "polymatroid". In Chapter 5 we shall extend this algorithm to a more general 
class of polytopes, and we shall show there how to obtain optimal integral dual 
solutions. 

In this application, and in the following examples we leave it to the reader 
to check that without loss of generality we may transform the polytopes in question 
to full-dimensional polytopes, and to find a vector a0 and a number T such that 
(i) each numerator and denominator occurring in the components of the vertices 
of the polytope, and in those of a0 , do not exceed Tin absolute value, (ii) a0 is an 
internal point of the polytope, and (iii) log T is bounded by a polynomial in the 
size of the original combinatorial problem (in most cases we have T= 1). 

Also the second application is illustrative for the use of the method. Let 
G = (V, E) be a complete graph, with IV I even, and let P be the perfect matching 
polytope in QE, i.e., P is the convex hull of the characteristic vectors of perfect 
matchings in G. So the strong optimization problem for this polytope is equivalent 
to the problem of finding a maximum weighted perfect matching. Edmonds [1965] 
showed that P consists of all vectors x in QE such that 

(i) x(e) ~ 0 (eEE) 

(ii) Z x(e) = 1 (vE V), 
e3v 

(iii) Z x(e) ~ 1 (E' odd cut). 
eEE' 

Here a set E' of edges is an odd cut if E' is the set of edges with exactly one end
point in V', where V' is some subset of V of odd cardinality. From this characteriz
ation one can derive a good algorithm for the strong separation problem for P a'> 
follows. Given a vector x in QE one easily checks in polynomial time conditions 
(i) and (ii) above. In case of violation one finds a hype~plane separatin~ x from P. 
To check condition (iii) it suffices to have a polynomial method findmg an odd 
cut E' minimizing Z x (e): if this minimum is not less than 1 we may conclude 

eEE' 
that x is in P, and otherwise E' yields a separating hyperplane. Now Padberg and 
Rao [1979] showed that such a method can be derived easily from Ford-Fulkerson's 
min-cut algorithm. 

So the class of perfect matching polytopes i.s solvable, and hen?e there 
exists a polynomial algorithm finding maximum "."eighted. perfect I?atchm!Jis (cf. 
Edmonds [1965]). One similarly derives a polynomial algonthm findmg maximum 
weighted "b-matchings" (cf. Padberg and Rao [1979]). 
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A third application shows the existence of a polynomial algorithm for finding 
optimum branchings in a directed graph (cf. Chu and Liu [1965], Edmonds [1967]). 
Let D=(V, A) be a digraph, and let r be ~ome fixed vertex ?f D, called ~he root. 
A branching is a set A' of arrows of D makmg up a rooted directed spannmg tree, 
with root r. A rooted cut is a set A' of arrows with A' =J-(V') for some non-empty 
set V' of vertices not containing r, where J-(V') denotes the set of arrows entering 
V'. It follows from Edmonds' branching theorem [1973] that the convex hull of 
(the incidence vectors of) the sets of arrows containing a branching as a subset 
(i.e., the sets intersecting each rooted cut), is a polytope P in RA defined by the 
following linear inequalities: 

(1) (i) 0 :§ x(a) :§ 1 (aEA), 

(ii) Z x(a) ~ 1 (A' rooted cut). 
a EA' 

So there exists an algorithm which, given a digraph D =(V, A), a root r, and a non
negative integral weight function w defined on A, determines a branching of mini
mum weight, in time polynomially bounded by !VI and log llwll, if and only if the 
strong optimization problem is solvable for the class of polytopes P arising in this 
way. By Theorem (3.1) and (3.8) it is enough to show that the strong separation 
problem is solvable. Indeed, if xERA one easily checks condition (i) above and one 
finds a separating hyperplane in case of violation. To check condition (ii), we can 
find a rooted cut A' minimizing Z x(a) in time polynomially bounded by I VI 

a EA' 
and log T (where T is the maximum of the numerators and denominators occurring 
in x), namely by applying Ford-Fulkerson's max flow-min cut algorithm to the 
corresponding network with capacity function x, source r and sink s, for each 
s,t:.r. If the minimum is not less than 1 we conclude xEP, and otherwise A' determines 
a separating hyperplane. (Again, see Chapter 5 for a more general approach.) 

In fact this branching algorithm is one instance of a more general procedure. 
Let C be a clutter, i.e., a finite collection of finite sets no two of which are contained 
in each other. The blocker B(it) of$ is the collection of all minimal sets intersecting 
every set in cff (minimal with respect to inclusion). E.g., if $ is the collection of 
branchings in a digraph, then B(S) is the collection of minimal rooted cuts. One 
easily checks that B(B(©'))=S for every clutter <ff. Sometimes an even stronger 
duality relation may hold. Let V = U©', and let P be the convex hull of the charac
teristic vectors (in RY) of all subsets of V containing some set in $. Clearly, each 
vector x in P satisfies: 
(2) (i) 0 :§ x(v) :§ 1 (vEV), 

(ii) Z x(v) ~ 1 (V'EB(S)), 
vEV' 

as these inequalities hold for incidence vectors of sets in $. In case P is com
pl~tely determined by these linear inequalities, $ (or the hypergraph (V, S)) is 
said to have the Q+-max flow-min cut-property or the Q+-MFMC-property (cf. 
Seymour [1977]). Thus the clutter of all branchingsin a digraph has the Q+-MFMC
property, as we saw above. Fulkerson [1970] showed the interesting fact that a clutter 
$has the Q+-MFMC-property if and only if its blocker B(I) has the Q+-MFMC
property. 
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Now one easily extends the derivation of a polynomial algorithm for branch
ings from such an algorithm for rooted cuts as described above, to the following 
theorem. 

(4.1) Theorem. Let 15 be a class of clutters with the Q+-MFMC-property, such that 
there exists an algorithm which.finds, given iffE<t!f and wEZ~ (where V= U tC ), a set 
V' in$ minimizing Z w(v), in time bounded by a polynomial in JVI and log llwll. 

vEV' 
Then the same is true for the class of blockers of clutters in CC. 

One should be careful with how the clutter $ is given. Perhaps formally 
the most proper way to formulate the theorem is as follows: there exists an algorithm 
A and a polynomial f (x) such that given a "minimization algorithm" for some 
clutter g with the Q+-MFMC-property, with "time bound" g (log llwll), and given 
some vector uEZ~ (V= Ug), A finds a set V' in B(tff) minimizing Z u(v) in 

vEV' 

time bounded by f(IVI ·logllull ·g(JVI log !lull)). 
Among the other instances of Theorem (4.1) are the following. Let D=(V, A) 

be a digraph. A directed cut is a set A' of arrows of D such that A' ='5-(V') for 
some nonempty proper subset V' of V with i)+(V')=0 (as usual, 8-(V') and 
i)+ (V') denote the sets of arrows entering and leaving V', respectively). A covering 
is a set of arrows intersecting each directed cut, i.e., a set of arrows whose con
traction makes the digraph strongly connected. Let <ff be the clutter of all minimal 
directed cuts. If follows from the Lucchesi-Younger theorem [1978] that tff has 
the Q+-MFMC-property, and an easy adaptation of Ford-Fulkerson's max fiow
min cut algorithm yields a polynomial algorithm for finding minimum weighted 
directed cuts, given some nonnegative weight function on the arrows. (To this end 
we could add for each arrow also the reversed arrow with infinite capacity). Hence, 
by Theorem (4.1) there exists a polynomial algorithm for finding minimwn weighted 
coverings in a digraph (such algorithms were found earlier by Lucchesi (1976], 
Karzanov [1979] and Frank (1981]). 

In fact we do not need to call upon Ford-Fulkerson algorithm for finding 
minimwn weighted cuts; such an algorithm can be derived also from Theorem (4.1). 
Indeed, let D =(V, A) be a digraph and let r and s be two specified vertices. Let 
if be the clutter of all directed r-s-paths (considered as sets of arrows). So the 
blocker B(g) of iff consists of all minimal r-s-cuts. It follows from the max fiow-min 
cut theorem that iff has the Q+-MFMC-property. There exists an (easy) polynomial 
algorithm for finding shortest paths (Dijkstra [1959)), hence there exists a polynomial 
algorithm for finding minimum weighted cuts. 

Theorem (4.1) also applies to T-cuts and T-joins. Let G=(V, E) be an 
undirected graph, and let T be a set of vertices of G of even size. A set E' of edges 
of G is called a T-cut if there exists a set V 1 of vertices with IV' n TI odd such that 
E' is the set of edges of G intersecting V' in exactly one vertex. A T-join is a set 
E' of edges with the property that T coincides with the set of vertices of odd valency 
in the graph (V, E'). One easily checks that the clutter if of all minimal T-cuts has 
as blocker the clutter of all minimal T-joins, and Edmonds and Johnson [1970] 
showed that r1 has the Q+-MFMC-property. Padberg and Rao [1979] adapted 
the Ford-Fulkerson minimum cut algorithm to obtain a polynomial algorithm 
to find minimum weighted T-cuts, given a nonnegative weight function on the edges 
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(cf. also Chapter 5). Hence there exists a polynomial algorithm for finding minimum 
weighted T-joins, which was demonstrated earlier by Edmonds and Johnson [1970]. 
As special cases we may derive a polynomial algorithm for the Chinese postman 
problem (take T to be the set of vertices of odd valencey in G), and again a polynomial 
algorithm for finding minimum weighted perfect matchings (take T= V, and add 
a large constant to all weights; it is easy to derive conversely from a polynomial 
algorithm for minimum weighted perfect matchings, a polynomial algorithm for 
minimum weighted T-joins). 

From Theorem (3.10) we know that if <(5 is a class of clutters with the pro
perties as described in Theorem (4.1), then there exists an algorithm to find optimal 
dual solutions, that is, given cffE<(j and wEZT:;. (where V= U&'), to find sets E1 , ... , Et 
in B(lff), with t:§IVI, and nonnegative numbers A1 , •.• ,Ar such that 

(3) (i) AiXE1 + ... +AtXE, :§ w, 

(ii) A1 + ... +Ar= min ,2 w(v) 
V'E4 vEV' 

(where XE denotes the characteristic vector in Rv of E), in time polynomially bounded 
by !VI and log llwll- So in the special cases discussed above this provides us with 
polynomial algorithm to find optimal fractional packings of branchings, rooted 
cuts, coverings, directed cuts, r-s-cuts, r-s~paths (i.e., optimum fractional r-s
fiow), T-joins, T-cuts. Similarly, polynomial algorithms for finding optimum frac
tional two-commodity flow, and for fractional packings of two-commodity cuts 
may be derived (cf. Hu [1963, 1973]). Moreover, a recent theorem of Okamura and 
Seymour [1979] implies the existence of a polynomial algorithm for finding optimum 
fractional multicommodity :flows in planar undirected graphs, provided that all 
sources and all sinks are on the boundary of the infinite face. 

It is not necessarily true that if cff has the Q+cMFMC-property, we can 
take the A.1 , ... , A1 in the dual solution to be integers. If this is the case for each wEZ~ 
then cff is said to have the Z+-MFMC-property; and if for each such w we can take 
the A.1 , ... , At to be half-integers, cff has the tZ+-MFMC-property. E.g., the clutters 
of branchings, rooted cuts, coverings, r-s-cuts, r-s-paths all have the Z+-MFMC
property (proved by Fulkerson [1974], Edmonds [1973], Lucchesi and Younger 
[1978], Ford and Fulkerson [1956], and Fulkerson [1968], respectively), and the 
clutters of T-joins, two-commodity cuts, two-commodity paths, and multicom
modity cuts in planar graphs (with commodities on the boundary), have the tZ+
MFMC-property (proved by Edmonds and Johnson [1970], Hu [1963], Seymour 
[1978], and Okamura and Seymour [1979], respectively). Edmonds and Giles [1977] 
posed the problem whether the clutter of directed cuts has the Z + -MFM C-property, 
but this was recently disproved by Schrijver [1980]. 

We were not able to derive from the ellipsoid method in general a polynomial 
algorithm for optimum (half-) integer dual solutions, if such solutions exist. How
ever, in the case of optimwn packings of (rooted, directed, r-s-, T-) cuts we can 
find by Theorem (3.10) an optimum fractional solution in which the number of 
cuts with nonzero coefficient is at most !VI- Hence, by well-known techniques 
(cf. Edmonds and Giles [1977], Frank [1979], Lovasz [1975]) we can make these 
cuts laminar (i.e., non-crossing) in polynomial time, and we can find (half-)integer 
coefficients for the new collection of cuts, again in polynomial time, thus yielding 
an optimum (half-) integer packing of cuts. 
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We do not know whether the class ~ of all clutters with the Q+-MFMC
property is polynomially solvable in the sense of Theorem (4.1) (in which case 
Theorem (4.1) would become trivial). In Chapter 6 we shall see this indeed is the 
case for its anti-blocking analogue. 

In this chapter, as well as in the next chapters we see that the existence of 
polynomial algorithms can be derived from the ellipsoid method for many problems 
for which such algorithms have been designed before. However, we were not able 
to derive such an algorithm for the following two problems, for which (complicated) 
polynomial algorithms are known: the problem of finding a maximum weighted 
independent set of vertices in a K1, 3 -free graph (Minty [1980]), and that of finding 
a maximum collection of independent lines in a projective space (Lovasz [1980D. 
A main obstacle to derive such algorithms from the ellipsoid method is that so far 
no characterizations in terms of facets of the corresponding convex-hull polytopes 
have been found. 

However, if G=(V, E) is a K1, 3 -free graph, let P be the convex hull of the 
characteristic vectors of independent sets in G. So Minty showed that the optimiza
tion problem for the class of these polytopes is solvable, and hence, by Theorems 
(3.5) and (3.8), also the strong separation problem is solvable. This amounts to 
the following. Given a weight function w on V, one can find in polynomial time 
a maximum weighted "fractional clique'', i.e., a function x: V-Q+ such that 
Z x(x):§:l for each independent subset V' of V, with Z w(v)x(v) as large 

vEV' vEV 
as possible. Similarly one can find a minimwn fractional colouring (cf. Chapter 7). 

So although a theoretical description of the facets of P has not yet been 
found, these facets can be identified by the separation algorithm. Perhaps a descrip
tion of the facets yields a direct, not too complicated algorithm for the separation 
problem, and then one may derive in turn by the ellipsoid method a polynomial 
algorithm for the independent set problem in K1, 3 -free graphs. 

The problem of finding a maximum weighted collectio.n of independent lines 
in a projective space is still open. Again, it might be possible to derive such an 
algorithm from a characterization in terms of facets of the corresponding convex
hull polytope, but such a characterization has not been found so far. 

S. Submodular functions and directed graphs 

In this chapter we show the existence of a polynomial algorithm finding 
the minimum value of a submodular set function, and we derive polynomial algo
rithms for the optimization problems introduced by Edmonds and Giles [1977] 
and by Frank [1979]. 

Let X be a finite set, let F be a collection of subsets of X closed under union 
and intersection, and let f be an integer-valued submodular function defined on 
flF, that is, let /: F-Z be such that 

(1) f(X') + f(X") ~ f(X' n X") + f(X' U X") 

for X', X"E!F. Examples ofsubmodularfunctions are the rank functions ofmatroids, 
and the function f defined on all sets V' of vertices of a capacitated digraph by: 
f(V') is the sum of the capacities of the arrows leaving V'. 
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(5.1) Theorem. There exists an algorithm to find X' in ff minimizing f (X'), in time 
polynomially bounded by IXI and log B, where Bis some (previously known) upper 
bound for lf(X')I (X'Eff). 

So as special cases we can decide in polynomial time, given a matroid (X, r) 
and a weight function w on X, whether w is in the corresponding matroid polytope 
(i.e., whether Z w(x);§r(X') for each subset X' of X), and we can derive a po-

x EX' 
lynomial algorithm for finding minimwn capacitated cuts in networks. 

We need to make some requirements on the way ff and f are given. First 
we should know an upper bound B for l/(X')! (X'Eff). Secondly, we must know 
in advance the sets n ff and LJ ff, as well as for Which pairs X1, X2 in X there exists 
X'Eff with x1 EX' and x2 ~X'. This makes it possible to decide whether a given 
subset X' of X is in ff, and it allows us to assume without loss of generality that 
nff=0 and Uff=X. Finally, given X' in ff we must be able to find f(X'). 
It is enough to know that f (X') can be calculated in time polynomial in IX! and 
log B, or that some oracle gives the answer. Most of the special-case submodular 
functions fulfil these requirements. 

Proof. We shall reduce the minimization problem for submodular functions to 
the strong separation problem for polymatroid polytopes. Since the class of poly
matroid polytopes is solvable (as optimization can be done by the greedy algorithm 
- see Edmonds [1970]), this will solve the problem. 

Since we know an upper bound B for If (X')I we can find the minimum value 
off by applying binary search. So it suffices to have a polynomial algorithm finding 
an X' in ff with f (X')<K, or deciding that no such X' exists, for any given K. 
Since adding a constant to the values of f does not violate submodularity we can 
take K=O. Now if f(0)<0 we can take X'=0. Hence we may assume that f(0)=0. 

Let g be the function defined on ff by 

(2) g(X') = f(X')+2BIX'I, 

for X'Eff. So g is nonnegative, integral, monotone and submodular. Moreover, 
f (X')<O if and only if g(X')<2B!X'!. Next define for each subset X' of X the set 

(3) X' = n{X"EfflX' ~ X"}. 

(Note that X' can be determined in polynomial time.) Let h (X') = g(X') for each 
subset X' of X. One easily checks that h again is nonnegative, integral, monotone 
and submodular. Moreover, the problem of the existence of an X' in ff with g(X') 
<2BIX'I is equivalent to that of the existence of a subset X' of X with h(X') 
<2BIX'I· But the latter problem is just a special case of the strong separation 
problem for the vector 2B times the incidence vector of X and the polymatroid 
polytope corresponding to h: 

(4) {vER!I 2: v(x) :§ h(X') for all X' ~ X} 
xEX' 

(by Theorem (3.8) the separation algorithm yields facets as separating hyperplanes, 
i.e., subsets X' of X violating the inequality). As the optimization problem is solvable 
for the class of these polytopes we are finished. I 
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We apply the algorithm for finding the minimum value of a submodular 
function to theorems of Edmonds and Giles and of Frank. 

Let D=(V, A) be a digraph, and let ff be a collection of subsets of V such 
that if V', V"Eff and V'nv",,,:0 and V'UV"r"V then V'nV"Eff and 
V' U V"Eff. Let f be an integer-valued function defined on ff such that for all 
V',V"Effwith V'nV"r"0 and V'UV"r"V we have 

(5) f(V') + f(V") ~ f(V' n V") + f(V' UV"). 

Denote by ()+ (V') and e>-(V') the sets of arrows leaving (entering, respectively) 
the set V' of vertices. Let vectors b, c, dEZA be given, and consider the linear pro
gramming maximization problem 

(6) maximize Z c(a)x(a), 
a EA 

where xERA such that 

(7) (i) 

(ii) 

d(a) ~ x(a) ~ b(a) 

Z x(a)- Z x(a)~f(V') 
aEli+(V') aEli-(V') 

(a EA), 

(V'Eff). 

Edmonds and Giles showed that this problem has an integer optimum solution; 
this is equivalent to the fact that the polytope defined by the linear inequalities 
(7) has integral vertices. Edmonds and Giles also showed that the dual minimization 
problem can be solved with integral coefficients. 

As special cases of Edmonds and Giles' result one has Ford and Fulkerson's 
max flow-min cut-theorem, the Lucchesi-Younger theorem on packing directed 
cuts and minimum coverings, Edmonds' (poly-)matroid intersection theorem, 
and theorems of Frank [1981) on orientations of undirected graphs. Moreover, one 
may derive the theorem due to Frank that if f is an integral submodular function 
defined on a collection ff and g is an integral supermodular function on ff (i.e., 
-g is submodular) such that g(X')~f(X') for all X' in ff, then there exists an 
integral modular function h on ff (i.e., both sub- and supermodular) such that 
g(X')~h(X')~f (X') for all X' in ff. 

We shall give an algorithm which solves the maximization problem (6) in 
time polynomially bounded by I VI and log B, where B is some (previously known) 
upper bound on lf(X')I (X'Eff), llhll, llcll and lldll. We must know in advance for 
each pair of vertices v1 , v2 of D whether v1 E V' and v2 1 V' for some V' E ff (this 
makes it possible to decide whether V'Eff). Moreover we must have a subroutine 
calculating f(V') if V'Eff, in time polynomially bounded by \VI and log B. 

First of all, we may suppose that d(a)<b(a) for each arrow a, since if 
d(a)>b(a) the polytope (7) is empty, and if d(a)=b(a) we can remove the arrow 
a from the digraph and replace f(V') by f(V')±d(a) if aEC>+(V'). We may even 
assume that the polytope (7) is full-dimensional and that we know an interior 
point x whose components have numerators and denominators not larger than 
a polynomial in \VI and B. Otherwise we can extend the digraph D with one new 
vertex v0 and with new arrows (v0 , v) for each "old" vertex v of D. Define d(a) 
=-nB, b(a)=O and c(a)=2nnBn+4 for the new arrows a. One easily checks that the 
corresponding new polytope is full-dimensional, and one easily finds an x as required. 



190 M. GROTSCHEL, L. LOY.ASZ, A. SCHRUVER 

Moreover, the solutions of the original optimization problem correspond exactly 
to those solutions x of the new problem with x(a)=O for each new arrow a. 

Assuming the polytope (7) to be full-dimensional, by Theorem (3.8) it is 
enough to show that the strong separation problem is solvable. Let xEQA. One 
easily checks in polynomial time whether condition (i) is fulfilled. In case of violation 
we find a separating hyperplane. To check condition (ii) it suffices to find a set V' 
in ff minimizing 
(8) g(V'):=/(V')- Z x(a)+ .Z x(a) 

a€1l+(V') aEll-(V') 

in time polynomial in log B and log T, where T is the maximum of the numerators 
and denominators occurring in x. Note that g is submodular, hence we can appeal 
to the algorithm finding the minimum value of a submodular function. To this 
end we have to multiply the values by a factor to make the function integral (this 
factor is bounded above by r 1v1 1), and we have to apply the algorithm for each 
vI> v2 in V with v1 ~v2 , to the function restricted to {V'Eff jv1E V', v2 ~ V'}, since 
this collection is closed under union and intersection. Note that these requisites 
do not affect the polynomial boundedness of the required time. 

So we proved that the class of "Edmonds-Giles" polytopes is solvable. 
Hence, by Theorem (3.10) we can find an optimum solution for the dual linear 
programming problem. In general, this solution will be fractional, but one can make 
this solution integral by making the collection of sets in ff with non-zero dual 
coefficient laminar, by the well-known techniques (see Edmonds and Giles [1977]), 
in polynomial time. Now the (possibly fractional) coefficients can be replaced by 
integer coefficients, and these coefficients can be found by solving a linear program 
of polynomial size. 

This can be used to show the following. Let f be a submodular function de
fined on the subsets of the set V, and define g by 

t 
(9) g(V') = min Z /(VJ 

i=l 

for V' ~ V, where the minimum ranges over all partitions of V' into nonempty 
classes Vi, ... , Vi (t~O). Then g is the largest submodular function with g§.f 
and g(0) =0. Now a partition attaining the minimum in (9) can be found in po
lynomial time, since it can be translated straightforwardly into an optimal integral 
dual solution for an Edmonds-Giles linear programming problem: Let v0 be a new 
point. Construct the graph G on vertex set VU {v0} by connecting every point of 
V to v0 by an arc. Take d(a)=O, b(a)=l, c(a)=l for every arc a. 

We leave it to the reader to derive by similar methods a polynomial algorithm 
for finding the solution to the following optimization problem, designed by Frank 
(1979]. Let D=(V, A) be a digraph, and let ff be a collection of subsets of V such 
that if V', V"E.fF and V'n V"~0 then V'n V"E.fF and V'U V"E.fF. Let f be 
a nolUlegative integral function defined on .fF such that 

(9) f(V') + f(V'') ~j(V' n V'') + f(V' UV") 

if V', V"E.fF and V' n V" ~0. Let b, c, dEZi. Consider the linear programming 
problem 
(10) minimize Z c(a)x(a), 

a€A 
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where xERA such that 
(11) (i) d(a) ;§ x(a) ;§ b(a) (aEA), 

(ii) Z x(a) ~f(V') (V'EF). 
aE.5+(V') 
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Frank showed that this problem, and its dual, have integer solutions. As special 
cases one may derive again Ford and Fulkerson's max fl.ow-min cut theorem and 
Edmonds polymatroid intersection theorem, and also Fulkerson's theorem on 
minimum weighted branchings [1974]. 

We finally remark that the algorithm for finding a set V' in F minimizing 
f(V'), where f is a submodular function defined on ff, can be modified to a po
lynomial algorithm for finding a set V' in F of odd size minimizing f (V'). This 
extends Padberg and Rao's algorithm [1979] to find minimum odd cuts. More gen
erally, let ~~F be such that if V'E~ and V"EF"'-.~ then V'nV"E~ or 
V'U V"E~. (E.g., ~ is the collection of sets in F intersecting V0 in a number of 
elements not divisible by k, for some fixed subset V0 of V and some natural number 
k.) Then there exists a polynomial algorithm to find V' in C§ minimizing f(V') 
(by this we mean: f(V')=min {f(V'')IV"EC§}). This algorithm needs, besides 
the prerequisites for § and f as above, a polynomial subroutine deciding whether 
a given set V' is in~- Without loss of generality we may assume that 0~ C§ and V~ C§. 

The algorithm is defined by induction on !VI· Suppose the algorithm has 
been defined for all such structures with smaller I VI. Find a set V' in F such that 
0 ;;CV' ;;e V which minimizes f (V'). This can be done by applying the polynomial 
algorithm described above to the function f restricted to the collection 
{ V' E F I v1 E V', v2 ~ V'}, for all v1 , v2 in V. If V' E ~ we are finished. If V' ~ C§ there 
will be a set V" in ~minimizing f (V'') such that V"~ V' or V'~ V". Indeed, 
if V"EC§ minimizes f(V'') then either V'n V"EC§ or V'U V"EC§; in the former 
case we have 
(12) f(V'n V'') + f(V'UV") ;§j(V')+f(V".), 

f(V'n V") "@:.j(V'), 

j(V'UV') "@:.j(V'), 

as V' and V" minimize f(V') and f (V') for V'E§ and V"EC§, respectively. Hence 
f(V'n V')=f(V"). If V'U V"EC§ we can exchange U and n in this reasoning. 
Now there exists an algorithm finding V"EC§ with V"~ V' minimizing f(V'}, 
and an algorithm finding V"E~ with V"~ V' minimizing f (V"), for these algo
rithms follow straightforwardly from the previously defined algorithms for sets 
of size IV'I and l~V'I· We leave it to the reader to check that this gives us a po
lynomial algorithm. 

6. Independent sets in perfect graphs 

In the previous chapters we have applied the ellipsoid method to classes of 
polytopes. We now apply the method to a class of non-polytopal convex sets, in 
order to obtain a polynomial algorithm finding maximum (weighted) independent 
sets and minimum colorings of perfect graphs (cf. Lovasz [1972]). Applying these 
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algorithms to the complement, we get algorithms to find maximum weighted clique 
and minimum weighted covering by cliques. 

Let G=(V, E) be an undirected graph, and let a(G) denote the independence 
number of G, i.e., the maximum number of pairwise non-adjacent vertices. Let 
a*(G) denote the fractional independence number of G, i.e., the maximum value of 
Z c(v) where the c(v) are nonnegative real numbers such that Z c(v):§ 1 

vEV vEC 
for each clique C of G. So a(G)~a*(G), and furthermore G is perfect if and only 
if rx.(G')=a*(G') for each induced subgraph G' of G. Since a*(G) is the optimum 
of a linear programming problem, we could try to calculate rx.*(G) by means of the 
ellipsoid method; but the size of this problem is not polynomially bounded as 
there can exist too many cliques C. 

However, the following number 8(G) was introduced in Lovasz [1979]. 
n 

Suppose V={l, ... ,n}. Then 9(G) is the maximum value of .~ bu, where 
l,J=l 

B=(bii) belongs to the following convex body of matrices 

(1) 
{B=(bi,)IB is positive semidefinite with trace at most I, and b;i=O 

if i and j are adjacent vertices of G (i~j)}. 

If B belongs to this class we shall say that B represents G. It was shown that ix(G) 
~9(G)~a*(G). (In fact, 8(G) is an upper bound for the Shannon capacity of G.) 
We show that 9(G) can be calculated (approximated) by the ellipsoid method in 
time bounded by a polynomial in jVj. This allows us to find ct(G) for graphs G with 
a ( G) = 9 ( G), in particular for perfect graphs. 

In fact we exhibit an algorithm finding the maximum weight Z w(v), 
vEA 

where A is an independent set in a perfect graph, given some nonnegative integral 
weight function on V, in time polynomially bounded by !VI and log llwll· Obviously, 
this maximum weight is equal to ct(Gw), where the graph Gw arises from G by re
placing each vertex v of G by w(v) pairwise non-adjacent new vertices and where 
two vertices of Gw are adjacent iff their originals in G are adjacent. Note that if 
G is perfect then also any Gw is perfect (cf. Lovasz; [1972]). Moreover, 9(Gw) is 
equal to the maximwn value of 

(2) 

where B=(bu) represents G. This can be seen as follows. If B=(bii) represents 
G then, by replacing each entry bii by a matrix of size wiXwi with constant entries 
(w;wi)- 1 f2 bii, we obtain a matrix B' representing Gw, with 

(3) 

Conversely, if B' represents Gw, then, by replacing the wiXwi submatrix induced 
by the copies of i and j, by the sum of its entries divided by Vwiwi, we obtain 
a matrix B representing G, satisfying (3) again. 
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To approximate .9(Gw) up to an error of at most e>O, we can replace 
V w; w 1 of (2) by some rational number wiJ with 

(4) lmiJ-Vwiw11 < e/2n2 

(taking . miJ=w1;), where the denominators of the roil are at most 2n2/e. Then 
.9(Gw) differs by at most le from the maximum value of Z w;1biJ with B=(bu) 

i,j 

representing G. So we need to approximate this last number with accuracy le, which 
can be done by the ellipsoid method. 

To apply the ellipsoid method we replace the set (1) by a full-dimensional 
convex body, by forgetting the coordinates below the main diagonal, as well as the 
coordinates (i, j) for adjacent i and j. We end up with a full-dimensional convex 

body in the ( n+(~)- !El)-dimensional space. One easily finds an interior point 

a0 in it, and radii r and R such that the convex body contains S(a0 , r) and is con
tained in S(a0 , R), and such that the logarithms of r and R and of the numerators 
and denominators occurring in a0 are bounded (in absolute value) by a polynomial 
in n (fixed over all graphs G). So we may apply Theorem (3.1). We show that the 
separation problem is solvable for the class of convex bodies obtained in this way. 

Let b be some vector in the (n+(~)-IEl)-dimensional space. Extend this vector, 

in the obvious way, to a symmetric nXn-matrix B=(bi1) with biJ=O if i and j 
are adjacent vertices of G. If Tr B>l, the separation problem is trivial. Suppose 
that Tr B:§. l. Find a basis for the columns; without loss of generality assume that 
these are columns 1, ... , k. Then the principal submatrix B' =(biJ){:l;::3 is non
singular and has rank B' =rank B. It is easy to prove that B is positive semidefinite 
iff B' is positive definite, which in turn is equivalent to 

(5) det B = det (b .. )1:::1• ···• 1 > O t IJ i-1, ... ,t ' 

for t= 1, ... , k. Since these determinants can be calculated in polynomial time, 
thereby we have checked in polynomial time whether B belongs to the convex set 
(1). If, moreover, we find that Bis not positive semidefinite then let t be the smallest 
index for which det Br< 0. Let <p1 denote ( - l)i times the (i, t)-th minor of B, 
(i= 1, ... , t), and <p1 =0 if i>t. Then 

(6) 

for every positive semidefinite matrix (piJ). By definition, and by simple computation, 

n n 

(7) Z Z cpi<pJ biJ = det Br • det B1-1 :§. 0, 
i=l J=l 

(if t= I, then det Bo= 1, by definition). So the matrix (cp;cp1)7,J=l is a solution of 
the separation problem. 

Therefore, by Theorem (3.1), we can approximate the m~um value of 
I ro11b11 for B=(biJ) in (1) with accuracy le (and hence 8(Gw) with accuracy e), 
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in time polynomially bounded by I VJ, llog eJ and log T where T is the maximum 
among the denominators and numerators occurring in (w1j). If we know that 
o:(Gw)=.9.(Gw) it follows that .9.(Gw) is an integer, and we can take e=t. In partic
ular there exists an algorithm which calculates o:(Gw) for perfect graphs G in time 
polynomially bounded by !VI and log l\wll. 

We can find an explicit maximum weighted independent set in a perfect 
graph as follows. Compare o:(Gw) with a(G~.), where G' and w' arise from G and 
w by removing vertex 1 from G and the corresponding component from w. If 
a(G~.)=a(Gw) we replace G by G' and w by w'; otherwise we leave G and w un
changed. Next we try to remove vertex 2 similarly, and so on. At the end we are 
left with a collection of vertices forming a maximum weighted independent set in G. 

So given a perfect graph G=(V, E) and a weight function won V we can 
find an independent set V' maximizing Z w(v). This implies that the strong 

vEV' 

optimization problem is solvable for the class of convex hulls of the independent 
sets in perfect graphs. For perfect graphs G=(V, E) this convex hull is given 
by the linear inequalities 

(8) (i) x(v) ~ 0 (vEV), 

(ii) Z x(v) ~ 1 (C clique). 
vEC 

This yields that also the strong separation problem is solvable for this class, but 
this is not interesting anymore, as it amounts to finding a maximum weighted 
clique in a perfect graph, i.e., a maximum weighted independent set in the com
plementary graph, which is perfect again. 

However, by Theorem (3.10) we can find an optimal (fractional) dual solution 
for the corresponding linear programming problem. So, given wEZ~, we can find 
cliques C1 , ... , C1 and positive real numbers .lc1 , ... ,At (t~IVD such that Jc1 + ... 
... +.lc1 =o:(Gw) and 

(9) _,Z .lci=wi 
j 

iECJ 

for each vertex i, in polynomial time. But for perfect graphs a:(G) is equal to the 
minimum number of cliques needed to cover V (i.e., to the chromatic number of 
the complementary graph), which means that there exist integers ),1 , .. ., .At with 
the required properties. Indeed we can find such integers as follows. 

First, if w = 1, each clique Ci with Jc i >0 intersects all maximum-sized 
independent sets. So we can remove clique C1 from G, thus obtaining a graph G' 
with o:(G')=a:(G)-1, and we can repeat the procedure for G'. After o:(G) repetitions 
we have found a:(G) cliques covering V. 

(10) 

If w is arbitrary, let .lcj be the lower integer part of .Ai, and let 

wj = W;- _,Z Aj. 
j 

iECJ 

Since (..1.i-.lcj)<l we know by (9) that wi<t:§!!VJ. Therefore, Gw. has at most 
JVl 2 vertices, and as in the previous paragraph a covering with a:(Gw.) cliques can 
be found in time polynomially bounded by IVl2• This covering, together with the 
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cove~ing by C1, .- .. , Ci with coefficients A.~, ... , A.;, yields an optimum integral dual 
solution as required. 

. We remark that the algorithm to find a(G) clearly works for all graphs G 
with rx(~)=9(G) but that our method to find an explicit maximum independent 
~et requires that a(G') =8-(G') for induced subgraphs G' of G. This holds for all 
induced subgraphs if and only if G is perfect, as was shown by Lovasz [1981]. 

7. Intractability of vertex-packing and fractional colouring 

The ellipsoid method yields a certain "polynomial equivalence" of combi
natorial problems, in the sense that there exists a polynomial algorithm for one 
problem iff such an algorithm exists for some other problem. We can use this 
principle also in the negative: if some problem is "hard" (e.g., NP-complete) then 
it follows that also certain other problems are hard. 

We apply this to the problem of determining the independence number a(G) 
of a graph G, which is known to be NP-complete (cf. Garey and Johnson [1979]). 
More precisely, and more generally: given a graph G=(V, E), a weight function 
w: V- Z+ and a number K, the problem of deciding whether there exists an in
dependent set V' of vertices such that _:2 w(v)~K (i.e., whether a(Gw)~K) 

1>EV' 
is NP-complete. To formulate this in terms of polytopes, let P(G) be the convex 
hull of the characteristic vectors of independent sets in G. Then the strong optimiza
tion problem for the class of polytopes P(G), is NP-complete. 

Now consider the anti-blocker A(P(G)) of P(G) (cf. Chapter 3). By Corollary 
(3.5) the strong optimization problem for the class of polytopes A (P(G)) is solvable 
iff it is solvable for the class of polytopes P(G). This remains true if we restrict 
G to a subclass of the class of all graphs. 

Now the strong optimization problem for A(P(G)) asks for a maximum 
weighted fractional clique, i.e., for a vector x in R~ such that .:2x(v);§1 for 

vEV' 

each independent set V', and such that Z w(v)x(v) is as large as possible, 
vEV 

given some weight function w in Z~ . By linear programming duality this maximum 
is equal to the weighted fractional chromatic number, i.e., to the minimum value 
y!,(G) of A.1 + ... +A.r, where A.i. ... , Ai are positive numbers for which there exist 
independent sets V1 , ... , V1 such that for every vertex v we have 

(1) ~ A.i = w(v) 
j 

vEV1 

(we can take tO§ I VJ). Hence, given a class of graphs, there exists a polynomial 
algorithm determining a(Gw) for each graph G in this class and for each weight 
function w, iff such an algorithm exists determining the fractional chromatic number 
for each such G and w. In fact, the ellipsoid method shows that both problems are 
"Turing reducible" to each other (cf. Garey and John~on [1979]). This implies 
that since the former problem for the class of all graphs is NP-complete, the latter 
problem is both NP-hard and NP-easy, i.e., NP-equivalent. . 

In fact the problem of determining the fractional chromatic number belongs 
to the class NP, as in order to show in polynomial time that 1'~ (G);§K we can 

7* 



196 M. GROTSCHEL, L. LOVASZ, A. SCHRIJVER 

bound the numerators and denominators of the J..j by Jlwll • IVllvJ. So the fractional 
colouring problem is not only Turing reducible, but even polynomial reducible 
to the independence number problem, but we do not know the other way around. 

Since the problem of determining o:(G) is already NP-complete if we restrict 
G to planar cubic graphs the problem of determining y!(G) remains to be NP
equivalent if G is restricted similarly. The problem of determining the fractional 
chromatic number y!(G) and that of determining the chromatic number y(G) seem 
to be incomparable with respect to hardness. For cubic graphs G, y(G) can be de
termined easily in polynomial time, but the problem of determining r!(G) is NP
equivalent. In contrast to this, for line graphs G of cubic graphs the problem of 
determining y(G) is NP-complete (Holyer [1979]), whereas y!(G) can be determined 
in polynomial time (since o:(Gw) can be determined in polynomial time by the 
matching algorithm). 

Acknowledgement. We are indebted to J. Edmonds, B. Korte, R. Karp, 
R. Bland, A. Bachem, M. Padberg, D. Shmoys, and many other colleagues who 
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