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INVARIANTS, CANONICAL FORMS AND MODULI 
FOR TIME VARYING LINEAR DYNAMICAL SYSTEMS 

M. HAZEWINKEL 

Abstract. We consider time variable linear dynamical systems x = Fx + Gu, 
y=Hx,x(t)ER11,y(t)ERP,u(t)ERm, where the F,G and Hare matrices of the 
appropriate sizes with time variable coefficients. A state space basis change 

changes the triple of matrices (F, G, H) into (SFS-1 + SS-1, SG, HS-1). Now 
assume that the coefficients of F, G, H and S all belong to some field like e. g. 
the field of rational functions over R or C or the field of complex or real 
meromorphic functions. Then most of the results concerning invariants, canonical 
forms and moduli of our previous papers « Moduli and canonical forms for 
linear dynamical systems II, III » go through in these time variable cases. The 
proper setting for studying these questions appears to be differential algebraic 
geometry. And in fact the results referred to will be established for equations 
ox = Fx + Gu, y =Hx, where the F, G, H are matrices with coefficients in some 
arbitrary (ordinary) differential field with differentiation operator O· 

1. Introduction. 

Consider a linear, time varying, dynamical system 

x=Fx+Gu, y=Hx (1.1) 

where x (t)ERn, y (t)ERP, u (t)ERm and where F, G, H are matrices of 
the appropriate sizes with coefficients which may depend on t. To fix 
the ideas suppose for example that the coefficients of F, G, H all belong 
to the field of rational functions <;>Ver R. Then it makes perfect sense to 

consider base changes of the type ; = Sx where S is an n X n matrix also 
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with coefficients in R (t) with nonzero determinant. Such a base change 
transforms the equations (1.1) into 

A . ~ .,,..... 
x=(SFs-1+ss-1) x+SGu, y=HS-1 x (1.2) 

and at least in the algebraic sense one can ask about invariants, moduli 
and canonical forms just as in the case of non time varying systems ( [3-6] ). 

Solutions to equations like ( 1.1) with u (t) ER (t) given, certainly 
exist as vectors with coefficients in some differential extension field 
(cf. [11], [9] or [12]). They also exist as «functions» albeit as 
multiple valued functions with poles and braching points if F, G or 
u (t) have poles, cf. e. g. [7]. 

The main purpose of the present note is to point out that the results 
of [5, 6] also go through in a time variable setting like the one discussed 
just above. In fact more generally these results go through for systems 

ox=Fx+Gu, y=Hx (1.3) 

where the F, G, H are matrices with coefficients in any differential 
field k with differentiation operator o (for a definition cf. 2.1 below). 
Examples of such differential fields are 

d 
(a) k=R (t) or C (t), o= dt 

(b) k= real meromorphic functions or complex meromorphic 

functions, o=; 

(c) Subfields of (b), e. g. k=R (sin t, cost). 

Thus when one specializes the results for abstract differential fields 
obtained below to one of these cases one obtains results for « real life » 

dynamical systems with time variable coefficients. 
The techniques used to obtain the results below are basically the 

same as in [5, 6]. Most of the (minor) difficulties are caused by the 
fact that differential algebraic geometry is more difficult and certainly 
far less developed than ordinary algebraic geometry. 
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2. Preliminaries concerning differential algebra and differential algebraic 
geometry. 

2.1. Differential rings, fields, .... Let R be a commutative ring with 
unit element. A derivation on R is an additive operator o: R ~ R such 
that o (ab)=o (a) b+ao (b) for all a, b€R. A differential ring is a ring 
R together with a derivation operator o. A differential field is a differen
tial ring whose underlying ring is a field. Examples of differential fields 
were mentioned in the introduction. 

Let (k, o) be a differential field. Let Xi. ... , Xn; X1C1>, ... , Xn<1l; 
X1(2), ... , Xnc 2>; ... be indeterminates over k. Consider the ring of poly-
nomials R = k [X1, ... , Xn; X1(1), ... , Xnc1>; ... ] • Define oXpl = xp+i>, 
i=O, 1, 2, ... ; j= 1, ... , n, where X/0l=Xi, j= 1, ... , n. There is precisely 
one derivation o on R which extends o on k and which behaves on the 
X/il as defined (cf. [1], Ch. 5, § 9, prop. 4). The ring R with this 
derivation is called the ring of differential polynomials in X1, ... , Xn 
over k and it is denoted k {X1, ... , X,,}. Roughly a differential polynomial 
is therefore a polynomial in the X1, ... , Xn and their derivatives. The 
quotient field of k {X1, ... , Xn} is denoted k (X1, ... , Xn). There is a 
unique derivation on k (X1, ... , Xn) extending the one on k{X1, ... , Xn}, 
viz. the obvious one, o (j/g)=g-1 (of)-f (og) g-2• 

A differential ideal I in a differential ring (R, o) is an ideal I of R 
such that of c I. If Ac R is a subset then [A] c R denotes the differential 
ideal generated by A. I. e. [A] is the ordinary ideal generated by the 
oi f, f€A, i=O, 1, 2, .... 

2.2. Affine differential algebraic varieties. Let k be a differential 
field. Let K be a universal differential field extension of k. Cf. [9], 
Oh. III, § 7 for this notion; roughly K is a large enough field to contain 
all finitely generated extensions of k and finitely generated separable 
extensions of these. If char (k) = 0 we can take K to be di:fferentiably 
algebraically closed. (I. e. such that every differential polynomial over 
K has a solution in K, cf. [ 12]; if char (k) > 0 there are difficulties 
concerning the existence of algebraic closures). 

Let I be a differential ideal in K {X1, ... , Xn}. We define V (I)= 
={(x1, ... ,xn)€Knjf(x)=O for all/€/}. Inversely, given a subset 
YcK" we define I (Y)={f€K {Xi. ... , Xn} If (y)=O all yeY}. The 
subsets of the form V (I) c K" are said to be di:fferentiably closed. This 
defines a topology on K" and K" with this topology is called affine 
differential space of dimension n. The closed sets V (I) with the induced 
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topology are the affine differential algebraic varieties. We shall from 
now on use the abbreviation d. a. for differential algebraic. The affine 
d. a. variety V is defined over k if it is of the form V = V ([A]) where 
A is a set of elements of k { X1, ... , Xn} and [A] is the differential ideal 
in K {Xi, ... , Xn} generated by A. A differential open subset U of an 
affine d. a. variety V over k is defined over k if V\U is defined over k. 

The mappings I~ V (/), Y 1--7 I (Y) set up a bijective correspon
dence between perfect ideals of K { X1, ... , Xn} and differential closed 
sets in Kn. By the Ritt-Raudenbush basis t'heorem (cf. [9], Ch. 3, § 4) 
every perfect ideal in K {X,, ... , X,,} is generated (differentially) by 
finitely many elements if char (K) = 0 or more generally if K is perfect. 

2.3. Morphisms between affine d. a. varieties. Let V be an affine 
d. a. variety and let I= I (V) be its ideal of differential polynomials 
which are zero on V. We write K { V} for the differential quotient ring 
K {X1, ... , Xn}/I (V). (There is a unique derivation o on K {V} compa
tible with K {X1, ... , X,,}-+ K {V} because I (V) is closed under o). 
The ring K {V} may have zero divisors. We write K (V) for its full 
quotient ring. The elements of K {V} are called the differential polynomial 
functions on V and the elements of K ( V) the differential rational 
functions on V. Let f EK { V}, t'hen f indeed defines a function V -+ K 

as follows. Let xE V, choose a lift fcX1, ... , Xn) EK { X1, ... , Xn} of f for 

K { Xi, ... , Xn} -+ K { V}; now define f (x) = f (x1, ... , Xn). This is well
defined. Now let xEV and /EK (V). We say that f is defined at xEV 
if there exist g, hEK {V} such that f=g/h in K (V) and h (x)=j=O. 
If f is defined at x, then f (x)=g (x)/h (x) is welldefined. Let dom (/) 
be the set of xEV such that j is defined at x. Then dom (/) is a differential 
open subset of V and f defines a function dom (f)-+ K, which in tum 
determines j uniquely. NB, as in ordinary algebraic geometry, given 

· f EK( V) it may not be possible to find a representation f =g/ h,g,heK{ V}, 
such that h (x) =l= 0 for all x E dom (/); as a rule g, h may have to depend 
on x. 

Let V be defined over k. A differential polynomial /EK {V} is 
defined over k if it is in the image of k {X1, ... , Xn} in K {V} under 
K {X1, .. ., Xn}-+ K { V}. The ring of differential polynomial functions 
over k is denoted k { V}. Its full quotient ring is denoted k ( V) and the 
elements of k ( V) c K ( V) are the differential rational functions on V 
defined over k. 

Now let VicK" and V2cKm be two affine d. a. varieties. Let 
U;cV;, i= 1, 2, be differential open subsets. A morphism <P: 1/1-+ U2 
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is a mapx~cp(x)=(\D1(x), ... ,</Jm(x)) such that ef>(x)eU2 for all xeU1 
and such that the </J; are rational differential functions with dom (</Ji):::> U1 
for all i = 1, ... , m. The morphism </> is an isomorphism if there is a 
morphism c/;: Uz~ u, such that cf;cp=id, <f;c/J=id. Let Vi, V2, U,, U2 be 
defined over k, then ef> is said to be defined over k if all the ef>; are 
defined over k. 

Warning: Every element of K { V} defines a morphism V ~ K. 
But in general the set of morphism V ~ K is larger than K { V} (in 
contrast to the situation in ordinary algebraic geometry). E. g., if 
V=V([ox-x])cK, then f=(x-1)-1 defines a morphism V~K but 
this morphism is not equal to any of the morphism defined by the 
elements of K { V}. 

More material concerning affine d. a. varieties can be found in [2] 
and [9]. 

2.4. d. a. varieties. A d. a. variety V is a Ti-topological space V for 
which there exists an open covering { U; I ie/} together with embeddings 
rfa;: U; ~ Kn<il such that 

(i) </J; (U;) c K"m is an affine d. a. variety in KnCil 

(ii) </J; </J;- 1: </>; (U; n U;) ~ U; n U; ~ <f>; (U; n U;) is an isomor

phism of open differential subsets (in the sense of 2.3 above). 
A d. a. variety is defined over k if all the affine d. a. varieties, 

differential open subsets and morphisms involved in its definition are 
defined over k. 

For example let V be an affine d. a. variety and U an open differential 
subset of V. 'J1hen U is a union of open differential subsets Vt= 
={xeV If (x)=!=O} where f runs through the elements of K {V} which 
are zero on V\U. Let I = I (V) cK {X1, ... , Xn} and let V/ = 
={x1, ... , Xn+1)€Kn+ 1 1 g (X1, ... , Xn)=O for all gel and f (Xi, ••. ,Xn) Xn+i=l }. 

Then V/ is an affine d. a. variety and (x1,. .. , Xn) ~ (x1, ... , Xn, f (X1, ••• , Xn)) 

is an isomorphism Vt:::::: V/. Thus we see that a differential open subset 
of an affine d. a. variety is a d. a. variety in the sense of the definition 
above. More generally an open subset of a d. a. variety is a d. a. variety. 
A d. a. variety V has a basis of open affine d. a. subvarieties (by the 
argument given above). 

Let V, W be d. a. varieties. A morphism ifJ: V ~ W is a continuous 
map such that for every two affine d. a. subvarieties UcV, U'cW, 
ifJ: Un <P-' (U') ~ U' is a morphism of differential open subsets of 
affine d. a. varieties in the sense of 2.3 above. 
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2.5. d. a. groups and differential invariants. The category of d. a. 
varieties defined just above has finite products and a final object (the 
one point d. a. variety). A d. a. group is now a group object in this 
category. I. e. it is a d. a. variety G equipped with a multiplication 
morphism m: GxG~G, an inverses morphism i: G-+G and an 
element eEG such that m, i and e make G a group in the usual sense 
of the word. Some results on affine d. a. groups can be found in [2] . 

An action of a d. a. group G on a d. a. variety V is a morphism 
GXV-+ V such that (with the obvious notations) (g1 g1) x=g1 (g2 x), 
ex=x for all g1, gzEG, xEV. A differential invariant of an action of 
G on V is a differential rational function f on V such that f (gx) = f (x) 
for all xEV, gEG such that f is defined for both x and gx. This definition 
agrees of course with the one of S. Lie in [ 10], modulo the change 
caused by the algebraic geometric setting of the present note. 

2.6. d. a. vectorbundles. An n-dimensional d. a. vectorbundle over 
a d. a. variety V is a morphism of d. a. varieties :n:: E-+ V such that 
there exists an open covering { U; I i EI} of V by affine open d. a. 
subvarieties and isomorphisms </J;: :n:-1 (U;)--:+ U;XKn such that 

(i) pr1 o </J; = :n: for all i (where pr1: U; X Kn-+ U; is the canonical 
projection into the first factor 

(ii) </J; </J;-1: (U; n U;) x Kn-+ :n:- 1 (U; n U;)-+ (U; n U;) XKn is a 
morphism of the form (x, v) 1--l> (x, c/J;; (x) v), where c/J;; is a d. a. morphism 
U; n U;-+ G Ln into the d. a. group of invertible n X n matrices. The d. a. 
vectorbundle :n:: E-+ V is defined over k if all d. a. varieties and 
morphisms involved in its definition are defined over k. 

2.7. Rational points of a d. a. variety. Let VcKn be an affine d. a. 
variety defined over k, then V (k), the set of k-rational points of V, is 
defined as V (k)={(x1, ... , Xn)EVcKn J X;Ek all i}. For an arbitrary d. a. 
variety V over k, V (k) is defined as V (k) = U U; (k), where { U;, ief} 
is an open covering of V by affine d. a. subvarieties defined over k. 

3. The d. a. quotient variety Mar m,n,p=U' m,n,p/GLn. Invariants. 

3.1. The setting. Let ko be any differential field with universal 
extension K. For example ko may be the field of rational or meromorphic 

functions over R or C, with o= ~. We consider equations 
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ox=Fx+Gu, y=Hx (3.1.1) 

with x (t)ekn, u (t)ekm, y (t)ekP and F, G, H matrices of the appropriate 
sizes with coefficients in k, where k is any intermediate differential 

field between ko and K. As a rule we shall write x instead of ox. 
Let Lm,n,p be the d. a. variety of all triples of matrices (F, G, H) 

of sizes nxn, nxm, pXn respectively. Let GLn be the d. a. group of 
all nxn invertible matrices. We define a d. a. action of GLn on Lm,n,p by 

GLn X Lm,n,p ~ Lm,n,p, (3.1.2) 

(S, (F, G, H)) ~ (F, G, H)8 = (SFs-1 +ss-1, SG, HS-1). 

(Note that this is indeed a GLn-action in that (F, G, H)1 = (F, G, H) and 

((F, G, H)8)T =(SFs-1+ss-1, SG, Hs-1?= 

(TSFS-1 r-1+rss-·1 r-1+ TT-1, TSG, Hs-1 r-1)=(F, G, H)Ts 

because 

Of course this action of G Ln on Lm,n,p corresponds to ~he transformation 
x~sx in state space in (3.1.1). 

3.2. Algebraically reachable and algebraically observable systems. 
Let (F, G, H)eLm,n,p· 

We define the nX(n+1) m matrix R (F, G) by 

R (F, G)=(G (0) G (1) ••• G (n)) (3.2.1) 

where G (i) is inductively defined by 

G(O)=G, G(i)=FG(i-1)-G(i-1), i=t,2, ... ,n (3.2.2) 

More or less dually the matrix Q (F, H) is defined as 

Q(F,H)T=(H(O)T H(l)T ... H(n)T) (3.2.3) 

with 

H(O)=H, H(i)=H(i-l)F+H(i-1), i=1,2,. .. ,n (3.2.4) 

where the symbol T denotes «transposes». (Note the sign difference). 
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The triple (F, G, H) is said to be algebraically reachable (abbreviated 
« ar ») if rank (R (F, G)) =n; the triple {F, G, H) is said to be algebrai
cally observable (abbreviated «ao » if rank (Q (F, H)) =n. These two 
conditions define open d. a. sub varieties of Lm,n,p which we denote L ar m,n,p, 
Laa m,n.p· In addition we define 

L IH',CSO -iar n Lao 
na1 n, JI- m,n,p m,n,p• 

Of course the notions « algebraically reachable » and « algebraically 
observable » as defined above correspond to the usual geometric notions 
of reachability and observability in the cases where k is a field of rational 
or meromorphic functions over R or C. Indeed the system (F, G, H) is 
ao iff Q (F,H) has rank n. Because of the nature of the functions involved 
this happens iff Q (F (t), H (t)) has rank n pointwise in t for all t except 
possibly a set of measure zero and Vhis in tum means that (F, G, H) is 
completely observable in the usual geometric sense (cf. [14], corollary 
8.8). Dually one has that algebraically reachable corresponds to comple
tely reachable in the geometric sense for such differentiable fields (NB in 
[ 14] « determinable » is used for « observable »). 

3.3. Nice selections. Let /n,m={(O, 1), ... , (0, m); (1, 1), ... , (1, m); ... 
' ... ; (n, 1), ... , (n, m) }, lexicographically ordered. We use /n,m to label 
the columns of the matrices R (F, G) by assigning the label (i, j) to 
the j-th column o.f G (i).A subset aC/n,rn is nice if (i, j)Ea ==> (i-1, j)Ea 
for all i, j. A nice subset of size n is called a nice selection. Given a nice 
selection a a successor index of a is an element (i, j)E/n,m\a such that 
a U { (i, j)} is nice. For every j E{ 1, ... , m} and nice selection a there 
is precisely one successor index (i, j') of a such that j' = j. This successor 
index will be denoted s (a, j). 

3.4. Nice selection lemma. Let (F, G, H)eLa'm,n,p· Then there is a 
nice selection ac/n.m such that <let (R (F, G)aH=O. (Here R (F, G)a is 
the square n X n matrix obtained from R (F, G) by removing all columns 
whose index is not in a). 

PROOF. Let P be a nice subset of /n,m, which is maximal with respect 
to the property that all the columns of R (F, G)p are linearly independent. 
We shall show that P then has n elements which proves the lemma. 

Renumbering the columns of G if necessary we can assume that p 
is of the form 

P={(O, 1), ... , (n1, 1)} U {(O, 2), ... , (n2,2)} U ... U {(O, s), ... , (n 5 , s)} 
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We shall now show that every column of R (F, G) can be written as a 
linear combination of the columns of R (F, G)p. By the maximality of /3 
this holds for the columns with indices (n1+l, 1),. . ., (ns+1,s),(0,s+l),. .. 
... , (0, m). Assume with induction that the statement has been proved for 
all columns with indices (i,j) with i:'.5:.ni+k where we take n;=-1 for 
j=s+ 1, ... , m. Let (i, j)E],,, 111 be such that i=ni+k+ 1. Now R (F, G)u.i> 
is the j-th column of G (i). Hence 

R (F, G)u.n=FR (F, G)(i-1,j)-R (F, G) 0 (i-l,Jl. 

Now by induction R (F, G)(i-1.n is a linear combination of the columns 
of R (F, G)f!. Say 

Then 

R (F, G)(i-1,j) = J: G(1t,v) R (F, G)(u,v) • 
(u, V)E fJ 

R (F, G)(i,j) = l: G(u,v) R (F, G)cu+l,v) - l: a(u,v) R (F, G)u,v • 
(U, v) E fJ (u, 1') E fJ 

As we have seen that the R (F, G)cu+l,v) for (u, v) E(J are linear combi
nations of the columns of R (F, G)p it follows that also R (F, G)u.n is a 
linear combination of the columns of R (F, G)p . This finishes the 
induction. Hence rank (R (F, G)p) = rank (R (F, G)) = n, which proves 
that (3 has n elements. 

3.5. The partial quotients Ua/GL,,. We now proceed as in [5, 6]. 
First note that 

R (SFs- 1+ss- 1, G)=SR (F, G) (3.5.1) 

(because (SFS-1 + ss- 1) (SG (i)) - (SG (i)) . = SFG (i) + SG (i) -

-SG (i)-SG (i)=S (FG (i)-G (i))). Let a be a nice selection and let 
x=(x1,. .. ,Xm)EK"m=K"X ... XK". Using (3.5.1) one now shows as in 
[5, 6] that there exists precisely one triple (F, G, H)ELarm,n,p such that 
R (F, G).=I,,, R (F, G)sca.i)=X; for i= 1, ... , m. It follows that if 

Va={ (F, G, H)ELm,n,p j det (R (F, G)a)=!=O} 

then 

For each nice selection a and x=(y, z)EKmn+np let r/Ja (x)=(Fa (x), Ga (x), 
Ha (x)) be the unique triple such that R (Fa (x), Ga (x))a=l,,, R (Fa (x), 
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Ga(X))sca,il is the j-th component of y=(y1, ... ,ym)E(Kn)m, and such 
that Ha (x):::z. 

3.6. The d. a. quotient variety Mar m.n.v· We now construct a d. a. 
variety Ma'm,n,p as follows; again as in [6]. For each nice selection a let 
Va::: Knm x K"P and let 

Vu.p=={xEVa I det (R (Fa (x), Ga (x))p)=\=O}. 

We now glue the Va together by means of the isomorphisms cf;ap: Va~Vpa, 
which are defined by 

c/Jap (x)::: y {:::} (Pp (y), Gp (y), Hp (y)) =(Fa (x), Ga (x), Ha (x)) 5 (3.6.1) 

where S=R (Fa (x), Ga (x))p-1• This defines us a d. a. variety provided 
we can show that M"' m,n.v is T1. Note that by construction M"' m,n,p= 
=L"'m,n,p/GLn, in any case as sets. 

Now let Gn,<n+1Jm be the d. a. Grassmann variety of n-planes in 
(n+l) m space. Then by (3.5.1), R induces a map 

g: Mar m,n,p ~ Gn,(n+l)m • (3.6.2) 

One now also defines h: 

La'm,n,p~K<n+l)•mp by h (F, G, H)=Q (F, H) R (F, G). 

Now 

Q (SFs-1+ss-1, HS- 1)=Q (F, H) s-1 (3.6.3) 

(because (H (i) s-1) (SFS-1 + ss-1) + (H (i) s-1!) ' = H (1) Fs-1 :+ 
+H(i) s-1 ss-1+H (i) s-1-H (i) s-1 ss-1=H (i+ 1) s-1). Combining this 

with (3.5.1) we see that h ((F, G, H)5 ) =h (F, G, H), so that h induces 
a map 

(3.6.4) 

One now shows as in [6] that (g, h): Mar m,n.v ~ Gn.cn+om X K (n+1l1 "'1 

is injective which proves that Mar m,n,p is T1 and hence a d. a. variety. 
The maps g and h are d. a. morphisms (defined over ko). 

3. 7. COROLLARY. Mar m,n,p is an irreducible quasi projective d. a. 
variety. It is the quotient of iar m,n,p by GLn in tthe category of d. a. 
varieties. 
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One also verifies with no trouble that M0 ' m,n,p in addition enjoys 
the pleasant quotient property that Marm.n,p (k)=L"'m,n,p (k)/GLn (k) for 
all intermediate differential fields kockcK. 

3.8. The subvariety M:,· ~~ 1,. Let n: rar m,n,p--+- Mar m,n,p be the natural 

projection. 
Then MIJT, ao the image of L t!.r, ao is an open d a subvariety of m,n,p' m,n,p' • • 

Marm,n,p and one shows as in [6] that the morphism h of (3.6.4) above is 
injective on M"'• a,p•. Its image is readily described. An (n + 1) X (n + 1) m,n 

block matrix wit'h blocks of size p X m 

(

Ao.o 

sit.= A~o 

An,O 

Ao.1 Ao,n 

An,r. 

is of the form h (F, G, H) for some triple (F, G, H) e L':;;,.~; if and only 
if the following two conditions (3.8.1) - (3.8.2) hold. 

rank (sll.)=n= rank (sit.'), (3.8.1) 

where sit.' is the matrix obtained from sit. by removing the last column 
and row of blocks. 

A;+1.i-Ai.i+1=Ai,i for all i,je{O, 1, ... ,n-1}. (3.8.2) 

3.9. COROLLARY. M:;:,; is a quasi-affine d. a. variety. 

3.10. COROLLARY. Every differential invariant of GL,, acting on 
Lm,n,p is a rational function in the entries of the matrix h (F, G, H) = 
=Q (F, H) R (F, G) and their derivatives. 

3 .11. REMARKS. Note that Lm,n,p, Mar m,n,p, M!:-,n~; are defined by 
polynomials involving no derivatives, and hence are ordinary algebraic 
varieties reinterpreted within the context of d. a. varieties. 

On the other hand the definitions of Larm,n,p, L:!°;.:; do involve 
derivatives and so do the projection map n: £4' m,n,p--+- Mar m,n,p, the 
embedding h: M11'•"0 __..,, K(11+1l•mp and hence the description of M"'·"0 

~.P ~~ 

as a quasi affine d. a. subvariety of K<n+i>•mp. 

All the d. a. varieties and morphisms of (3.1) - (3.10) above are 
defined over ko. 
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4. Canonical forms. 

We can be brief about the matter of existence or nonexistence of 
global continuous canonical forms. On the one 1hand there exist of 
course the local canonical forms C#a : Va~ Va for every nice selection 
a defined by 

c*" (F, G, H)=(F, G, H)5 , S=R (F, G)a- 1• (4.1) 

On the other hand the same examples and constructions as used in 
[5.6] show that global continuous canonical forms on v:;,;::,~ exist if 
and only if m = 1 or p = 1. This is not immediate from the corresponding 
result in the non-time-varying case, because, a priori, the canonical 
form of a non-time-varying linear system could be time-varying in the 
present setting. 

There are similar analogues of all the other results of [5, 6] 
pertaining to canonical forms. E. g., there is a continuous canonical 
form on Larm,n,p (resp. U 0 m,n.p) if and only if m= 1 (resp. p= 1). 

Let us also note that U' m,n.p ~Mar m,n,p is a locally trivial principal 
d. a. G Ln fibre bundle over Mar m.n,p in complete analogy with the 
situation in the non-time-varying case. 

5. A universal family of linear time-varying systems. 

As in the non-time-varying case there is a natural universal family 
of linear dynamical systems. Here, however, the definitions of [5, 6] 

must be recast, simply because the transformation rule F ~ SFs- 1 + ss- 1 

does not correspond to the kind of transformations one encounters for 
an endomorphism of a vectorbundle in terms of varying local trivia
lizations of that vector bundle. 

5.1. DEFINITION. A family I of linear dynamical systems parametrized 
by a d. a. variety V consists of 

(i) a d. a. vectorbundle n: E ~ V 

(ii) for every open V c V over which E is trivial and every 

isomorphism of d. a. vectorbundles rf;: n-1 (E) ~ V x K" (trivialization) 
a morphism f (1;, U): V ~ Lm,n,p, such that the following condition holds 

(iii) let r/;1 r/;2-1: (V1 n U2) XK" ~ n-1 (Vi n V2) ~ W1 n U2) x K" 
be given by (x, v) ~ (x, X12 (x) v) for x12: V1 n V2 ~ GLm then 
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f(</;i,U2)(x)r.12 ("')=f(t/J1,U1)(x) for all xEU1nV2. 

It obviously sufficies to specify the f ( tf;, U) for all Vi of some open 
covering { U; I i € f} of V and for one particular trivialization <f.;; for 
each U; . The family is said to be defined over ko if all the morphisms and 
varieties involved are defined over ko. The family L is said to be ar 
if all t'he f (cp, U) map U into L"rm.n,pCLm,n,p. 

In case ko is a differential field of rational or meromorphic functions 
over R or C one can more generally define a rather hybrid sort of 
object: families of rational or meromorphic dynamical systems parame
trized by a topological space V. The definition is obvious. 

5.2. The universal example. As in [5,6] we now construct a canonical 
n-vectorbundle over Mar m,n,p· It consists of the trivial pieces Va X Kn 
for each nice selection a glued together by the identifications 

VaXK"a(x, v) ~-+-~ (y, w)EVpXK" 

iff « x=y in M"'m,n,p », i. e. (Fa (x), Ga (X), Ha (x))s=(Fp (y), Gp (y), 
Hp (y) with S=R (Fa (x), Ga (x)p- 1, and Sv=w. The morphisms 

c/Ja: Va~ Larm.n,p, X ~(Fa (X), Ga (x), Ha (x)) 

now define the required family of linear dynamical systems in the sense 
of 5.1 above. We denote the family just constructed by xu. 

5.3. Universality properties of xu. There is an obvious notion of 
pull back, i. e. an obvious way of associating a family </J* I over V' 
to a d. a. morphism </J: V' ~ V and a family I over V, cf. [5, 6]. There 
is an equally obvious notion of isomorphism of families over V. This 
defines a contravariant functor g:: d. a. varieties ~ Set. As expected 
this functor is representable by (Mar m,n,p , I"). I. e., for every ar family 
I of linear dynamical systems over a d. a. variety V there is a unique 
d. a. morphism </>: V ~ Marm.n.p such that </J* I"=L over V. 

In case ko is a field of rational or meromorphic functions over R or C 
the family xu over Ma'm,n.p (ko) is also universal for the hybrid families 
briefly mentioned at ~he end of 5 .1 above (provided one gives Mar m,n.p (ko) 
the appropriate topology of a function space of R-or C-valued functions). 
The proofs of all these facts do not really differ from those given in 
[5, 6) for the non-time-varying case. 
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