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ABSTRACT. 

We consider time variable linear dynamical systems x = Fx + Gu, y = Rx, 

x(t) ElRn, y(t) ElRP, u(t) ElRm where the F,G and Hare matrices of the 

appropriate sizes with time variable coefficients. A state space basis 
-1 • -I -J 

change changes the triple of matrices (F,G,H) into (SFS +SS ,SG,HS ). 

Now assume that the coefficients of F,G,H and S all belong to some 

field like e.g. the field of rational functions over lRorJC or the field 

of complex or real meromorphic functions. Then most of the results 

concerning invariants, canonical forms and moduli of our previous papers 

"Moduli and canonical forms for linear dynamical systems II, III" go 

through in these time variable cases. The proper setting for studying 

these questions appears to be differential algebraic geometry. And in fact 

the results referred to will be established for equations ox = Fx + Gu, 

y =Rx, where the F,G,H are matrices with coefficients in some arbitrary 

(ordinary) differential field with differentiation operator o. 
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1 . INTRODUCTION , 

Consider a linea~ time varying, dynamical system 

(I • 1) x = Fx + Gu, y Hx 

where x(t) EJRn, y(t) EJRP, u(t) EJRm and where F,G,H are matrices 

of the appropriate sizes with coefficients which may depend on t. 

2 

To fix the ideas suppose for example that the coefficients of F,G,H 

all belong to the field of rational functions overlR. Then it makes 

perfect sense to consider base changes of the type x = Sx where S 

is an n x n matrix also with coefficients inJR(t) with nonzero 

determinant. Such a base change transforms the equations (I.I) into 

(I . 2) 
-1 y = HS x 

and at least in the algebraic sense one can ask about invariants. 

moduli and canonical forms just as in the case of non time varying 

systems ([3-6]). 

Solutions to equations like (I.I) with u(t) EJR(t) given, certainly 

exist as vectors with coefficients in some differential extension field 

(cf [11], [9] or [12]). They also exist as "functions" albeit as 

multiple valued functions with poles and branching points if F,G or u(t) 

have poles, cf e.g [7]. 

The main purpose of the present note is to point out that the results 

of [5,6] also go through in a time variable setting like the one discussed 

just above. In fact more generally these results go through for systems 

(I. 3) ox = Fx + Gu, y = Hx 

where the F,G,H are matrices with coefficients in any differential field 

k with differentiation operator o (for a definition cf 2.1 below). Examples 

of such differential fields are 



(a) d k = JR. ( t.) or X:: ( t) , o = d t 
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(b) k = r~al meromorphic functions or complex meromorphic functions,o 

(c) k one of the fields of (a) or (b), 8f(t) = f(t) - f(t-1) 

Thus when one specializes the results for abstract differential fields 

obtained below to one of these cases one obtains results for "real life11 

dynamical systems with time variable coefficients. 

The techniques used to obtain the results below are basically the 

same as in [5,6]. Most of the(minotj difficulties are caused by the fact 

that differential algebraic geometry is more difficult and certainly 

for less developped than ordinary algebraic geometry. 

2. PRELIMINARIES CONCERNING DIFFERENTIAL ALGEBRA 

AND DIFFERENTIAL ALGEBRAIC GEOMETRY. 

2.1. Differential rings, fields, .... Let R be a commutative ring with 

unit element. A derivation on R is an additive operator o : R ~ R such 

that o(ab) = o(a)b + ao(b) for all a,b E R. A differential ring is a 

ring R together with a derivation operator o. A differential field is 

a differential ring whose underlying ring is a field. Examples of 

differential fields were mentioned in the introduction. 
(I) 

Let (k,o) be a differential field. Let X1, ••• , Xn; X1 , ... ' 
XC2 ) <2 ) · d · k c 'd h · f 1 , ... , Xn ; ... be in eterminates over . onsi er t e ring o 

x< 1). 
n , 

. (I) (I) . (i) (i+I) 
polynomials R = k[X 1, ... ,X ;X , .... X ; , , . ] . Dehne oX. = X J. , 

n 1 · n J 

i = 0,1,2, ... ; j =I, ... , n, where X~o) = X., j =I, ... , n. There is 
J J 

precisely one derivation o on R which extends o on k and which behaves 

on the X~i) as defined (cf [I], Ch 5, §9, prop. 4). The ring R with this 
J 

derivation is called the ring of differential polynomials in x1, ••• , Xn 

over k and it is denoted k{X , ... ,X }. Roughly a differential polynomial 
1 n 

is therefore a polynomial in the x1, ... , Xn and their derivatives. The 

d 
dt 

quotient field of k{X , ... ,X} is denoted k <x1, ••• ,X >.There is a unique 
I n n 

derivation on k<X , ... ,X >extending the one on k{X 1, ... ,X }, viz. the 
I -1i1 _2 n 

obvious one, o(f/g) = g (of) - f (og)g . 

A differential ideal I in a differential ring (R,o) is an ideal I of R 

such that oI c I. If Ac R is a subset then [A] c R denotes the differential 

ideal generated by A. I.e. [A] is the ordinary ideal generated by the 

o1 f, f EA, i = 0,1,2,,. .. 
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diffi::rentia a 

K be universal differential ield extension of k. [], 

U I, 7 for t K is a large field to cont a in 

fi te y ed extensions of k and finit generated le 

extensions of these. If char(k) = 0 ~e can take K to be differenti 

ical closed. (I.e. such that every differential polynomial over K 

has a solution in K, cf [12]; if char( 0 there are difficulties 

oncerning the existence of a lC closures). 

Let I be a differential ideal We define V(I) = 

) E Kn f x) = for all f E 11 • Inver a subset 

Y c we define I(Y) = {f E Krx 1, ... ,Xn !f(y) = 0 ally E Y}. The subsets 

of the form V(I) c Kn are said to be differentiably dosed. This defines 

a topo on Kn and Kn with this topology is called affine differential 

dimension n. The dosed sets V(l) with the induced topology 

are the affine differential algebraic varieties. ~e shall from now on 

use the abbreviation d.a. for differential algebraic. The affine d.a. 

variety V is defined over k if it is of the form V = V([A]) where A is 

a set of elements of k{X 1, ... ,X0 } and [A] is the differential ideal in 

X , ... ,Xn} generayed by A. A differential open subset U of an affine 

d.a variety V over k is defined over k if V 'U is defined over k. 

The mappings I• .... V(I), Y~ I(Y) set up a bijective correspondence 

between perfect ideals of K{X 1 •••• ,X0 } and differential closed sets in 

the Ritt-Raudenbusch basis theorem (cf [9], Ch. 3, §4) every 

t ideal in x1, ... ,Xn} is generated (differentially) by finitely 

mJny elements if char = 0 or more generally if K is perfect. 

2.3. Morphisms between affine d.a. varieties. Let V be an affine d.a. 

variety and let I = I(V) be its ideal of differential polynomials with 

are zero on V. We write V} for the differential quotient ring 
-.''X X 1 I t-.1. l, ... ,. J . n . (There is a unique derivation 6 on K{V} compatible with 

" x ' .... l ' .... ' .. n .~ K~V} because I ) is closed under o). The ring K{V1 may 

have zero divisors. We write K<V> for its full quotient ring. The elements 

of V are called the differential polynomial functions on V and the 

elements of K<V> the differential rational functions on V. Let f E K{V}, 

then f indeed defines a function V ~ K as follows. Let x E V, choose a 

lift '((x 1 , ••. ,X0 ) E K{X 1 , .•• ,X0 } off for K{X 1, ... ,X 0 } ... K{V}~ now 
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define f(x) = ~(x 1 , ... ,xn). This is welldefined. Now let x E V and 

f E K<V>. We say that f is defined at x E V if there exist g,h E K{V} 

such that f = g/h in K<V> and h(x) # 0. If f is defined at x, then 

f(x) = g(x)/h(x) is welldefined. Let dom(f) be the set of x E V such 

that f is defined at x. Then dom(f) is a differential open subset 

of V and f defines a function dom(f) + K, which in turn determines 

f uniquely. NB,as in ordinary algebraic geometry, given f E K<V> 

it may not be possible to find a representation f = g/h,g,h E K{V}, 

such that h(x) ~ 0 for all x E dom(f); as a rule g,h may have to depend 

on x. 

Let V be defined over k. A differential polynomial f E K{V} 

is defined over kif it is in the image of k{X 1, ... ,Xn} in K{V} 

under K{X 1, ... ,Xn} + K{V}. The ring of differential polynomial functions 

over k is denoted k{V}. Its full quotient ring is denoted k<V> and the 

elements of k<V> c: K<V> are the differential rational functions on V defined 

over k. 

Now let v1 c Kn and v2 c: K11 be two affine d.a. varieties. Let 

U. c V., i = 1,2, be differential open subsets. A morphism~ : U + u2 1 1 I 
is a map xi-r ~(x) = (~ 1 (x), ... , ~m(x)) such that ~(x) E u2 for all x E u1 
and such that the ~· are rational differential functions with 

1 

dom(~i) ~ u1 for all i = 1, ... , m. The morphism~ is an isomorphism 

if there is a morphism w : u2 + u1 such that ~~ = id, ~~ = id. Let 

v1,v2,u1,u2 be defined over k, then~ is said to be defined over kif 

all the ~. are defined over k. 
J 

Warning: Every element of K{V} defines a morphism V + K. But in general 

the set of morphisms V + K is larger than K{V} (in contrast to the 

situation in ordinary algebraic geometry). E.g., if V = V([ox-x]) c K, 

then f = (x-1)-l defines a morphism V + K but this morphism is not 

equal to any of the morphisms defined by the elements of K{V}. 

More material concerning affine d.a. varieties can be found in 

[2] and [9]. 

2.4. d.a. varieties. Ad.a. variety V is a T1-topological space V for 

which there exists an open covering {U. Ii E J} together with embeddings 
l. 

~.: U. + Kn(i) such that 
1 1 

1 



(i) 

(ii) 
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<P. (U.) c Kn(i) 
lS an affine d. a. variety in Kn(i) 

1- 1 

-I 
</J. (U. n u.) -+ u. n <P. (U. n u.) is isomorphism of </J.cp. : u. -+ an 

1- J J 1- J 1 J l 1- J 

open differential subsets (in the sense of 2.3 above). 

A d.a. variety is defined over k if all the affine d.a. varieties, 

differential open subsets and morphisms involved in its definition 

are defined over k. 

For example let V be an affine d,a. variety and .U an open differential 

subset of V. Then U is a union of open differential subsets 

Vf = {x E vlfCx) ~ O} where f runs through the elements of K{V} which are 

zero on V 'U. Let I= I(V) c K{X 1 , ••• ,Xn} and let 
n+ 1 I Vf = {(x 1 , •.• ,xn+l) EK g(x 1, ... ,xn) = 0 for all g EI and 

f(x 1, ... ,xn)xn+l=l}. Then V£ is an affine d.a. variety and 

(x 1 , .. .,xn)t-+ (x 1 , .. .,xn,f(x 1 , ... ,xn)) is an isomorphism Vf"' Vf. Thus 

we see that a differential open subset of an affine d.a. variety is a 

d.a. variety in the sense of the definition above. More generally an 

open subset of a d.a. variety is a d.a. variety. A d.a. variety V has 

a basis of open affine d.a. subvarieties (by the argument given above). 

Let V,W bed.a. varieties. A morphism c)l: V-+ W is a continuous 

map such that for every two affine d.a. subvarieties Uc V, U' c W, 

<P : Un <P- 1(U')-+ U' is a morphism of differential open subsets of 

affine d.a. varieties in the sense of 2.3 above. 

2.5. d.a. groups and differential invariants. The category of d.a. 

varieties defined just above has finite products and a final object 

(the one point d.a. variety). Ad.a. group is now a group object in 

this category. I.e. it is a d.a. variety G equipped with a multiplication 

morphism m: G x G -+ G, an inverses morphism i: G -+ G and an element 

e E G such that m,i and e make Ga group in the usual sense of the word. 

Some results on affine d.a. groups can be found in [2]. 

An action of a d.a. group G on a d.a. variety V is a morphism 

G x V-+ V such that (with the obvious notations) (g 1g 2)x = g 1 (g 2x), 

ex x for all g 1,g 2 E G, x E V. A differential invariant of an action 

of G on V is a differential rational function f on V such that 

f(gx) = f(x) for all x E V, g E G such that f is defined for both x and 

gx. This definition agrees of course with the one of S.Lie in [JO], 

modulo the change caused by the algebraic geometric setting of the 

present note. 
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2.6. d.a. vectorbundles. An n-dimensional d.a. vectorbundle over a 

d.a. variety V is a morphism of d,a. varieties TI : E + V such that 

there exists an open covering {U.!i E J} of V by affine open d,a. 
l. 

subvarieties and isomorphisms <f>.: TI- 1(U.) ~ U. x Kn such that 
l. l. . J. 

(i) pr 1 o ~.=TI for all i (where pr 1 : U. x Kn+ U. is the 
J. J. l. 

canonical projection into the first factor 

(l.·i·) ~ ~-1 ( ) n -1( ) ( ) n . • '!'. '!' • : u. n u. x K .+ TI u. n u. -+ u. n u. x K l.S a morphism 
l.J l. J l. J l. J 

of the form (x,v).-+ (x,~ .. (x)v), where~-. is ad.a. morphism 
l.J l.J 

U. n U.-+ GL into the d.a. group of invertible n x n matrices. 
l. J n 

The d.a. vectorbundle rr : E -+ V is defined over k if all d.a. 

varieties and morphisms involved in its definition are defined over 

k. 

2.7. Rational points of ad.a. variety. Let V c Kn be an affine d.a. 

variety defined over k,then V(k), the set of k-rational points of V, 

is defined as V(k) = {(x 1, ... ,x) E V c Knjx. Ek all i}. For an 
n l. 

arbitrary d.a. variety V over k,V(k) is defined as V(k) = U U.(k), 
J. 

where {U., i E J} is an open covering of V by affine d.a. subvarieties 
l. 

defined over k. 

3. The d.a. quotient variety Mar 
m,n,p 

Invariants. 

= L ar /GL • 
m,n,p n 

3.1. The setting. Let k be any differential field with universal 
0 

extension K. For example k may be the field of rational or meromorphic 
0 

functions over lR orE, with o =~tor of(t) = f(t) - f(t-1). We 

consider equations 

(3.1.1) ox = Fx + Gu, y = Hx 

with x(t) E kn, u(t) E km, y(t) E kp and F,G,H matrices of the 

appropriate sizes with coefficients in k, where k is any intermediate 

differential field between k and K. As a rule we shall write x 
0 

instead of ox. 

Let L be the d.a. variety of all triples of matrices (F,G,H) m,n,p 
of sizes rucn, man, pxn respectively. Let GL be the d.a. group of all 

n 
nxn invertible matrices. We define a d.a. action of GL on L by n m,n,p 
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(3. 1.2) GL x L + L , n m,n,p m,n,p 

(s (F G H)) loo+- (F G H) 8 = (SFS- 1+s·s- 1 ,sG,HS-I) 
' ' ' ' ' 

(Note that this is indeed a GL -action in that (F,G,H) 1 = (F,G,H) 
S T -I • -I n -I T 

and ((F,G,H) ) = (SFS +SS ,SG,HS ) = 
-I -1 ' - I -1 ' - I -1 -1 TS (TSFS T +TSS T +TT ,TSG,HS T ) = (F,G,H) because 

(TS)'(TS)-l = (TS+TS)S-lT-l = TT- 1+TSS-lT- 1). Of course this 

action of GL on L corresponds to the transformation 
n m,n,p 

x1-+ Sx in state space in (3.1.1). 

3.2. Algebraically reachable and algebraically observable systems. 

Let (F,G,H) EL . m,n,p 

We define then x (n+l)m matrix R(F,G) by 

(3. 2. 1) R(F ,G) (G(O) G(l). . . . : G(n)) 

where G(i) is inductively defined by 

• (3.2.2) G(O) = C, G(i) FG ( i -1 ) - G ( i -1 ) , I. = I , 2 , ••• , n 

More or less dually the matrix Q(F,H) is defined as 

(3.2.3) Q(F,H)T = (H(O)T · H(l)T H(n) 1 ) 

with 

(3.2.4) H(O) = H, H(i) = H(i-l)F + H(i-1), i I , 2, ••• , n 

where the symbol T denotes "transposes". (Note the sign difference). 

The triple (F,G,H) is said to be algebraically reachable 

(abbreviated "arn) if rank (R(F,G)) = n; the triple (F,G,H) is said 

to be algebraically observable (abbreviated nao'') if rank(Q(F ,H)) = n. 

These two conditions define open d.a. subvarieties of L which m,n,p 
we denote Lar , Lao . In addition we define 

m,n,p m,n,p 
1ar,ao = 1ar n 1ao 
m,n,p m,n,p m,n,p 

Of course the notions "algebraically reachable 11 and "algebraically 

observable 11 as defined above correspond to the usual geometric notions 

of reachability and observability in the cases where k is a field of 
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rational or meromorphic function over JR. or JC. Indeed the system 

(F,G,H) is ao iff Q(F,H) has rank n, Because of the nature of the 

functions involved this happens iff Q(F(t),H(t)) has rank n 

pointwise in t for all t except possibly a set of measure zero and 

this in turn means that (F,G,H) is completely observable in the 

usual geometric sense (cf [14], corollary 8.8). Dually one has that 

algebraically reachable corresponds to completely reachable in the 

geometric sense for such differentiable fields (NB in [14] 

"determinablei: is used for "observable':). 

3.3. Nice selections. Let J = {(0,1), ..• , (O,m); n,m 
(l,l), ..• , (1,m)i ... ;(n,1), ... , (n,m)}, lexicographically 

ordered. We use J to label the columns of the matrices R(F,G) n,m 
by assigning the label (i,j) to the j-th column of G(i). A subset 

a c J n,m is nice if (i,j) Ea=> (i-1,j) Ea for all i,j. A nice 

subset of size n is called a nice selection. Given a nice selection 

a a successor index of a is an element (i,j) E J 'a such that 
n,m 

a U {(i,j)} is nice. For every j E {I, .•. ,m} and nice selection 

a there is precisely one successor index (i,j') of a such that 

j' = j. This successor index will be denoted s(a,j). 

3.4. Nice selection lemma. Let (F,G,H) ~ Lar Then there is a 
mrn,p 

nice selection a c J such that det (R(F ,G) ) =/: 0. (Here R(F ,G) n,m a o. 
is the square n x n matrix obtained from R(F,G) by removing all 

columns whose index is not in a). 

Proof. Let 8 be a nice subset of J , which is maximal with respect n.m 
to the property that all the columns of R(F,G)B are linearly 

independent. We shall show that (3 then has n elements which proves 

the lemma. 

Renumbering the columns of G if necessary we can assume that 

(3 is of the form 

8 = { (0,1), ... , (n1 ,I)} U {(o,2), ... , (n2 ,2)} Li ••• 

v { (O,s), ... , (n ,s)} s 

We shall now show that every column of R(F,G) can be written as 

a linear combination of the columns of R(F,G) . By the maximality 
8 

of B this holds for the columns with indices (n 1 +I, I), ... , (ns +I, s), 

(O,s+l), .•. , (O,m). Assume with induction that the statement has 
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been proved for all columns with indices (i,j) with i < n.+k where 
- J 

we taken.= 0 for j = s+l, ... , m. Let (i)j) E J be such that 
J n,m 

i = n. + k + 1. Now R(F,G)( .. ) is the j-th column of G(i). Hence 
J i,J 

• R(F,G)( .. ) i,J FR(F,G)(i-l,j) - R(F,G)(i-l,j) 

Now by induction R(F,G)(i-l,j) is a linear combination of the columns of 

R(F,G)s. Say 

R (F, G) ( i- l 'j) I a ( ) R (F , G) ( ) 
(u,v)ES u,v u,v 

Then 

R(F,G)( .. ) =I a( )R(F,G)( l ) - I a( )R(F,G) 
i.J (u,v)ES u,v u+ ,v (u,v)ES u,v u,v 

As we have seen that the R(F,G)( 1 ) for (u,v) ES are linear u+ ,v 
combinations of the columns of R(F,G)S it follows that also R(F ,G) ( .. ) i,J 
is a linear combination of the columns of R(F,G) 6. This finishes 

the induction. Hence rank(R(F,G)S) = rank(R(F,G)) = n, which proves that 

S has n elements. 

3.5. The partial quotients U /GL. We now proceed as in [5,6]. First a n 
note that 

(3.5.J) R(SFS- 1+ss-l ,G) = SR(F,G) 

(because (SFS-l+~S- 1 )(SG(i)) - (SG(i)f = SFG(i) + ~G(i)-§G(i)-Sd(i) 
S(FG(i)-G(i))). Leta be a nice selection and let x = (x 1 , •• .,xm) E Krun = 
Kn Kn. U · (3 5 ) h · 5 6 h th exi· sts x ... x sing .. l one now sows as in [ , J tat ere 

precisely one triple (F,G,H) E Lar such that R(F,G) =I , m,n,p a n 
R(F,G) ( .) = x. for j = I, ... , m. It follows that if 

s a,J J 

U = {(F,G,H) EL jdet(R(F,G) ) ~ 0 then a m,n,p a 

(3.5.2) u 
Cl 

U /GL 
a n 

Kmn+np let For each nice selection a and x = (y,z) E ljJ (x) = (F (x) ,G (x), 
a a a 

H a(x)) be the unique triple such that R(F a(x) ,G a(x)) a= In, 
R(F ( ) G ( ) ) . . h f ( ) E (Kn)m, a x , a x s(a,j) is the J-t component o y = y 1, ... ,ym 
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and such that H a(x) = z. 

d . . Mu d . 3.6. The .a. quotient variety • We now construct a ,a. variety 
m,n,p 

Mar as follows; again as in [6]. For each nice selection a let 
m,n,pnm p 

V = K x Kn and let 
a 

VB= {x E V I det(R(F (x),G (x))B) # O} a a a a 

We now glue the Va together by means of the isomorphisms 

WaB: Vas+ VSa' which are defined by 

(3.6.1) 

where S = R(F (x),G (x))~I. This defines a a µ 

we can 
Mar 
m,n,p 

show that Mar is TI. Note that m,n,p 

us a d.a. variety provided 

by construction 

Lar /GL . i"n = , any case as sets. 
m, n,p n 

Now let G ( I) be the d.a. Grassmann variety of n-planes in n, n+ m 
(n+l)m space. Then by (3.5,I), R induces a map 

(3.6.2) g: Mar + G 
m,n,p n,(n+I)m 

One now also defines%: Lar + K(n+I) 2mp by ~(F,G,H) = 
m,n,p Q(F,H)R(F,G). Now 

(3.6.3) Q(F,H)S-l 

-1 -I • -I -I ~ -I -I• -I 
(because (H(i)S )(SFS +SS ) + (H(i)S ) = H(i)FS + H(i)S SS 

+ H(i)S-I - H(i)s- 1ss-l = H(i+l)S- 1). Combining this with (3.5.1) we see 

that ll((F ,G,H)S) = fl(F ,G,H), -so that ll induces a map 

(3.6.4) h: Mar 
m,n,p 

2 
+ K(n+l) mp 

2 
One now shows as in [6] that (g,h): Mar + G x K(n+l) mp 

m,n,p n,(n+I)m 

is injective which proves that Mar is TI and hence ad.a. variety. 
m,n,p 

The maps g and hared.a. morphisms (defined over k ). 
0 

3.7. Corollary. Har is an irreducible quasi projective d.a. variety. 
m,n,p 

It is the quotient of Lar by GL in the category of d.a. varieties. 
m,n,p n 



12 

One also verifies with no trouble that Mar in addition enjoys 
m,n,p 

the pleasant quotient property that Mar (k) = Lar (k)/GL (k) for 
m,n,p m,n.p n 

all intermediate differential fields k c k c K. 
0 

. ar ao ar ar 3.8. The subvariety M ' . Let TI : L + M be the natural projection. 
m,n,p m.n,p m,n,p 

Then Mar,ao 
m,n,p' 

ar ao . the image of L ' 1 is an open d.a, subvariety of 
m,n,p 

Mar and one shows as in [6] that the morphism h of (3,6.4) above is 
m,n,p 

injective on Mar,ao. Its image is readily described. An (n+I) x (n+l) 
m,n,p 

block matrix with blocks of size p x m 

A 
o, I A o,n 

A I 
n,n / 

. ar ao is of the form h(F,G,H) for some triple (F,G,H) E L ' if and only if m,n,p 
the following two conditions (3.8.1) - (3.8.2) hold. 

(3. 8 .1) rank(~) = n = rank(1'). 

where,4' is the matrix obtained from-* by removing the last column 

and row of blocks. 

• 
(3.8.2) A. 1 . - A .. I i+ .J i,J+ 

A .. for all i,j E {0,1, ... , n-1} 
i,J 

ar ao 3.9. Corollary. M ' is a quasi-affine d.a. variety. m,n,p 

3.10. Corollary. Every differential invariant of GL acting on L 
n rn,n,p 

is a rational function in the entries of the matrix 

h(F,G,H) = Q(F,H)R(F,G) and their derivatives. 

3.11. Remarks. Note that L Mar Mar,ao are defined by 
m,n,p' m,n,p' m,n,p 

polynomials involving no derivatives, and hence are ordinary algebraic 

varieties reinterpreted within the context of d.a. varieties. 

On the other hand the d efi nit ions of 1ar , 1ar,ao do involve 
m,n,p m,n,p 

derivatives and so do the projection map 
2 

TI : 1ar 
-+ Mar the embedding h: Mar,ao -+ K(n+I) mp 

m,n,p m,n,p' m,n,p 
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and hence the description of Mar~ao as a quasi affine d.a. subvariety 
m,n,p 

2 
of K(n+l) mp. 

All the d.a. varieties and morphisms of (3.1) - (3.10) above 

are defined over k . 
0 

4. CANONICAL FORMS 

We can be brief about the matter of 

of global 

of course 

selection 

( 4. I) 

continuous canonical forms. On 

the local canonical forms c'f;/. a: 
a defined by 

s 
c'f,{a(F,G,H) = (F,G,H) , 

existence or nonexistence 

the one hand there exist 

u -+ u for every nice 
a a. 

s 

On the other hand the same examples and constructions as used in 

[5,6] show that global continuous canonical forms on Lar,ao exist 
m,n,p 

if and only if m = 1 or p = 1 • This is not innnediate from the 

corresponding result 1n the non-time-varying case, because, a priori, 

the canonical form of a non-time-varying linear system could be time­

varying in the present setting. 

There are similar analogues of all the other results of [5,6] 

pertaining to canonical forms. E.g., there is a continuous canonical 

form on Lar (resp. Lao ) if and only if m = I (resp. p =I). 
m,n,p m,n,p 

Let us also note that Lar -+Mar is a locally trivial 
m,n,p m,n,p 

principal d.a. GL 
n 

with the situation 

fibre bundle over Mar , in complete analogy 
m,n,p 

in the non-time-varying case. 

5. A UNIVERSAL FAMILY OF LINEAR TIME-VARYING SYSTEMS. 

As in the non-time-varying case there is a natural universal 

family of linear dynamical systems. Here, however, the definitions 

of [5,6] must be recast, simply because the transformation rule 

FI-+ SFS-l + SS-l does not correspond to the kind of transformations 

one encounters for an endomorphism of a vectorbundle in terms of 

varying local trivializations of that vector bundle. 

5.1. Definition. A family E of linear dynamical systems parametrized 

by a d.a. variety V consists of 
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(i) ad.a. vectorbundle TI : E + V 

(ii) for every open U c V over which E is trivial and every isomorphism 
-I rv n 

of d,a. vectorbundles w : TI (E) + U x K (trivialization) a 

morphism f(w,U): U + L , such that the following condition 
m,n,p 

holds 

(iii) let ~ 1 w; 1 : (U 1 n U2) x Kn~ TI-l(U 1 n u2) + (U 1 n U2) x Kn be given 

by (x,v)1-+ (x,x 12 (x)v) for x 12 : u1 n u2 + GLn' then 

It obviously suffices to specify the f(~,U) for all U. of some open 
i 

covering {U. Ii E j} of V and for one particular trivialization w. for 
i i 

each U .. The family is said to be defined over k if all the morphisms 
i 0 

and varieties involved are defined over k . The family Z is said to 
0 

be ar if all the f(W,U) map U into Lar c L 
m,n,p m,n,p 

In case k is a differential field of rational or meromorphic 
0 

functions over JR. or JC one can more generally define a rather hybrid 

sort of object: families of rational or meromophic dynamical systems 

parametrized by a topological space V. The definition is obvious. 

5.2. The universal example. As in [5,6] we now construct a canonical 

n - vectorbundle over Mar . It consists of the trivial pieces V x Kn 
m,n,p a 

for each nice selection a glued together by the identifications 

V x Kn~ (x,v) f--t-7 (y,w) E V x Kn 
a 13 

iff "x = y in Mar ",i.e. 
m,n,p 

(Fi3 (y) ,G13 (y) ,RB (y) with S = 

s 
(F (x),G (x),H (x)) 

a a a 
-I 

R(F (x) ,G (x) 1 and Sv 
a a 13 

ar w: V -+ L , Xi-+ (F (x),G (x),H (x)) 
a a m,n,p a a a 

w. The morphisms 

now define the required family of linear dynamical systems in the sense of 

5.1 above. We denote the family just constructed by J.: u. 

5.3. Universality properties of zu. There is an obvious notion of pull back, 
' i.e. an obvious way of associating a farnilycp 0 J.: over V' toad.a. 

morphism cp: V'+ Vanda family I; over V, cf [5,6]. There is an equally 
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obvious notion of isomorphism of families over V. This defines 

a contravariant functor ~: d.a. varieties + Set. As expected this ============== === 
functor is representable by (Mar , Eu). I.e., for every ar family m,n,p 
E of linear dynamical systems over a d.a. variety V there is a unique 

d.a. morphism cp 

In case k 
0 

or 1C the family 

' V +Mar such that <J>"f ~ E over V. 
m,n,p 

a field of rational or meromorphic functions over JR. 

Eu over Mar (k ) is also universal for the hybrid 
m,n,p o 

families briefly mentioned at the end of 5,1 above (provided one gives 

Mar (k) the appropriate topology of a function space of JR- or 
m,n,p o 

!:-valued functions). The proofs of all these facts do not really 

differ from those given in [5,6] for the non-time-varying case. 
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