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ABSTRACT. 

Let g~A be the category of finite dimensional connnutative formal 

groups over a ring A. To A one associates a certain, in general 

nonconnnutative, ring Cart(A). One then defines a functor G + C(G) which 

assigns to a formal group law G its group of curves which is a module 

over Cart(A). Theorems 2 and 3 of [1] now say that G + C(G) is an 

equivalence of categories of ~£A with a certain full subcategory of 

Cart(A)-modules. In this paper we give a new proof of theorem 3 of [1], 

Cartier's third theorem, which asserts that every Cart(A)"'"lllodule of a 

certain type comes from a formal group law over A. This proof is based 

on the constructions of part IV of this series of papers [3]. 
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1. INTRODUCTION AND STATEMENT OF THE THEOREM. 

From now on formal group means finite dimensional formal group law 
over A. We take the naive or power series point of view; i.e. an 

m-dimensional formal group over A is simply an lll-tuple of power series 

G(X,Y) in 2m variables x1 , ••• , Xm; Y1 , ••• , Ym such that 

G(X,O) = X, G(O,Y) = Y, G(X,G(Y,Z)) = G(G(X,Y),Z), G(X,Y) G(Y ,X). 

1. I • Curves. A curve (over A) in a formal group G over A is an m-tuple 

of power series y(t) = (y1 (t), .•. , ym (t)) in one variable t, such that 

y(O) = 0. Two curves y(t), o(t) can be added by means of the formula 

y(t) +G o(t) = G(y(t), o(t)). This turns the set of all curves into an 

abelian group C(G). We use Cn(G) to denote the subgroup of all curves y(t) 

such that y(t) ~ 0 mod tn, n = J ,2, .... This defines a filtration 

C(G) = c1 (G) ~ c2(G) ~ ..• and C(G) is complete in the topology defined 

by this filtration. 

l .2. The Operators. <a>, ¥n'~n· In addition to the topological group 

structure on C(G) one has a number of operators which are compatible 

with this structure. Viz.: 

for all a E A, <a>y(t) = y(at) 

for a 11 n = 1 , 2, ... , V y ( t) = y ( t n) 
=n 

The definition of the third kind of operator, the Frobenius operators 

f needs a bit more care. Formally one has =n' 

where s is a primitive n-th root of unity. For a more precise definition n 
cf. [3] part IV or [5]. There are various relations among these operators. 

They are 

( 1 • 3) 

<a><b> = <ab>, <1> = v] = f] 

v v = v ' f f = f ' =m=n =mn =m=n =m.n 
m m <a>V = V <~ ~ f <a> = <a >f 

=m =m =m =m 

if (n,m) = 1, then f V = V f =m=n =n=m.' 

identity operator, 

f V = n, i.e. f V y(t) = y(t) +G y(t) +G ... +Gy(t) =n=n n n 
<X> 

<a+b> = I ~nrn(a,b)~n' 
n=l 

(n factors), 

where the rn(z 1,z2) are the polynomials with coefficients in 7l defined l!r 



3 

(l .4) 

1.5. Ai-basis for C(G). Let t\(t). denote the curve (O, .•. ,O,t,O, ... ,o) 
in G, where t is in the i-th spot. It i.nnnediately follows from F(X,Y) = X + Y 

mod(degree 2) that every curve in G can be uniquely written as a convergent 

sum 

(1 .6) y = 

It follows,cf. (l.3) and also section 2 below, that we know the 

structure of C(G) as a topological group with operators <a>, ~n•Xn 

if we know all the expressions 

(l • 7) f o. = =n l. 

oo m 
E E V <c(n,s) .. > o. 

=s J l. J s=I j=J 

The "structure coefficients" c(n,s}.ji' n,s E lN, i,J € {J, ..• ,m} are 

far from independant.They satisfy certain relations which come from 

f f = f =n=r =nr 

1.8. Reduced Cart(A)""tllodules. If C(G) is the module of curves of a formal 

group G, then C(G) has the following properties 

(i) 

(ii) 

n There are subgroups C , closed under the operators <a>, V ; =r 
C is complete in the topology defined by the en and en is the smallest 

closed subgroup of C which contains all the V C with r > n. =r 
The operators <a>, !n' Xn are all continuous and satisfy the relations 

(1.3). 

(iii) There are elements o1, .•. , o EC such that every element y EC can be . m 
uniquely written as a convergent sum 

"Y = 
oo m 
r r v <a. >o. 

s=l j=l =s JS J 

In general we shall call a topological abelian group C with operators 

<a>, ¥n•!n such that (i), (ii), (iii) hold a reduced Cart(A)-module. 

(Here Cart(A) stands for the set of all formal expressions E f.<a .. >V., 
= l. l.J = J 

with for every j only finitely many i such that a .. = 0. These expressions 
l.J 

can be added and multiplied by means of the calculation rules (J.3) to 

form a (topological) ring of operators, cf. [4]). 



4 

1.9. Cartier's third theorem. Let C be a reduced Cart(A)'111odule with 

x-basis o1 , ••• , om. There there exists an m-dimensional £ormal group law 

G over A such that C(G) ~ C as Cart(A)-modules with o. corresponding 
1 

to the i-th element oi(t) of the canonical ~~basis of C(G) described in 

1 . 5. 

This is theorem 3 0£ [1]. Cartier never published his proofs of the 

theorems of [1]. Proofs can be found in IS]; these are outlined in [4]. 

In [2] there is a proof of Cartier's third theorem for the case that A 

is torsion free. This proof breaks down if A has additive torsion. 

The remainder of this paper mainly concerns still another proof 

of Cartier's third theorem based on the constructionsof the earlier 

parts of these series of papers. This proof also provides a link between 

these constructions and the "intertwined function pair" considerations· 

of [2]. 

2. CONSTRUCTION OF A UNIVERSAL CURVE MODULE. 

Choose m E JN and choose a set of elements o1 , ••• , om. Let ~C be the ring 

~C = Zl [C(n,r) .. Jr EJN, n EJN-...... {l}, i,j E {l, ... ,m}] of polynomials 1,J 

in the indeterminates C(n,r) ... For convenience we also introduce 
1.' J 

C (l , 1 ) . • = 0 if i :;& j , C (J , l ) . . = J , C (J , :r) . . = 0 for all r E JN -...... { I } , 1.,J 1, 1 1.,J 
1 , J E { 1 , ••• ,m} • 

Now consider the set M of all formal expressions 

00 m 
"v 

(2 .1) E E v <a .>a. a E Le 
s=l j=l =s s' J J S,J 

We now introduce the defining relations 

(2.2) f 0. == =n 1 

oo m 
r E V <C(n,s) .. > o. 

s=l j=l =s Jl. J 

for all n E JN. One can now use the calculation rules (1.3) with the 

exception of the rule ~n~r = ~nr' and the defining relations (2.2) to 

add expn~ssions of the form (2 ,I) and to define f of such an expression, 
~ =r 

rE::N. 

To do this we start by showing how to rewrite any sum of the form 

oo m 
( 2 .3) E E E v <a . >o. 

s=l j=l t =s s,J,t J 

"v 
a . E Le s ,] , t 



in the form (2.1). Here for each sElN, j E {J, ... _,m} the index t 

runs over some finite index set which may depend ons and J· 
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For each n E lN, let A.(n) be the nU1Ilber of prime factors of n, 

i.e . ./i.(l) 0 and if n = 

then A.(n) 

r v <a . >o. 
. =s s,J,t J S,J,t 

00 

r 1 r 2 rt 
Pi P2 Pt ,pi a prime number, ri E Ii, 

One now proceeds as follows 

L: 
j,t 

<a . > o + L: L: V <a . > cS 
I , J , t j s> 2 j , t = s s , J , t j 

L: L: V .<b. . >£ a+ L: l: V <a . > o 
J i=l =i i,J =i j. s>2 j,t =s s,J,.t j 

where b. . = r. (a1 . 1 , a 1 . 2 , .•• ) with r 1 ,r2 , ... the polynomials in k 
i,J i ,], ,], 

variables defined by 

(2.4) Zn + 1 • • • + n j '2, ... 

(Cf. (1 .4); of course k may depend on j). Now use (2.2) to rewrite 

(2.3) further as 

L:<b 1 .>o. + l: L: V.<b .. > L: y0 <C(i,£)k.>6k 
j ,J J j i>2 =i i,J £,k ;<., J 

+ l: L: v <a . >o. = l: <b1 .>o. 
s>2 j,t =s S,],t J 

J 
,] J 

L: L: 
£ 

C(i,£)k .>ok L: L: v <a . >o. + l: V. £<b .. + 
j,k i>2 £ =i i,J ,J s>2 j,t =s s,J,t J 

= L <b1 .>O. + L L E V <b' . >O. 
j ,J J A. ( s) ~1 J t = s s , J , t J 

determined b' . t 
'\, 

for certain well E LC. And of course the summation 
s' J' 

set 

for t for a given s,j will now in general be different than the one in 

(2.3). For each s E lN with A. (s) > 1 (i.e. s > 2) write s = p s' where - s 
ps is the first prime number dividing s. We find an expression 

(2.5) E-<b 1 • >8. + L: V ( L: V <a' . >8.) 
j . ,J J l(r)=J =r s,j,t =s r,s,J,t J 

where now the sunnnation set for t may also depend on r. Now repeat the 



procedure given above for each of the interior sums 

E v <a' . >o. 
. •s r,s,J.t J s,J, t 

to obtain an expression 
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E<b 1 • >o . + E v E <b ] . >o . 
j 'J J A (r )•1 -r j r' 'J J 

+ E v E Y <a" . ·>o.) 
A(r)•2 •r s,j,t •s r,s,J,t J 

Now apply the same procedure to the interior sums in the third 

s1..1111Dand, .•• , etc., ••• After k steps we thus obtain algorithmically 

the coefficients x . in 
S,J 

(2.6.) E v <a . >o. • 
. •s s, J, t J s,J,t 

E v <x .>o. . •s s,J J s,J 

for alls with A(s) ~ k-1. 

(2.7) 

We now proceed to define f of an expression (2.l}. Write 
=n 

£ ( E v <a .>o.) • 
•n .•s s,J J S,J 

E dV /df /d<a .>o. . •s •n s J J 
s,J ' 

- n/d 
E dV /d<a .>f /do. •s s,J •n J s,j 

- n/d I ) E dV /d<a .>V <C(n d,r k .>ck 
. k •s s,J •r ,J s,J,r, 

where d • (s,n). This is a sum of the type (2.3), which then is put into 

the form (2.1) by the algorithmic procedure outlined above. 

To complete this picture we also define 

v <t V(a ~0 .) • E v ·<a ~o· ar .•S S,J J . •rs S,J J s,J s,J 

s 
< ~ ( E v ~a ·>o . ) • E ~ ~a a ·:>t'i" • . •s s,J J . •i? s,J J S,J s,J 

We have now defined a topological abelian group M with operators.-;. a:>, 

V , f for all a € t'..C' n E ~. (The topology is the obvious one). Note 
•n •n 
that M is definitely not a Cartfr.C) module. For one thing it is not at 
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all clear that ~n is additive and obviously !n~m = ~nm does not hold 

in general. Before discussing the relations one must introduce to make 
I'\, 

a variant of M a Cart(Lr) module over some quotient ring Le of Le we 
v ~ 

note a homogeneity property. First make (C into a graded ring by giving 

C(n,r)i,j degree nr - I for all n,r E JN, i,j E {1, .•. ,m}. We then have 

2.8. Lemma. Suppose that in the sum (2.3) each a . is homogeneous 
S,j,t 

of degree ks - I for some k E JN independant of s,j,t. Then the x . 
S,J 

in (2.6) are homogeneous of degree ks - I. 

Proof. To prove this by induction it suffices to show that under the 

hypothesis stated the b 1 . and a' . of (2.5) are respectively of 
,J r,s,J,t 

degree k - l and krs - 1 respectively. Now b 1 . 
,J 

= a . + a . 2 + 
l,j,1 l,j, 

which is homogeneous of degree k - 1 • As to the a' . , they are 
r,s,J,t 

of two types, viz. 1°) a' . == a . which 
r,s,J,t rs,J,t 

by hypothesis is 

homogeneous of degree krs - 1, and 2°) a' . t =b .. ,C(i,.Q,)k .,, r,s,J, 1,J ,J 

with i9- = rs. Now from (2.4) we see that ri(z 1 , ... ,Zk) is homogeneous 

of degree i (if each Z. is given degree 1) so that b .. ,= r.(a 1 ., 1 ,a1 ., 2 , ••. ) 
1 1,J 1 ,J, ,J, 

is homogeneous of degree i(k-1). It follows that a' . t = b: .1C(i,£)k . , r,s,J, i.,J ,J 

lS homogeneous of degree £i(k-l) + i£-1 = tik - 1 = krs - I. This proves 

the lemma. 

2.9. Corollary. Let ~n!i6i = ~n( I. 
S,J 

where the y n • • are calculated n,x-,s,J,l 

homogeneous of degree nQ.s - l. 

V <C(£,s) .. >6.) = IV <y n •• >o. 
=s J ,1 J .=s n,)(,,s,J ,1 J S,J 
as in (2.7). Then y n •• is n,x-,s,J,1 

Proof. In this particular case of (2.7) we have a . = C(Q.,s) ... Thus s,J J,1 
/d -] -1 arn. C(n/d,r) . is homogeneous of degreed rn(9,s-1) + d nr-1 = 

S,J k,J 
a- 1rn£s - J = (d- 1rs)nQ. - l and the corollary follows by lemma 2.8. 

2.10. Lemma. If Q. > 1 then y n •• = nC(Q.,nt) .. mod(decomposables) n,x,,t,1,J 1,J 
'\, 

(Here (decomposables) stands for the ideal of Le generated by all products 

of the form C(n,r) .. c(s,t)k n with n,s E JN' {l}, r,t E JN, 1,J ,x, 
i,j,k,Q. E {J, ... ,m}). 

Proof. From (2.7) we have 

l: V <.y i. . . >o. = 
.=t n, ,t,J,1 J 

t,J 

nr/d 
I . Xrs/dd < C(£,s)j,i C(n/d,r)k,j > 8k 

s,r,J,k 
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where d = (s,n) in the sum on the right. Choose a fixed t E lN. By the 

rewriting procedure discussed in the beginning of this section a summand 

in the sum on the right can contribute to y n •• iff d- 1rs < t. 
n,..,,t,J,l. 

Moreover, if this contribution is to be nonzero modulo decomposables 
-1 

we must in addition have d = nr, d n = 1, r = 1, k = j (because 5l > 1). 

It follows that s is a multiple of n and s < tn so that the only 

contributions toy 0 •• , which are possibly nonzero modulo n,..,,t,J,i. 
decomposables, come from 

t 
l: Y.. n<C(Sl,an) .. >a. 

a=l -a J '1 J 

However n < C(Sl,an) .. > = <nC(Sl,an) .. >+(terms which are zero modulo J,l. J,l. 
decomposables). The lemma follows. 

2.11 Remark. By definition one has y 1 .. = y J .. 
,n,s,J,l. n, ,s,J,l. C(n, s). . 

J ' l. 
so that lemma 2.10 does not hold for 5l =I. 

3. THE UNIVERSAL RING LC. 

Let Le be the quotient ring of ~e obtained by factoring out the ideal 

generated by the homogeneous polynomials 

(3. 1) e(nfl,t) .. - y n •• , n,R-,t ElN, i.,J E fJ, ... ,m} Jl. n,..,,t,J,l. 

3.2. Theorem. Le~ 22: {T(n) .. ] n = 2,3, ..• , i,j E fJ, .•. ,m}] as a 1,J 
graded ring, with degree (T(n) .. ) = n - J. 

l.' J 
Proof. The ring Le is graded because the polynomials (3.1) are homogeneous 

by corollary 2.8. Let L~t) be its homogeneous summand of degree t - 1 

and let M(t) be the submodule of L2t) generated by the decomposables. 

Then L~t) /M(t) is generated (as an abelian group) by the e(s,r) with 

sr = t. Now by le1111Jla 2.10 and the defining relations (cf. (3.1)) we see 

that modulo decomposables 

e(rs,t) .. .= re(s,rt) .. 
i.,] l.,J 

for all i,j E {J, ••• ,m}, s E JN' {I}, r E JN. It follows that ifs is not 

a prime number, s ~ 1, and p is a prime number dividing s, then 

(3 .3) e(s,r) .. 
1,J 

-1 -1 
- p se(p,p sr) .. 

1,J 
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It readily follows that L~t) /M(t) is the abelian group generated by 
-] 

the C(p,p t) .. , where p runs through all prime divisors oft, l,J 
subject to the relations 

(3 .4) -I qC(p,p t) .. _ 
l,J 

~J 
pC(q,q t) .. 

i,J 

for all p~ime number divisors p and q of t. If t is a power of a prime 

number p, t = pr, this means that L~t) /M(t) is a free abelian group 
2 -] 

of rank m generated by the classes of the T(t) .. = C(p,p t) ... If 
l,J l,J 

t is not a power of a prime number let P(t) be the set of prime numbers 

dividing t. Choose µ(p) E 2Z such that 

(3. 5) I: pµ(p) = .I 
pEP(t) 

Let 

-1 T(t) .. = I: µ(p)C(p,p t) .. 
l,J pEP(t) l,J 

It then follows from (3.3) and (3.4) that L(t) /M(t) is the free abelian 
2 c 

group of rank m generated by the classes of the T(t) ... This proves 
l,J 

the theorem. 

3. 6. ~rk. (Construction of a "universal Cart (LC)-module" (continued)) 

Let Cc be the set of all expressions E y <a .>o. with a . E Le. Now 
- .-s S,J J S,J 

S.J 

calculate sums :md !rY, <a>y, ~r y for y E CC as in section 2. Then Cc 

is in fact a Cart(LC) module. One has of course f fno. = f no. by the =n=N l =n){, i 

relations defining Le. And, using this, one can now prove directly that 

the <a>, ~n' Yn are additive and that all the relations (l.3) hold. 

This also follows from the isomorphism result below~ cf. remark 4.7. 

4. PROOF OF CARTIER'S THIRD THEOREM. 

Let F(X,Y) be any m-dimensional formal group law over a ring A. 

Let o1 (t), •.. , om(t) be the standard X-basis for C(F). Then we have 

unique expressions, cf. (1.7), 

oo m 
£ o . ( t) = L: E V < c ( n, s) . . >y . ( t) 
=n i s= 1 j =l = s J , i J 

Now define~;~ ~A by ~(C(n,s) .. ) = c(n,s) ... c l,J i,J 



JO 

'\, 

n ( y n • • l = c ( n£ ' s ) . . n,N,s,J,i J,i 

'V for all s,£,nEJN, i,j E {J, ... ,m}. Therefore n induces a homomo.rphism 

of rings j)F; Le-+ A. We can in particular apply this to the case 

F(X,Y) = FR(X,Y), the universal curvilinear m-dimensional formal group 

law over 7l [R] = 7l [Rn(i~j) In E JN-..... {1}, i,j E {lp •. ,m}] of [3] , part IV. 

This gives us a homomorphism. 

(4 .1) 

4.2. Theorem.The homomorphism nc of (4.1) is an isomorphism of graded 

rings. 
00 

Proof. Let fR(X), the logarithm of FR(X,Y), be equal to fR(X) 

Recall that 

E b (R)Xn. 
n=l n 

(4. 3) b (R) 
n 

I 
m 

(iJ ... is-1) 
R. 

i 
s 

where Rk is the matrix (~(j,£))j,£ and the sum is over all sequences 

(i 1, ••• ,i ), i. E JN' {J}, s > J, i 1 i 2 ••• i = n. Here the d(i 1 , ••. ,is) s ] - s . 
are certain welldetermined coefficients, and R~J) is the matrix obtained 

i 

from R. by raising each of its entries to the power j. Cf. [3], part IV, 
i 

section 2. Then bn(R) is homogeneous of degree n - 1 if ~(j,i) is given 

degree k - 1, Let o1 (t), ... , om(t) be the standard ¥-basis for C(FR) 

and let 

(4.4) £ o.(t) == 
=P i 

I: v <c(p,s) .. > o.(t) .=s J,i J 
S,J 

Now fR(y(t) +F o(t)) = fR(y(t)) + fR(o(t)) (ordinary coefficientwise 
R 

CQ • 
i sum), by the definition of logarithm. If follows that fR(f y(t)) = I: pz .t 

= p i=l pi 



lJ 

i m 
L: z1t , zi E ~[R] . Applying fR to (4.4) it follows that 

(4. 5) p b (R) = pn 
n/d 

E bn/d(R)c(p,d) 
djn 

(This formula provides the link with the "intertwined function pair" 

considerations of [2]}. 

With induction it follows from (4. 5) that the c (p, s) E 'D.. [R] are 

homogeneous of degree ps - l (, that is to say the entries of these 

mxm matrices are homogeneous of degree ps-1). Now bpn(R) = p-1Rpn 

modulo decomposables if n is a power of p and b (R) = R modulo pn pn 
decomposables if n is not a power of a prime number, cf (4,3) and use 

that d (i1) = p -l if i 1 is a power of a prime number p and d(i1 ) = l 

if i 1 is not a power of a prime number, cf. I3J, part IV, section 2. 

It follows that nc satisfies 

r-1 
nc < c < p, p ) .. ) = R c i, j ) 1-J r 

p 

nc(C(p,s) .. ) .:: pR (i,jl 
i,J ps 

if s is not a power of p. Hence nc(T r(i,j)) 
p 

and if s is not a power of a prime number 

mod(decomposables) 

mod(decomposables) 

- R r(i.,j) mod(decomposables), 
p 

modulo(decomposables). Here P(s) and the µ(p) are as in (3.5). It follows 

that me is indeed an isomorphism (homogeneous of degree zero). 

4. 6. Proof of Cartier 1 s third theorem. Let C be a reduced Cart (A) module, 

i.e. C is a topological abelian group such that the properties of J .8 

hold. Let o1 , .•. , om be a V-basis for C. Then every ~noi can be 

uniquely written as a convergent sum (cf. (I .7).1, 

f o. =n i 

oo m 
E L: V <c(n,s) .. >cS. 

s=l j=l =s J,i J 
c(n,s) .. E A 

J 'l_ 

Now define~: ~C +A by ~(C(n,s) .. ) 
J ' l_ 

c(n,s)j,i' Because £nf.Q, = 

in C we have that 

f =n.Q, 
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'\, '\.., 

n(C(n£,s) .. ) = n(y o •• ) 
J,i n,.x,,s,J,i 

'\, 

for all n,£,s,j,i so that n factorizes through LC to define a 
. -1 homomorphism n: Le + A. Now let <P: 'lZ [R] + A be equal to <j) = nnc , 

where nc is the isomorphism of theorem 4.2. Then F(X,Y) = ~~R(X,Y) 
is a formal group law over A such that C(F) ~ C as a topological 

group with operators. The isomorphism is given by o.(t) + o., where 
l. l. 

o1 (t), ... , om(t) is the standard X-basis of C(F). 

4.7. Remark. The module CC of 3.6 above is the module of curves of the 
-1 

formal group law <nc )*FR(X,Y) over Le. 

5. THE LOCAL CASE. 

Choose a prime number p and suppose that A is a 'lZ (p)-algebra. 

Then the formal groups G over A can be classified by a much smaller 

group of curves C (G) c C(G), with a much simpler ring of operators. 
p 

In detail Cp(G) = {y(t) E C(G) j~~y(t~ = 0 for all prime numbers q # p}. 

The operators on C (G) are the V , f 1· and <a>, a E A, i E lN L' {O}. The 
p =p =p 

topological group of p~typical curves C(G) has filtration subgroups 
(n) pn 

C (G) = C (G) n C (G) and is complete in the topology defined by p p 
this filtration. One shows that the topological groups with operators 

thus obtained satisfy 

(i) C (G) is a complete Hausdorff topological group with operators . p 
V1 f 1 , <a> which satisfy analogous relations (J .3) obtained by setting 
=p' =p 

~n = 0 = ~k for all k, n E ]ij which are not a power of p. 

(ii) The topology of C (G) is defined by the subgroupsC(n)(G) = ~npC(G) p p 
(iii) There are elements 6. (t), i = I, ... , m E C (G) such that every 

l. p 
curve y(t) E C (G) can be written as a unique convergent sum 

p 

oo m 

n=o 
L: vn<a .>o. 

=p n, i i 
j=l 

(To prove (iii) one uses Corollary (2.11) of [3] part IV to reduce to 

the case that G is a p-typical formal group and in that case the standard 

basis curves 0.(t) = (0, .. . ,O,t,O, ... ,0) are p-typical and satisfy (iii)). 
l. 

Inversely, the local version of Cartiers third theorem says that 
I 2 . h V £ every filtered topological group C ~ C ~ C ~ ... wit operators =p'=p' 

<a> such that '(i), (ii), and (iii) hold comes from a formal group over A. 
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The proof of this is a triviality, given the construction of the 

m-dimensional p-typical universal formal group FV(X,Y) of [3], part IV. 

Let oi(t) be the i-th standard curve over 7l[VJ = 7l.fVn(i,j)jnElN, 

i,j, E {1, .•. ,m}] in C(FV). Then one calculates as in section 4 above 

00 

(5. 1) f o.(t) =p 1 
n=o 

where one uses that the logarithm fv(X) of FV(X,Y) satisfies 

cf. f3L parts 

Now let C 

such that (i) -

and let 

(5. 2) 

00 

n=o 

n 
a (V)xP 

n 

n-J 
p a (V) = a (V)V(p )+ 

n n-J ] • . . + 

II and IV 

a (VlV(p) + V 
J n-1 n 

be any topological group with operators f , V , 
=p =p 

(iii) hold. Choose o1, ... ' 0 m such that (iii) 

oo m 
f 0. = =p 1 

n 
L: E v <a .. >o. 

n=o j=l =p n,J,i J 

<a>' a E A 

holds 

Define~: 7l. [VJ~ A by ~(Vn+J (j,i)) =a ... Then~· F17 (X,Y) is a formal 
n, J, 1 * 

group law over A such that CP(~*FV) ~ C as topological groups with 

operators. The isomorphism is given by o.(t),....r o., where o. (t) is the 
1 1 1 

curve (O, ... O,t,O, ... ,O) in CP(~*Fv). This follows from (5.2) as compared 

to ( 5. 1) . 
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