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CANONICAL FOR!\IS AND MODULI 

ARY!NG UNEAR DYNAMICAL SYSTEMS 

M. HAZEWINKEL 

Abstract. We consldcr time variable linear dynamical systems x = Fx + Gu, 
Hx,x1tl£R~.yitlcR'',u(!)ER"', where the F,G and Hare matrices of the 

sizes w11h 1;me variable coefficients. A state space basis change 

rh;;mgcs the triple of matrices (F. G. H) into (SFS-l + SS- 1, SG, HS · 1). Now 
"~~ume ihi.it the coeHkicni:, of F, G. H and S all belong to some field like e. g. 

of rnti0m:l h.1nctim1s over R or C or the field of or real 
fun~tiono. Then mos! of the results concerning invariants, canonical 

cur previous papers "Moduli and canonical forms for 
'me1:1r dyn,;mical sysi,.;m:o ll, ff! go through in these time variable cases. The 

::,~tting for these questions appears to be dil:Ierential algebraic 
Ami in fact 1he r.csul!s referred lo will be established for equations 

Fx + G1 •. y =fix. \1>hen; the F, G.. H are matrices with coe!licients in some 
{ordinaq) diHerential fidd with differentiation operator O· 

t Introduction. 

C.:msider a time varying, dynamical system 

.t=Fx+Gu, y=Hx (1.1) 

RP, u (t)eRm and where F, G, H are matrices of 
sizes wi!h coefficients which may depen4 on t. To fix 

the ideas suppose for example that the coefficients of F, G, H an belong 
tv the field of rational functions 'i>Ver R. Then it makes perfect sense to 

rnnsidi.:r bas~ the type ";=Sx where Sis an nXn matrix also 

rt:.;.,::\-;J !anuary l'i, 1979. 
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2 M. HAZEWINKEt 

with coefficients in R (t) with nonzero determinant. Such a base change 
transforms the equations (1.1) into 

(1.2) 

and at least in the algebraic sense one can ask about invariants, moduli 
and canonical forms just as in the case of non time varying systems ( [3-6-

Solutions to equations like ( 1.1) with u (t) ER (t) given, certainl''"'" 
exist as vectors with coefficients in some differential extension field 
(cf. [11], [9] or [12]). They also exist as «functions» albeit as 
multiple valued functions with poles and braching points if F, G or 
u (t) have poles, cf. e. g. [7]. 

The main purpose of the present note is to point out that the results 
of [5, 6] also go through in a time variable setting like the one discussed 
just above. In fact more generally these results go through for systems 

ox=Fx+Gu, y=Hx (1.3) 

where the F, G, H are matrices with coefficients in any differential 
field k with differentiation operator o (for a definition cf. 2.1 below). 
Examples of such differential fields are 

d 
(a) k=R (t) or C (t), o= dt • (b) k= real meromorphic functions or complex meromorphic 

functions. o= .!!_ 
dt 

(c) Subfields of (b), e. g. k=R (sin t, cost). 

Thus when one specializes the results for abstract differential fields 
obtained below to one of these cases one obtains results for « real life » 
dynamical system~ vv itn time variable coefficients. 

T' •' :, \ur::s used to obtain the results below are basically the 
same ~ 'i, 6]. Most of the (minor) difficulties are caused by the ' 
fact th:.. ; '::~tial algebraic geometry is more difficult and certainly 
f:ir k~s J,_ 11.:1upt:d than ordinary algebraic geometry. 
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2. Preliminaries concerning differential algebra and differential algebraic 
geometry. 

2.1. Differential rings, fields, .... Let R be a commutative ring with 
unit element. A derivation on R is an additive operator o: R ~ R such 
that o(ab)=o(a)b+ao(b) for all a,bER. A differential ring is a ring 
R together with a derivation operator o. A differential field is a differen-

.ial ring whose underlying ring is a field. Examples of differential fields 
were mentioned in the introduction. 

Let (k, o) be a differential field. Let X1, ... , Xn; X1(1), ... , Xn< 1J; 
X1(2), ... , Xn<2J; ... be indeterminates over k. Consider the ring of poly-
nomials R = k [X1, ... , Xn; X1(1', ... , Xn<1l; ... ] . Define oX/l = X/i+1>, 
i=O, 1,2, ... ; j=l, ... ,n, where X/0l=Xi, j=l, ... ,n. There is precisely 
one derivation o on R which extends o on k and which behaves on the 
xpJ as defined (cf. [1], Ch. 5, § 9, prop. 4). The ring R with this 
derivation is called the ring of differential polynomials in X1, ... , Xn 
over k and it is denoted k {X1, ... , Xn}. Roughly a differential polynomial 
is therefore a polynomial in the X1, ... , Xn and their derivatives. The 
quotient field of k { X1, ... , Xn} is denoted k ( X1, ... , Xn). There is a 
unique derivation on k ( X1, ... , Xn) extending the one on k{ X1, ... , Xn }, 
viz. the obvious one, o (f/g)=g-1 (of)-f (og) g-2• 

A differential ideal I in a differential ring (R, o) is an ideal l of R 
such that Olcl. If AcR is a subset then [A] cR denotes the differential 
ideal generated by A. I. e. [A] is the ordinary ideal generated by the 
o; f, /EA, i=O, 1, 2, .... • · 2.2. Affine differential algebraic varieties. Let k be a differential 
field. Let K be a universal differential field extension of k. Cf. [9], 
Oh. III, § 7 for this notion; roughly K is a large enough field to contain 
all finitely generated extensions of k and finitely generated separable 
extensions of these. If char (k)=O we can take K to be differentiably 
algebraically closed. (I. e. such that every differential polynomial over 
K has a solution in K, cf. [12]; if char(k)>O there are difficulties 
concerning the existence of algebraic closures). 

Let l be a differential ideal in K {X1, ... , Xn}. We define V (!)= 
={(x1,. .. ,Xn)EK"!f(x)=O for all /El}. Inversely, given a subset 
YcKn we define I (Y)={JEK {X1, ... , Xn} If (y)=O all yEY}. The 
subsets of the form V (I) c Kn are said to be differentiably closed. This 
defines a topology on K" and Kn with this topology is called affine 
differential space of dimension n. The closed sets V (!) with the induced 
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topology are the affine differential algebraic varieties. We shall from 
now on use the abbreviation d. a. for differential algebraic. The affine 
d. a. variety V is defined over k if it is of the form V = V ([A]) where 
A is a set of elements of k {X1, ... , Xn} and [A] is the differential ideal 
in K {Xi, ... ,Xn} generated by A. A differential open subset U of an 
affine d. a. variety V over k is defined over k if V\ U is defined over k. 

The mappings I 1-+ V (I), Y 1-+ I (Y) set up a bijective correspon
dence between perfect ideals of K {X1, ... , Xn} and differential close~ 
sets in K". By .the Ritt-Raudenbush basis t'heorem (cf. [9], Ch. 3, § 4. 
every perfect ideal in K {X1, ... , Xn} is generated (differentially) by 
finitely many elements if char (K) = 0 or more generally if K is perfect. 

2.3. Morphisms between affine d. a. varieties. Let V be an affine 
d. a. variety and let I= I (V) be its ideal of differential polynomials 
which are zero on V. We write K { V} for the differential quotient ring 
K {X1, ... , Xn}/l (V). (There is a unique derivation o on K {V} compa
tible with K { X" ... , Xn} ~ K { V} because I (V) is closed under o). 
The ring K { V} may have zero divisors. We write K ( V) for its full 
quotient ring. The elements of K { V} are called the difjerential polynomial 
functions on V and the elements of K ( V} the differential rational 
functions on V. Let f eK { V }, t'hen f indeed defines a function V ~ K 

,,,..... 
as follows. Let xeV, choose a lift f (X1, ... , Xn)EK {Xi. ... ,Xn} off for 

"" K{X1, ... ,Xn}~K{V}; now define f(x)=f(x1, ... ,Xn). Thisiswell-
defined. Now let x e V and f e K ( V). We say that f is defined at x e V 
if there exist g, heK { V} such that f=g/h in K (V) and h (x)=l=Oa 
If f is defined at x, then f (x)=g (x)/h (x) is welldefined. Let dom <fr -
be the set of xeV such that f is defined at x. Then dom (/) is a differential 
open subset of V and f defines a function dom (/) ~ K, which in tum 
determines f uniquely. NB, as in ordinary algebraic geometry, given 
jeK(V) it may not be possible to find a representation f=g/h,g,heK{V}, 
such that h (x)=j=O for all xe dom (/); as a rule g, h may have to depend 
on x. 

Let V be defined over k. A differential polynomial f e K { V} is 
defined over k if it is in the image of k {Xi. ... , Xn} in K {V} under 
K { X1, ... , Xn} ~ K { V}. The ring of differential polynomial functions 
over k is denoted k {V}. Its full quotient ring is denoted k {V) and the 
elements of k ( V} c K ( V) are the differential rational functions on V 
defined over k. 

Now let V1cK" and v'2cKm be two affine d. a. varieties. Let 
U;cVi, i= I, 2, be differential open subsets. A morphism <f>: U1 ~ U2 
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is a map x 1--+ </:> (x) =(<Pi (x), ... , cf:>m (x)) such that </:> (x) e U2 for all xe U1 

and such that the </J; are rational differential functions with dom (<f;;)-:;::)U1 

for all i = 1, ... , m. The morphism <P is an isomorphism if there is a 
morphism c./;: U2~ Vi such that cf;cp=id, <f;cf;=id. Let Yi, Vi, U1, U2 be 
defined over k, then </:> is said to be defined over k if all the cp; are 
defined over k. 

e ~ arning: Every element of. K { V} defi~es a morphism V-?> K. 
But m general the set of morphism V ~ K is larger than K { V} (in 
contrast to the situation in ordinary algebraic geometry). E. g., if 
V=V([ox-x])cK, then f=(x-1)- 1 defines a morphism V-+K but 
this morphism is not equal to any of the morphism defined by the 
elements of K { V }. 

More material concerning affine d. a. varieties can be found in [2] 
and [9]. 

2.4. d. a. varieties. A d. a. variety V is a Ti-topological space V for 
which there exists an open covering { U; i ie/} together with embeddings 
</:>;: U;-+ K 11 U> such that 

(i) </:>; (U;) c K"Ul is an affine d. a. variety in Kn<i> 

(ii) </J; </:>;-': </J; (U; n U;) ~ U; n U;-+ r/J; (U; n Vi) is an isomor

phism of open differential subsets (in the sense of 2.3 above). 
A d. a. variety is defined over k if all the affine d. a. varieties, 

differential open subsets and morphisms involved in its definition are 
'.efined over k. 

For example let V be an affine d. a. variety and U an open differential 
subset of V. Tihen U is a union of open differential subsets Vt= 

={xeV If (x)::j=O} where f runs through the elements of K {V} which 
are zero on V\U. Let I =I (V)cK {X1, ... , Xn} and let Vt' = 
= { X1,. •• , Xn+1) EK" tl I g (x,, ... , Xn) =O for all gE I and f (X1,. •• , Xn) Xn+I = 1 }. 
Then Yt' is an affine d. a. variety and (x1,. .. , Xn) .....+ (x1, ... , Xn, f (x,, ... , Xn)) 

is an isomorphism Vi= V/. Thus we see that a differential open subset 
of an affine d. a. variety is a d. a. variety in the sense of the definition 
above. More generally an open subset of a d. a. variety is a d. a. variety. 
A d. a. variety V has a basis of open affine d. a. subvarieties (by the 

argument given above). 
Let V, W be d. a. varieties. A morphism <j:i: V ~ W is a continuous 

map such that for every two affine d. a. subvarieties UcV, U'cW, 

<f>: Un <1>- 1 (U') ~ U' is a morphism of differential open subsets of 

afiine d. a. varieties in the sense of 2.3 above. 
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2.5. d. a. groups and differential invariants. The category of d. a. 
varieties defined just above has finite products and a final object (the 

d. a. variety). A d. a. group is now a group object in this 
L e. it is a d. a. variety G equipped with a multiplication 

morphism m: G X G -i. G, an inverses morphism i: G ~ G and an 
element e€G such that m, i and e make G a group in the usual sense 
of the word. Some results on affine d. a. groups can be found in [2]. 

An action of a d. a. group G on a d. a. variety V is a morphis. 
GXV-i.V such that (with the obvious notations) (g1g2)x=g1(gix), 
ex=x for all gi. gzeG, xeV. A differential invariant of an action of 
G on V is a diffel'ential rational function f on V such that f (gx) = f (x) 
for all xe ge G such that f is defined for both x and gx. This definition 
agrees of course with the one of S. Lie in [10], modulo the change 
caused tht! geometric setting of the present note. 

2 .. E. d. a. Fectorbundles. An n-dimensional d. a. vectorbundle over 
a d. a. V is a morphism of d. a. varieties 7r: E ~ V such that 
there exists :m open covering {U; ie/} of V by affine open d. a. 
subvaric!ics and rc 1 {U;) _::+ U1 X K" such that 

Ol pr: o =::: for all i (where pr1: U; X Kn~ U1 is the canonical 
into the factor 

n X K" -i. n:- 1 (Ui n Ui)-+ (U; n Ui) X K" is a 
the form (x, ~·) 1-l> efl11 (x) v), where r./;1i is a d. a. morphism 

_ _,, into the d. a. group of invertible n X n matrices. The d. a 
veclorbund!e '": _,. \l is defined over k if all d. a. varieties a;/t 

involved in its definition are defined over k. 

2.7. Rational of a d. a. variety. Let VcK" be an affine d. a. 
ddined ever k. then V (k), the set of k-rational points of V, is 
as V ={(x1, ... ,Xn)EVcKn I XiEk all i}. For an arbitrary d. a. 

ova k, V (k) is defined as V (k) == U U1 (k), where { U;, iel} 
is ::m t'pen covering of V by affine d. a. subvarieties defined over k. 

Let ko be any differential field with universal 
C:\!en~i'"' .',. ko may be the field of rational or meromorphic 

-:iver R or C, with o= d We consklcr equations 
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ox=Fx+Gu, y=Hx (3.1.1) 

with x (t)ekn, u (t)ek ... , y (t)ekP and F, G, H matrices of the appropriate 
sizes with coefficients in k, where k is any intermediate differential 

field between ko and K. As a rule we shall write x instead of ox. 
Let Lm,n,p be the d. a. variety of all triples of matrices (F, G, H) 

of sizes nxn, nxm, pXn respectively. Let GLn be the d. a. group of 
911 nXn invertible matrices. We define a d. a. action of GLn on Lm,n,p by 

G Ln X Lm,n,p ~ Lm,n,p1 (3 .1.2) 

(S, (F, G, H)) '"""'(F, G, H)5 =(SFs-1+ss-1, SG, HS-1). 

(Note that this is indeed a GLn-action in that (F, G, H)1 = (F, G, H) and 

((F, G, H)8)r = (SFS-1 + ss-1, SG, HS-1)r = 
(TSFs- 1 r- 1+rss- 1 r-1+ rr-i, rso, Hs-1 r- 1)=(F, o, mrs 

because 

Of course this action of GLn on Lm,n,p corresponds to the transformation 
x ~ Sx in state space in (3.1.1). 

3.2. Algebraically reachable and algebraically observable systems. 
9"et (F, G, H)eLm,n,p· 

We define the n X (n + 1) m matrix R (F, G) by 

R(F,G)=(G(O) G(l) ... G(n)) (3.2.1) 

where G (i) is inductively defined by 

G(O)=G,G(i)=FG(i-1)-G(i-l), i=l,2,. .. ,n (3.2.2) 

More or less dually the matrix 0 (F, H) is defined as 

0 fF. r.,nr ::.=(FI (O)r H (l)T ... H (n) r) (3.2.3) 

with 

H(O)=H, ll:i)=H(i-l)F+H(i-1), i=l,2, ... ,n (3.2.4) 

where the symbol r denotes «transposes». (Note the sign difference). 
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The triple (F, G, H) is said to be algebraically reachable (abbreviated 

« ar ») if rank (R (F, G)) = n; the triple (F, G, H) is said to be algebrai
cally observable (abbreviated «ao » if rank (Q (F, H)) =n. These two 

conditions define open d. a. subvarieties of Lm,n,p which we denote L ar m,n,p, 

La0 m,n.p· In addition we define 

L'::,' !: ,= L ar m,n,p n Lao m,n,p· 

Of course the notions « algebraically reachable» and « algebraicalr1 

observable » as defined above correspond to the usual geometric notions 

of reachability and observability in the cases where k is a field of rational 

or meromorphic functions over R or C. Indeed the system (F, G, H) is 

ao iff Q (F,H) has rank n. Because of the nature of the functions involved 

this happens iff Q (F (t), H (t)) has rank n pointwise in t for all t except 

possibly a set of measure zero and Vhis in turn means that (F, G, H) is 

completely observable in the usual geometric sense (cf. [14], corollary 

8.8). Dually one has that algebraically reachable corresponds to comple

tely reachable in the geometric sense for such differentiable fields (NB in 

[14] « determinable » is used for « observable »). 

3.3. Nice selections. Let fn,m={ (0, 1), ... , (0, m); (1, 1), ... , (1, m); ... 

... ; (n, 1), ... , (n, m) }, lexicographically ordered. We use fn,m to label 

the columns of the matrices R (F, G) by assigning the label (i, j) to 

the j-th column of G (i).A subset acfn,m is nice if (i, j)Ea ==> (i-1, j)Ea 

for all i, j. A nice subset of size n is called a nice selection. Given a nice 

selection a a successor index of a is an element (i, j) Ef n,m \a such that 
a U { (i, j)} is nice. For every j E { 1, ... , m} and nice selection a the19' 

is precisely one successor index (i, j') of a such that j' = j. This successor 

index will be denoted s (a, j). 

3.4. Nice selection lemma. Let (F, G, H)eLarm,n,p· Then there is a 
nice selection a c f n.m such that det (R (F, G)a) =l= 0. (Here R (F, G)a is 

the square n X n matrix obtained from R (F, G) by removing all columns 
whose index is not in a). 

PROOF. Let (J be a nice subset off n.m, which is maximal with respect 

to the property th:it all the columns of R (F, G)p are linearly independent. 

We sh" :.,:w that fJ then has n elements which proves the lemma. 

K. IH''nbering the columns of G if necessary we can assume that p 
is of the form 

{J={ (0, !), ... , (ni. 1)} U {(O, 2), ... , (n2, 2)} U ... U { (0, s), ... , (n., s)} 
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We shall now show that every column of R (F, G) can be written as a 
linear combination of the columns of R (F, G)p. By the maximality of p 
this holds for the columns with indices (n1+1, 1),. . ., (n.+ 1, s),(0, s+ 1),. .. 
... , (0, m). Assume with induction that the statement has been proved for 
all columns with indices (i, j) with i:5n;+k where we take n;= -1 for 
i=s+ 1, ... , m. Let (i, j)E/n.m be suc'h that i=n;+k+ 1. Now R (F, G)(i,il 

is the j-th column of G (i). ~nee 

R (F, G)(i.i>=FR (F, G)(i-1,iJ-R (F, G)"c,-1,J1. 

Now by induction R (F, G)(i-1,;> is a linear combination of the columns 
of R (F, G)p. Say 

Then 

R (F, G)(i-1.n = I a,u,•> R (F, G)(u,,,> • 
(u, V)E /J 

R (F, G)u.n = I acu,,,l R (F, G)cu+t,v> - I a,.,,,,l R (F, G).,, •. 
(u, v) E p (u, 11) E /J 

As we have seen that the R (F, G)(.,+l.v> for (u, v)efj are linear combi
nations of the columns of R (F, G)p it follows that also R (F, G)u.;> is a 
linear combination of the columns of R (F, G)p . This finishes the 
induction. Hence rank (R (F, G)p)= rank (R (F, G))=n, whic'h proves 
that P has n elements. 

3.5. The partial quotients Ua/GL,.. We now proceed as in [5, 6]. 
First note that 

R (SFs- 1+ss- 1, G)=SR (F, G) (3.5.1) 

(because (SFS- 1 + ss-1) (SG (i)) - (SG (i)) . = SFG (i) + SG (i) -

-SG (i)-SG (i)=S (FG (i)-G (i))). Let a be a nice selection and let 
x=(x1,. • .,Xm)EK"m=K"X ... XK". Using (3.5.1) one now shows as in 
[5, 6] that there exists precisely one triple (F, G, H)eLarm.n,p such that 
R (F, G)a=In, R (F, G)s(a,;)=X; for i= 1, ... , m. It follows that if 

Ua={ (F, G, H)ELm,n,p I det (R (F, G).)9=0} 

then 

For each nice selection a and x=(y, z)eKmn+np let ef;. (x)=(Fa (x), G. (x), 
H. (x)) be the unique triple such that R (F. (x), G. (x)),.=ln, R (F. (x), 
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Ga (x))s<c.il is the j-th component of y = (yi, ... , Ym) € (Kn)m, and such 

that H .. (x)=z. 

3.6. The d. a. quotient variety Ma'm,n,p· We now construct a d. a. 

variety Ma',..,n,p as follows; again as in [6]. For each nice selection a let 

V.,=K'""XKnp and let 

Vap={xEVa J det (R (Fa (x), G,, (x))p)=j=O}. 

We now glue rhe V., together by means of the isomorphisms rf;a.p: Va.~Vpa, 

which are defined by 

if;ap (x) =y (:::> (Fp (y), Gp (y), Hp (y)) =(Fa (x), Ga. (x), H,. (x)) 5 {3.6.1) 

where S=R (Fa (x), Ga. (x))p-1• This defines us a d. a. variety provided 

we can show that Ma' m,n,p is Ti. Note that by construction Mar m,n,p = 
=L"'m,n,p/GL,., in any case as sets. 

Now let Gn.<n+llm be the d. a. Grassmann variety of n-planes in 

(n+ 1) m space. Then by (3.5.1), R induces a map 

g: Mar m,n,p ~ G n,(n+l)rn • (3.6.2) 

One now also defines h: 

La'm,n,p~K(n+l)•inp by h (F, G, H)=Q (F, H) R (F, G). 

Now 

Q (SFs-1+ss-1, HS-1)=Q (F, H) s-1 

(because (H (!) s-1) (SFS-1 + ss-1) + (H (i) s-1!) • = H (i) Fs-1 + 
+HU) s-1 ss-1+H (i) s-1-H (i) s-1 ss-1=H(i+1) s-1). Combining this 

with (3.5.1) we see that h ((F, G, H)5)=h (F, G, H), so that h. induces 
a map 

(3.6.4) 

One now shows as in [6] that (g, h): Ma' m.n.p ~ Gn,<n+tim x K <n+1i• mp 

is injective which proves that Mar m,n,p is T1 and hence a d. a. variety. 

The maps g and h are d. a. morphisms (defined over k0) • 

. 3.7. C~ROLLARY. M4 'rn,n,p is an irreducible quasi projective d. a. 

va~et~. It ts the quotient of U' m,n,p by G Ln in t'he category of d. a. 
vanet1es. 

~ 
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One also verifies with no trouble that Mar m,n,p in addition enjoys 
the pleasant quotient property that M4 ' m,n,p (k) =La' m,n,p (k)/GLn (k) for 
all intermediate differential fields kockcK. 

3.8. The sub variety M:.7:• :~ ,. Let :ir: L ar m,n,p ~ Mar m,n,p be the natural 
projection. 

Then M"'r, 00 , the image of L ar, "' 0 , is an open d. a. subvariety of 
m~~ m~p 

aM4 'm,n,p and one shows as in [6] that the morphism h of (3.6.4) above is 
W injective on M:~·.~;. Its image is readily described. An (n + 1) X (n + 1) 

block matrix wirh blocks of size p X m 

• 

(

Ao,o 

stl.= A1io 

An,O 

Ao.1 
Ao,n) 

~n,r. 
is of the form h (F, G, H) for some triple (F, G, H) eL:!';n"'; if and only 
if the following two conditions (3.8.1) - (3.8.2) hold. 

rank (.stl)=n= rank (stl.'), (3.8.1) 

where stl.' is the matrix obtained from stl. by removing the last column 
and row of blocks. 

A;+1.i-Ai,j+1=Ai.i for all i, je{O, 1, ... , n-1}. (3.8.2) 

3.9. COROLLARY. M:!';:; is a quasi-affine d. a. variety. 

3.10. COROLLARY. Every differential invariant of GLn acting on 
Lm,n,p is a rational function in the entries of the matrix h (F, G, H)= 
= Q (F, H) R (F, G) and their derivatives. 

3.11. REMARKS. Note that Lm,n,p, M"' m,n,p. M::!',n~; are defined by 
polynomials involving no derivatives, and hence are ordinary algebraic 
varieties reinterpreted within rhe context of d. a. varieties. 

On the other hand the definitions of L4 'm,n,p, L:!';.~; do involve 
derivatives and so do the projection map TC: L41 m,n,p ~ M4 ' m,n,p, the 
embedding h: M"''· ao ~ K (n+I)•mp and hence the description of Mar, GO 

m,np m,ta.,,P 

as a quasi affine d. a. subvariety of K<n+u• mp. 

All the d. a. varieties and morphisms of (3.1)- (3.10) above are 
defined over ko . 
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4. Canonical forms. 

We can be brief about the matter of existence or nonexistence of 

global continuous canonical forms. On the one 1hand there exist of 

course the local canonical forms C#a: Va~ Ua for every nice selection 

a defined by 

Cit" (F, G, H)={F, G, H)5, S=R (F, G)a-1• (4.l)f 

On the other hand the same examples and constructions as used in 

(5.6] show that global continuous canonical forms on L:~;:,~ exist if 

and only if m = 1 or p = 1. This is not immediate from the corresponding 

result in the non-time-varying case, because, a priori, the canonical 

form of a non-time-varying linear system could be time-varying in the 

present setting. 
There are similar analogues of all the other results of [5, 6] 

pertaining to canonical forms. E. g., there is a continuous canonical 

form on La'm,n,p (resp. La0 m,n,p) if and only if m= 1 (resp. p= 1). 
Let us also note that La' m,n,p ~Mar m,n,p is a locally trivial principal 

d. a. G Ln fibre bundle over M"' m,n,p in complete analogy with the 

situation in the non-time-varying case. 

5. A universal family of linear time-varying systems. 

As in the non-time-varying case there is a natural universal family 

of linear dynamical systems. Here, however, the definitions of [5, 6]fl 

must be recast, simply because the transformation rule F ~ SFs- 1+ss- 1 

does not correspond to the kind of transformations one encounters for 

an endomorphism of a vectorbundle in terms of varying local trivia

lizations of that vector bundle. 

5.1. DEFINITION. A family I of linear dynamical systems parametrized 
by a d. a. variety V consists of 

(i) a d. a. vectorbundle n: E ~ V 

(ii) for every open Uc V over whi~h E is trivial and every 

isomorphism of d. a. vectorbundles c/;: n-1 (E) ~ U X Kn (trivialization) 

a morphism I (1/;, U): U ~ Lm,n,p, such that the following condition holds 

(iii) let c/;1 c/;2-1: (U1 n U2) X Kn~ n-1 (U1 n U2) ~ (U1 n U2) X K" 

be given by (x, v) - (x, X12 (x) v) for x12: U1 n U2 ~ GLn, then 
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It obviously sufficies to specify the f U) for all U; of some open 
covering { U; i e /} of V and for one particular trivialization r./;1 for 
each U; . The family is said to be defined over ko if an the morphisms a:nd 
varieties involved are defined over 4 The family I is said to be ar 
if all rhe J (i/J, U) map U into L"' ..... ,,.cL,,.,~.p. 

In case ko is a differential field of rational or meromorphic functions 
t:ver R or C one can more generally define a rather hybrid sort of 

object: families of rational or meromorphic dynamical systems parame
trized by a topological space V. The definition is obvious. 

5.2. The universal example. As in [5,6] we now construct a canonical 
n-vectorbundle over Ma' "'·"·P· It consists of the trivial pieces X K" 
for each nice selection a glued together by the identifications 

iff «X=y in M"'m,n,p», i. e. (Fa(X),G.(x),H,.(x))5 =(fp(y),Gft(Y), 
H~ (y) with S = R <Fa (x), Ga (.t)p- 1, and Sv = w. The morphisms 

now define the required family of linear dynamical systems in the sense 
of 5.1 above. We denote the family just constructed by .ru. 

5.3. Universality properties of ..E". There is an obvious notion of 
.pull back, i. e. an obvious way of associating a family tp* r over V' 

to a d. a. morphism <fa: V' ~ V and a family .r over V, cf. [5, 6]. There 
is an equally obvious notion of isomorphism of families over V. This 
defines a contra variant functor CJ: d. a. varieties~ Set. As expected 
this functor is representable by (M"' "'·"·P , l'"). I. e., for every ar family 
I of linear dynamical systems over a d. a. variety V there is a unique 
d. a. morphism <P: V ~Ma' m.n.p such that <P* ..E" ::::::I over V. 

In case ko is a field of rational or meromorphic functions over R or C 
the family ..E" over M"'m,n,p (k-0) is also universal for the hybrid families 
briefly mentioned at the end of 5.1 above (provided one gives M 0 ' m,n.p (ko) 
the appropriate topology of a function space of R-or C-valued functions). 
The proofs ,~f :di :1Ks<: facts do not really differ from those given in 
[5, 6] for th·~ !'On-time-varying case. 
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