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THE UBIQUITY OF COXETER-DYNKIN DIAGRAMS 

(AN INTRODUCTION TO THE A-D-E PROBLEM) 

M. HAZEWINKEL, W. HESSELINK, D. SIERSMA, F.D. VELDKAMP 

1. PREFACE AND APOL03Y 

The problem of the ubiquity of the Dynkin-diagrams 1\• Dk, Ek was 

formulated by V.I. ARNOLD as problem VIII in [52] as follows. 

The A-D-E classifications. The Coxeter-Dynkin graphs 1\• Dk' Ek 

appear in many independent classification theorems. For instance 

(a) classification of the platonic solids (or finite orthogonal 

groups in euclidean 3-space), 

(b) classification of the categories of linear spaces and !llaps 

{representations of quivers), 

(c) classification of the singularities of algebraic hypersurfaces, 

with a definite intersection form of the neighboring smooth fibre, 

(d) classification of the critical points of functions having no 

moduli, 

(e) classification of the Coxeter groups generated by reflections, or, 

of Weyl groups with roots of equal length. 

The problem is to find the common origin of all the A-D-E 

classification theorems and to substitute a priori proofs to a poste­

riori verifications of the parallelism of the classifications. 

During the 13th Dutch Mathematical congress on April 6 and 7, 

1977 in Rotterdam we organized a series of lectures designed to 

acquaint the participants with the problem mentioned above. More 

specifically we aimed to indicate how one obtains Coxeter-Dynkin 

diagrams in some of the various areas of mathematics listed in the 

problem. The text below is essentially a printed version of the talks 
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given fn this series of lectures with but little editing, and with 

only a few extra comments, mainly of a bibliographical nature. Thus 

the text below is an introduction to the problem stated above; it is 

far too incomplete to constitute a survey of the field and it does 

not contain new results. The oral lectures corresponding to sections 

2, 3, 4 were given by F.D. Veldkamp, the material of section 5 was 

presented by W. Hesselink, that of section 6 by M. Hazewinkel and 

that of section 7 by D. Siersma. The final redaction of this text was 

done by M. Hazewinkel. 

2. COXETER DIAGRAMS AND GROUPS OF REFLECTIONS 

2.1. Coxeter diagrams 

A Coxeter diagram is a graph will all its edges labelled by an 

element of {3,4,5, ... } u {00 }. As a rule the label 3 is suppressed. 

Thus one has for example the Coxeter diagrams 

m 

• 
(a} (b} (c) , n-1 vertices (d} 

2.2. Group associated to a Coxeter diagram 

Let r be a Coxeter diagram. Let S be its set of vertices. For 

all s,s' ES, s F s', define m(s,s'} 2 if there is no edge connecting 

sands', and m(s,s'} =label of edge connecting sands', otherwise. 

We now associate to r the group w(r} generated by the symbols s E S 
. m(s s') 2 subject to the relations (ss'} ' = 1, s = 1 for all s,s' Es, 

s ~ s'. If r is the disconnected union of two subgraphs r
1 

and r
2

, 

then W(r) is the direct product w(r 1} x W(r 2), because in this case 

s 1s
2 

= s 2s 1 for all s 1 E r
1

, s 2 E r 2 . 
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2.3. EXAMPLES. If f is the graph (a) of 2.1 above then W(f) 

= '0../(2) x '0..(2), the Klein fourgroup. If f is the graph (b) of 2.1 

then W(f) is the semidirect product 'D../ (2) xs '.iZ, where 'D../ (2) acts 
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on Z!: as ox = -x, where o is the generator of 'U./ (2); the isomorphism 

is induced by s
1 

>---+- (o,O), s
2 

>---+ (o,1). Similarly W(f) is the dihedral 

group 'TL.
2 xs 'D../ (m) if f is the diagram (d) of 2 .1. Finally if f is 

diagram (c) of 2.1 then W(f) =Sn, the permutation group on n letters. 

Here the isomorphism is induced by mapping the i-th vertex of r to the 

transposition (i,i+l) E Sn. (Cf. [8], Ch.4, §1, exercise 4 or §2.4, 

example, for a proof.) 

2.4. THEOREM. Let r be a connected Coxeter diagram. Then W(f) is 

finite if and only if r is one of the following Coxeter diagrams: 

AJI, (JI, ;;.: vertices) 

BJ/, . 4 - (JI, ;;.: 2 vertices) 

DJ/, 

E6 • I -< (JI, ;;.: 4 vertices) 

• 

E7 • I 
ES • ! 
F4 

4 

G2 
6 -

H3 
5 

H4 
5 

(m = 5 or 7 ~ m < "') • 

2.5. Bilinear form associated to r 

Let r be a coxeter diagram with vertex set S. For each s,s' E S, 

let b s,s' 
m(s,s') 

-1 be the real number b , = - cos(m(s,s') n), where we take s,s 
1 ifs= s'. Let Ebe the direct sum vector space E = lR(S) 

and let Br be the symmetric bilinear form on E defined by the matrix 

(b I)• s,s 
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2.6. THEOREM. The group W(f) is finite if and only if Br is positive 

nondegenerate. 

For a proof cf. [BJ, Ch.V, §4.8. Given this theorem (whose proof 

uses the realization of W(f) as a group of reflections which will be 

discussed below), theorem 2.4 follows readily (cf. [BJ, eh.VI, §4, 

theoreme 1). E.g. B,._.___. is positive definite iff n $ 5. 
n 

2.7. Realization of W(f) 

Let r, S, Ebe as in 2.5 above. Let GLfE) be the group of real 

vector space automorphisms of E. To each s E S we associate the 

reflection 

where e is the canonical basis vector in E 
s 

S E S. 

1R(S) corresponding to 

This induces an injective embedding W(f) + GL(E), and, incide.[ltal­

ly shows that the map i: S 3 s i-+ generator of W(f) corresponding to 

s, is injective; the pair (W(f),i(S)) is a Coxeter system in the sense 

of [BJ, eh.IV, §1. Cf. [BJ, Ch.v, §4 for all this. 

Let I' be one of the Coxeter diagrams listed in theorem 2.4. The 
£ reflecting hyperplanes of the as then cut up lR into connected pieces, 

the chambers. Taking the intersection of these with the unit sphere 

s£-l c lR we find a partition of s£-l into spherical simplices. In the 

case of dihedral group belonging to I 2 (3) = A2 the picture is (£= 2). 
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2.8. The crystallographic condition 

Let W(f) be realized as a group of reflections as in 2.7 above. 

Then the crystallographic condition says that there is a lattice 

~~ c JR~ which is invariant under W(f). The groups of type A,B,D,E, 

F,G of the list in theorem 2.4 satisfy this condition, but the groups 

of type Hand I 2 (m), m = 5, or m ~ 7 do not satisfy this condition. 

This condition has, of course, to do with the crystallographic symmetry 

groups (BRAVAIS, MOBIUS, HESSEL, 1830-1840; cf. [19], 9.3 and 4.2). 

2.9. Notational remark 

Instead of ~ in a Coxeter diagram one also writes e:=-. and 
6 

instead of 11--e one also uses CIE39. Thus • • is an alternative 

version of F
4

. 

3. LIE GROUPS, LIE ALGEBRAS AND DYNKIN-DIAGRAMS 

3.1. Lie algebras 

Let k be a field, e.g. k = IR, r. A finite dimensional Lie algebra 

over k is a finite dimensional vector s~ace L over k equipped with a 

bilinear multiplication L x L-+ L, (x,y)--+ [x,y], such that [x,x]=O 

and [x,[y,z]] + [y,[z,x]] + [z,[x,y]] = 0 for all x,y,z E L. Then, of 

course, also [x,y] = -[y,x] for all x,y E L. An ideal ~ c L is a sub­

vectorspace such that [x,y] E a for all x E L, y E ~; a subalgebra of 

L is a subvectorspace ~ such that [x,y] E h for all x,y E h. A Lie 

algebra L is called abelian if [x,y] = 0 for all x,y E L. (Then every 

subvectorspace is an ideal.) 

A Lie algebra L is simple if it is not abelian and if L and {O} 

are the only ideals of L. If a is an ideal in a Lie algebra L then ~ 

is also a Lie algebra and L/~ inherits a Lie algebra structure from L. 

Thus the simple Lie algebras appear as the natural building blocks for 

all Lie algebras. Below we shall outline the classification of the 

simple Lie algebras over r, cf. 3.3 for the result. 

One of the main reasons for the importance of Lie algebras in 

mathematics and physics is their intimate connection with Lie groups, 
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cf. 3.13 below. A basis of the Lie algebra L(G) of a Lie group G is, 

in physicists terms, a set of infinitesimal generators for G. 

3.2. EXAMPLE. Let g~ {k) be the vector space of all nxn matrices over 
n 

k. We define a bracket multiplication on gln{k) by [x,Y] = XY - YX. 

This makes gtn(k) a Lie algebra. Let stn(k) be the subvector space of 

all matrices X €. gtn{k) with trace {X) = 0. Then stn(k) is an ideal in 

gin(k). The quotient is the abelian Lie algebra of dimension 1. 

Leth be the subvectorspace of stn(k) consisting of all diagonal 

matrices diag(A 1, .•. ,An) with Al + ... +An~ O. Then his an abelian 

subalgebra of stn (k) of dimension n - 1; ~ is not an ideal of stn (k) 

if n ~ 2. 

3.3. List of simple complex Lie algebras 

There are four big families An' n ~ 1; Bn' n ~ 2; en, n ~ 3; 

Dn' n ~ 4 and 5 exceptional simple complex Lie algebras E6 , E7 , E8 , 

F4 , G2• The An' Bn' en' Dn are easily defined, e.g. An= stn+l (JC)J 

cf. [40], section 2.7, for the remaining ones. 

As we shall see it is no coincidence that we here encounter 

similar labels as in theorem 2.4 above. For the Dynkin diagrams 

An, •.• ,G2 cf. 3.12 below. 

3.4. Real simple Lie algebras 

Let L be a Lie algebra over JR. Then by extension of scalars one 

finds a natural complex Lie algebra structure on LJC L ®m JC. If 

now L is a complex Lie algebra then any real Lie algebra L
0 

such that 

L is isomorphic over X:: to L0 ® JC is called a real form of L. 

Every simple complex Lie algebra has several nonisomorphic real forms 

(cf. [31], eh.III, §6), and these real forms have been classified by 

E. CARTAN ([18]; cf. also e.g. [1]). 

3.5. We now want to indicate how one associates a Dynkin diagram (a 

class of objects closely related to Coxeter diagrams) to a simple Lie 

algebra over lC. This association proceeds in two steps: {i) to a 

simple Lie algebra there corresponds a root system, {ii) a root 

system gives rise to a Dynkin diagram. We now first describe in 
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sections 3.6- 3.11 how root systems translate into Dynkin diagrams. 

Step (i) above is the subject of 3.12 below. 

3.6. Abstract root systems 

263 

Let V be a finite dimensional vector space over a field k of 

characteristic zero. A root system R c V is a subset R of V such that 

(i) R is finite, 0 i R, and R generates V as a vector space over k; 

(ii) for every a ER, there exists an element a* E v*, the dual 

space of V, such that a*(a) = 2 and such that the reflection 

* sa(x) = x - a (x)a maps R into R; 

(iii) if a,B ER, then sa(8) - Bis an integer multiple of a. 

The reflection s a, whose existence is required by condition (ii) is 

necessarily unique, thus (iii) makes sense (cf. [40], Ch.V, §1). 

In the following we shall take k = lR or JC. It does not matter 

much which we take. If R c V is a complex root system, then 

R c l aIR c V 

ClER 

is a real root system in l alR and this sets up bijective correspon­

dence between real and complex root systems. Cf. also [40], eh.VI, §1, 

prop.1. 

The root system R c V is called reduced if for all a E R the only 

roots proportional to a are a and -a. The rank of a root system R c V 

is the dimension of v. Two root systems R c V and R' c V' are isomor­

phic if there exists an isomorphism ~: V + V' of vector spaces such 

that ~(R) = R'. 

3.7. EXAMPLES. The reduced root systems of rank 2 are 

28+3a 

B+a f3+2a 
B 13+3a 

-B-3a 
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a+B B 
a+B 

-a 

-a-B -B -B-2 a -a-B -B 

3.8. Weyl group and Coxeter system of a root system 

Let R c v be a (real) root system. The Weyl group W(R) is th~~ 

defined as the subgroup of GL(V) generated by the reflections s , ' a 
a E R. Because R generates V, sa is uniquely determined by its act~ 

on R, and because R is finite this means that W(R) is a finite gr0~ 

EXAMPLES. W(A
1

xA
1

} = Zl/(2) x ~/(2), W(A
2

) 

group on 3 letters. 

s 3 , the permutation 

Let R c V be a root system. A basis for R (or a simple set of 

roots) is a subset S c R which is a basis for V and which is such ~ 

every a E R can be uniquely written in the form a = l miai, mi E 2Z 

ai E S with either mi ~ 0 for all i (positive roots) or mi ~ 0 for 

all i (negative roots}. It is now a theorem that every root system 

a basis ([40], Ch.V, §8). Let S be a basis for Rand let S' c W(R) 

the set of reflexions {s I a ES} c W(R). Then (W(R},S') is a co~E 
a 

system in the sense of 2.7 above ([8], Ch.VI, §1.5, theoreme 2). 

3.9. Invariant metric 

Let R c V be a real root system. There is a symmetric positi'lfE 
-t 

definite bilinear form ( , ) on V which is invariant with respec~ 

W(R). This follows simply from the fact that W(R) is finite; indeei 
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if ( , ) ' is any positive definite symmetric form on V then 

(x,y) = l (wx,wy)' 
wEW (R) 

works. In terms of , ) the coefficient a*(x) appearing in the re-
* -1 flection s is equal to a (x) = (a,a) s(a,x). a 
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With respect to this metric W(R) acts as a finite group of orthog-

onal transformations. The invariant bilinear form ( , ) is by no means 
* -1 unique. For each a,8 ER, let n(a,8) = (8 ,a) = 2(8,8) (8,a). If~ 

is the angle between a and S (with respect to the invariant metric 

discussed above) then 4 cos 2$ = n(S,a)n(a,8). Now n(a,8) is an integer 
2 by condition (iii) of the definition of a root system. Hence 4 cos $ = 

0,1,2,3,4 which severely limites the possible values for$ and n(a,8), 

n(S,a). In fact there are only seven possibilities (for a and S non-

proportional, lal s I 8 I l. They are: 

(i) n(a,8) 0, n(S,a) O, $ 
-1 

2 1T I 

(ii) n(a,8) 1, n(8,a) 1, $ 
-1 

3 Tf, lal I 8 I 
(iii) n(a,S) -1, n(8,a) -1, $ 

-1 
3 21T, Ja! I 8 I 

(iv) n(a,Sl 1 I n(S,a) 2, $ 
-1 4 1T, I 8 I hlal 

(v) n(a,Sl -1, n(8,a) -2, $ 
-1 4 3rr, I 8 I hJaJ 

(vi) n(a,S) 1, n(8,al 3, ~ 
-1 

6 1T I I 8 I h la I 
(vii) n(a,8) -1, n(8,a) -3, $ 

-1 
6 51T, I 8 I 13 Ja J. 

3.10. Cartan matrix and Dynkin diagram of a root system 

Let S c R be a basis for the reduced root system R c v. The Cartan 

ma.trix (with respect to S) is the matrix (n(a,SJ) 0 8
. One now has 

a,f'E 
the proposition that a reduced root system is determined (up to iso-

morphism) by its Cartan matrix ([40], Ch.V, prop.8,8' or [BJ, eh.VI, 

§1, Prop.15, Car.). Also if both a,S are part of a basis of R only pos­

sibilities (i), (iii), (v), (vii) of the list in 3.8 above are possible; 

cf. [8], Ch.VI, §1, theoreme 1. 

We now assign a Dynkin diagram to the root system R c V as fol­

lows: the vertices correspond to the element of a basis S c R. Two 

vertices i,j E S are joined according to the following recipe: 
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(i) if n(i,j) n(j ,i) 0 then i and j are not joined; 

(ii) if n(i,j) n(j ,i) -1 i--j 
(iii) if 2n(i,j) n(j ,i) -2 i~j 
(iv) if 3n(i ,j) n(j ,i) -3 .~. 

1. J 

This exhausts all possibilities. And we also see that the Dynkin 

diagram of R c v (relative to S) determines the Cartan matrix of 

R c V (relative to S) and hence R itself according to the theorem 

quoted above. 

3.11. EXAMPLES. The Dynkin diagrams of the reduced root systems of 

example 3.7 above are respectively . ; 
3.12. The root system of a simple Lie algebra over I: 

We now proceed to indicate how one obtains the classificatio~ 

theorem 3. 3, i.e., given 3. 6 - 3. 11 above, how one constructs a root 

system from a (semi) simple Lie algebra over :X:::. We shall outline the 

general theory and treat a specific example (viz. s£n(IC)) in two 

parallel columns. In the following L is some fixed simple Lie-algebra 

over :n::::, and in example of course L = s£n (JC). 

(i) Cartan subalgebra 

Let x E L, then ad x: L + L, y i---+ [x,y] 

is a linear endomorphism of L. We say 

that x is semisimple if ad x is 

diagonalizable. A Cartan subalgebra 

of L is maximal abelian subalgebra 

with the additional property that all 

its elements are semisimple in L. 

Cartan subalgebras ~ always exist. 

(ii) Roots and root vectors 

* Let a E ~ , the complex linear dual 

of h. We define La= {xE LI [h,x] = 

The subalgebra ~of s£n(JC) 

consisting of all diagonal 

matrices (of trace zero) is a 

Cartan subalgebra of s£n(IC). 

The dimension of his n - 1. 

Let wi(diag(A 1, ... ,An)) =Ai. 

Then w. - w . : h + :X:: is a root 
1. J 
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= a(h)x for all h E h}. Then a is 

called a root (of L with respect 

to !:l if a 1 0 and La 1 0. One 

then has that dim L = 1 for all 
a 

roots a and if E is the set of all 

roots then L= ~ ® eaEE La as a 

vector space. 

(iii) Root system and basis 

E is a reduced root system in h* 

([BJ, eh.VI, §1, theoreme 2) and 

hence has a basis. Moreover E is 

irreducible which means that there 

is no nontrivial decomposition 

R = Rl u R2 with Rl c vl' R2 c v2 

root systems, v = vl x v2. This 

root system determines L up to 

isomorphism ([31], eh.III, §5, 

theorem 5.4; [BJ, eh.VI, §5, 

theoreme B) • 

(iv) Dynkin diagram 

Now construct the Dynkin diagram 

of the root system L (cf. 3.10 

above) • This Dynkin diagram is 

connected because E is irredu-

cible. The Dynkin diagrams which 

arise in this way are 

A .,_.._... ... n 
,..__,, (n vertices, n~l) 

B -.. --..:;b (n vertices, n<!2) n 
e - ~ (n vertices, nd) n 
D -···-< (n vertices, n<!4) n --L E6 

I E7 • . • • .. 
I ES • • • • • • 

if i 'f j • A nonzero element of 
w.-w. 

L 1 J is E .. the matrix with zero 
1J 

entries everywhere except a 1 at 

spot (i,j). 

V= !:* = {L:=l siwi I I Si = O}. The 

reflection sa associated to wi - wj 

interchanges w. and w. and leaves 
1 J 

all other wk invariant. Hence 

* (wi -wj) E h is 

diag (0 I • • • I 0 I 1I0 f, • , ,o ,-1,0 I•• , f 0) 

with the 1 in spot i and -1 in 

spot j. A basis (or set of simple 

roots) is e.g. a
1 

= w
1 

- w2 , 

a2 = w2-w3' · • ·' an-1 = wn-i - wn. 

* We find <a.,a.> = 0 if i < j-1 or 
1* J * 

i > j+l, <a ,a.>= 2, <a. ,a.>= * i 1 1-l 1 

<ai+l'ai> = -1. It follows that 

the Dynkin diagram of sR.n (:X:::) is 

An-1 

((n-1) vertices) 

The Weyl group of sR.n(lC) is s . 
n 
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F4 • ~ • 
G2 ~ 
By removing the arrows one finds 

the Coxeter diagram of the Weyl 

group W(R) of L. 

3.13. On the connections between Lie groups and Lie algebras 

Some, first presumably largely superfluous, preliminaries on 

analytic manifolds. Let k = lR or r. An analytic manifold of dimen­

sion n over k is a Hausdorff topological space M together with an open 

covering U = {ui i E I} and homeomorphisms •i= ui + •<ui) c kn onto 

some open subset of kn, such that for all i,j E 1 

•. (U. nu.) 
J l. J 

is an analytic mapping. A function f: u + k in M is analytic if 
-1 

f•i : •i(UnUi) +Un ui + k is analytic for all i. Let FM(U) be the 

ring of analytic functions on u. A mapping •: M + N between analytic 

manifolds M and N is analytic if for all open V c N and analytic func-
-1 

tions f E FN(V) the function f. on f (V) c M is analytic. 

Let p € M. We define FM(p), the k-algebra of germs of analytic 

functions in p, as the set of equivalence classes of analytic functions 

f: U + k defined on some neighbourhood U of x, under the equivalence 

relation f: u + k ~ g: V + k iff there is a neighbourhood W c U n V of 

x on which f and g agree. A tangent vector to M at p is a k-linear 

mapping t: FM(p) + k such that t(fg) = (tf)g(p) + f(p) (tg). There is 

an obvious k-vector space structure on M , the set of tangent vector£ 
p 

to M at p, and dim(Mp) = n. An analytic (tangent) vector field X on 

an open subset Y c Mis a collection of derivations XU: FM(U) + FM(U), 

one for each open u c Y, such that ru,voxu = xvoru,v for all open 

V c U. Here r FM(U) + FM(V) is restriction. Given a vector field u,v 
X on U c M and a point p E U one defines a tangent vector X E M by 

p p 
X (f) = (Xf) (p). 

p 
If •: M + N is analytic and t E M then (d.) (t) (g) = t(g•) p p 

defines a tangent vector (d•)p(t) E N•(p)' giving us a k-linear mapping 

(d.)p: Mp + N.(p)· 
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A Lie group is now an analytic manifold G which is equipped with 

analytic mappings "product": G x G-+ G and "inverse": G-+ G and an 

element e E G which make G a group. Example: G = GLn (JC), the group of 

invertible nxn matrices over JC. (Here the covering U defining the 

analytic structure has just one element.) Other examples are the 

orthogonal groups, symplectic groups, unitary groups, special linear 

groups, projective linear groups, ... 

Let G be a Lie group, let y E G then A : G -+ G, x 1-+ yx is an 
y 

analytic mapping. A vector field X on G is said to be left invariant 

if for all open U c G, f E F(U) we have X _1 (fA ) = x
0

(f}A . Now let 
y u y y 

t E Ge be a tangent vector at the identity element. We define a left 

invariant vector field X(t) on G by (X(t}f) (x) = t(fAx). This sets up 

a bijection between Ge and left invariant vector fields on G. (Easy.) 

Now if X,Y are any two vector fields on G the so is [X,Y] = XY - YX, 

and [X,Y] is left invariant if X and Y are left invariant. This 

defines a Lie algebra structure on the vector space of left invariant 

vector fields on G and hence a Lie algebra structure on the tangerlt 

space Ge. This is the Lie algebra L{G) associated to G. Locally the 

structure of G is determined by L{G). More precisely: 

{i) for every m E L{G) there exists a unique analytic map em: k -+ G, 

such that em(s 1Jem(s 2 J = em(s 1+s 2 ) and such that {dem)O(l) = m 

{where we have identified the tangent space at 0 to the analytic 

manifold "k" with k itself); 

(ii) exp: L(G) -+ G, m 1-+ em(l) is a local analytic isomorphism of 

analytic manifolds; 

{iii) locally near e the group structure of G is given by 

exp{m)exp{m') = exp(F{m,m')) where F(m,m') = m + m' + ~[m,m'] + 

+ 
1
1
2

([m,[m,m']] + [m',[m',m]]) - i
4

( ••• ) + is some well-

defined universal expression (Campbell-Baker-Hausdorff formula) ; 

{iv) connected Lie subgroups of G correspond biuniquely to Lie sub­

algebras of L(G}; 

(v) connected normal Lie subgroups correspond biuniquely to ideals 

in L(G); 

{vi) G is quasi-simple {~ G is connected and has only discrete proper 

normal subgroups) iff L{G) is simple. 



270 HAZEWINKEL ET AL. 

EXAMPLE. G = GL (JC), L(G) = M (:IC), the Lie algebra of all nxn 
n n 

matrices under [A,B] AB - BA. The map exp: M (:X::) -+ GL (X::) is 
A -1 2 -1 3n n 

given by A f-r e = I+ A+ (2!) A + (3!) A + ... (whence the no-

tation "exp" in general). 

For the proofs of all these facts, cf. any of the standard books 

on Lie groups and Lie algebras, e.g. [33], [31] and, in a slightly 

different context [35]. 

3.14. Extracting information from Dynkin diagrams 

(i) Let I be the set of vertices of a connected subgraph of a Dynkin 

diagram. Then LiEI a1 is a positive root. Every root Li m1a 1 
with mi= 0,1 is obtainable in this way. In the case of An one 

thus obtains all positive roots. 

(ii) Aut(D) = AutLie(G)/Int(G). Here Dis the Dynkin diagram of the 

simple Lie group G, Int(G) is the group of interior automorphisms 

of G and AutLie(G) is the group of automorphisms of G. One 1\.as 

Aut(An) '0,/(2), Aut(D4 ) = s3 , Aut(Dn) = ',0,/(2) for n;?: 5, 

Aut(E6 ) '0,/(2) and Aut(D) = {1} for all other Dynkin diagrams 

D. 

(iii) The so-called completed Dynkin diagrams play an important role 

in the determining of all maximal compact subgroups of compact 

(real) simple Lie groups, cf. [54]. One adds a vertex correspond­

ing to the largest root, cf. [8], eh.VI, §4.3 for details. The 
N 

completed Dynkin diagrams An' Dn and E6 , E7 , E8 are 

1 2 

1 2 3 5 6 • • I • • 

4 

n-1 n 

~ n-1 

7 8 • • • 

A 
n 

D 
n 
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1 2 3 5 6 7 • • • I 
Ill • Ill 

4 

• Ill 

!· 
Ill • 

4. TITS GEOMETRIES 

4.1. EXAMPLE. JPn(IC) as a Tits-geometry. We start with an example. 

Let lPn(IC) be a complex projective space of (complex) dimension n, 

and let PGLn+l (JC) = PSLn+l (JC) be its group of linear projective 

automorphisms. We show how the geometry of JPn (IC), i.e. the sets of 

points, lines, planes, ••• of JPn(JC) together with their incidence ~re­

lations are recoverable from the Lie group PGLn+l (Jr::). 

Let Fj be the set of all (j-1)-dimensional linear subspaces of 

lPn(JC), j = 1,2, .•• ,n. If if j, x E Fi' y E Fj we write xJy if x 

and y are incident, i.e. if x c y 

if i < j or if y c x if i > j. A flag 

is a sequence of elements (a
1

, ... ,at), 

ai E Fij' i 1 < .•• <it such that 

aiJai+l for all i = 1, ... ,t-1. If t=n 

the flag is maximal. The terminology 

comes from the picture of a maximal 

flag in JP
3 

n+l 
Choose a basis e 1 ,e2 , .•• ,en+l of :ic Interpreting points of 

in JPn (JC) as planes through lPn(JC) as lines through 0 in Jr::n+l, lines 
n+l 0 in lJ: , • • • we find a maximal flag 

The stabilizer of E in G = PGLn+l (Jr::) is then the subgroup B of 

all upper triangular matrices (with respect to the chosen basis). 
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B !(i : . : I} 
... o * I 

The subgroups conjugate to B are all stabilizers of a maximal flag, 

and these are precisely the maximal solvable subgroups of G, that is 

the Borel subgroups. 

A parabolic subgroup is a subgroup of G which contains a Borel 

subgroup. The parabolic subgroups containing B above are the groups 

r '* * 1 * 
p 

\ 
* ··* I 

* 
: */ *' .. 

(different block sizes are allowed); i.e. they are the groups con­

sisting of all blocks upper triangular matrices for a given sequence 

of block sizes n
1

, ... ,n
5

, n1 + •.. + n
5 

= n + 1. These groups are the 

stabilizers of flags contained in E, e.g. if n = 3, then the parabolic 

subgroups ~ B,G containing B are 

which are respectively the stabilizers of the flags (<e 1 ,e2>, <e 1 ,e 2 ,e3>), 

(<e
1
> ,<e 1 ,e2 ,e

3
>), (<e

1
> ,<e

1 
,e

2
>J, (<e

1
>), (<e 1 ,e2>), (<e 1 ,e2 

,e
3
>). 

I~ 

Every parabolic subgroup of G is conjugate to precisely one 

parabolic subgroup containing B. In particular the subspaces of JPn(X::), 

i.e. the elements of the F., j = 1, ... ,n, correspond to the maximal 
J 

parabolic subgroups ~ G. In case n = 3 the last three of the parabolic 

subgroups listed above are maximal. 
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-1 
Now let P' be any parabolic subgroup, then P' = gPg with P ~ B 

where B is the standard Borel subgroup given above. Now the normalizer 

of a parabolic subgroup P is P itself and it follows that {hjhPh-l % P'} 

= gP so that P' I-+ gP sets up a bijective correspondence between para­

bolic subgroups conjugate to a given p ~ B and cosets of P in G. Let 

P(i) be the stabilizer of (<e 1 , ... ,ei>); then we see that 

F. 
l. 

{ (i-1) - dim subspaces} 1-1 
+----+ -1 I 1-1 

{gP(i)g g € G} ~ G/P(i)" 

Furthermore we recover the incidence relations as follows: 

gP(i) Jg'P(j) - gP(i) and g'P(j) correspond to elements of the same 

maximal flag 

- 3g" such that gP (i) n g'P (j) ~ g"B 

4.2. The Tits geometry of a (quasi-)simple Lie group G 

Let G be a quasi-simple Lie group and let 2 be its Lie-algebra. 

Let h be a Cartan subalgebra, let R be the root system of 2 with res­

pect to~ and let S = {a
1

, ..• ,a~} be a set of simple roots. For each 

a= l m.a. we set supp(a) = {a. J m. ~ O}. For each subset I c S we set 
1 J_ l. 1 

h EEi l 
a>O 

JC e 
a EEi l 

a<O 
supp(a)cI 

re 
a 

h · fa ·1 h w ere ea is a nonzero element o 2 . In particu ar we ave 

l 
a>O 

lCe • 
a 

Then B = <exp(2~)> is a Borel subgroup and the PI = <exp 21> are the 

parabolic subgroups containing B. Every parabolic subgroup of G is 

conjugate with precisely one PI. 

E.g. if G = PGL4 (X::} and S = {a1,a2 ,a3} as in the example of 3.12 

above, then the six parabolic subgroups listed in 4.1 above correspond 

respectively to the following subsets of S: 
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For each i E {1,2, ... ,~} let P(i) be the maximal parabolic sub­

group P(i) = PI(i)' where I(i) ~ S\{ai}. Now define sets of points, 

lines, ... by Fi= G/P(i) and define the incidence relations by 

xP(i) \yP(j) <=> xP(i) n yP(j) f ~. This is the Tits geometry (or 

Tits building) of G. 

4.3. Reducing Tits geometries 

Let ai € S be a given vertex of the Dynkin diagram Take any 

a € F. = G/P. . The geometry of all x which are incident with this 
l l 

given a corresponds to the diagram one obtains by removing ai and all 

edges through '\. Thus in the case of IPn (:n::::) if a E Fi, i.e. if a is 

an (i-1)-dimensional linear subspace we have 

1 i n -- • • • --
---- -- ·- --1 i-1 i+l n 

and the "residual geometry" of all x\a consists of a IPi-l (:n::::) 

(consisting of those x/ a with dim(x) < i-1) and a IPn-i (JC) (consist­

ing ,of those x\a with dim(x) > i-1). Thus one can establish various 

properties of the Tits geometries by reduction to the geometries of 

rank 2: 

A
2

: e---o , the projective plane IP
2 

B2: a:::;)=. points and lines on a quadric in IP
4 

G
2

: ~ , a geometry related to the Cayley numbers. 

4.4. EXAMPLE 4.1 continued (The Skeleton geometry). Consider again the 

situation of 4.1 above. The subgroup of G which stabilizes all the 

<e. ,e. , .•. ,e. >is 
11 12 lp 

T 
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The Weyl group W acts as permutations on the coefficients of the 

matrices in T; it is the automorphism group of the skeleton 
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Sk = {(<ei , ... ,ei >)}. Let W. be the stabilizer in W of <e 1 , .•• ,e.>. 
1 p l. l. 

Then W. = {s , •.. ,s ,s , .•. ,s }. The (i-1)-dimensional sub-
l. a1 Ui-1 Ui+1 Un 

spaces of Sk are the wWiw' w E W, or, the cosets wWi' w E W. The 

geometry Sk is described by the W/W. just as the geometry JPn is 
l. 

described by the G/P .. The Skeleton geometry Sk is an "n-dimensional 
l. 

projective geometry over the field of one element". 

In case n = 2 it consists of three points and 

three lines with incidence relations as shown. 

(An i-dimensional projective space over a 
2 

finite field of q-elements has 1 + q + q + 
i + ... + q points; so an i-dimensional 

projective space over the field of 1 element should have i + 1 points.) 

4.5. Bibliographical notes 

The reference [45] is a good first introduction to the subject of 

Tits geometries; [47] and [48] are useful after one has read [45], 

and [50] describes a number of applications. The standard reference, 

containing all proofs, is [49], which also contains an extensive 

bibliography. 

5. DYNKIN CURVES AND SINGULARITIES 

5.1. Introduction 

Here is, how, very roughly, the Dynkin diagram of a quasi-simple 

Lie group G arises as the fibre of a resolution of singularities of a 

certain variety associated to G. Let G be a quasi-simple algebraic 

complex Lie group. Let U(G) be the algebraic variety of its unipotent 

elements. This variety has singularities. Let U . (G) be the sub-sing 
variety of singular points. There is a more or less canonical desin-

gularisation n: V(G) + U(G) and there is a single open and dense 

conjugacy class C c U . (G) of so-called subregular unipotents. 
sing 
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-1 
For x E c the fibre rr (x) is a connected one dimensional variety 

which is a union of projective lines. The intersection graph of this 

union of projective lines is the unfolded Dynkin diagram of G. In 

the following we shall try to precisize all this to some extent. 

5.2. Algebraic varieties over IC and singular points 

For the purposes of this section an affine algebraic variety V 

is the set of solutions in JCr (for some r) of a collection of poly­

nomials in r variables x1, .•. ,Xr and a projective variety is the set 

of solutions in lPr(IC) (for some r) of a collection of homogeneous 

polynomials in r + 1 variables x0 ,x1, ... ,xr. 

Le~ V c ICr be an affine algebraic variety, x € V. Let 

f 1 (X), •.. ,fn(X) be the polynomials defining v. Then we can write 

fi(x 1-x1, ... ,Xr-xr) =Li (X) + gi (X) where Li (X) is homogeneous of 

degree 1 in X and all monomials in gi(X) have degree~ 2 in X. An 

r-vector a f 0 (starting in x) is now said to be a tangent vector 

to Vat x if Li (a)= 0, i = 1, •.. ,n. Let Tx(V) be the linear space 

spanned by the tangent vectors to V at x. The point x
0 

€ V is called 

smooth if dim(Tx(V)) is constant in a neighbourhood of x0 in V; 

otherwise x0 is called singular. The variety V is smooth if all its 

points are smooth. A projective variety V c JPr (IC) can be seen as 

r + 1 affine varieties Vi V n Ui glued together where 

ui = {x E JPr(IC) \xi f O} ICr, and a point x E Vic Vis smooth if 

it is smooth as a point of Vi. Cf. [41], eh.II, §1 for more details. 

EXAMPLE. Let V c n:2 
be the curve defined by x

2 
- x3 = 0. Then 

1 2 
(0,0) E V and dim(T(O,O) (V)) = 2 and dim(Tx(V)) 1 for all x E V, 

x f (0,0). Hence (O,O) is singular and all other points of V are 

smooth. 

5. 3. Algebraic Lie groups over JC 

An algebraic Lie group over r is (for the purpose of these 

lectures) a closed connected subgroup G of GLn(n:::), the group of 

complex invertible nxn matrices, such that the points of G are the 

solutions of a set of polynomials in the matrix coefficients. Now 
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GLn (JC) can be identified with the variety in JCn
2

+1 defined by 

the polynomial det((X .. ))x
0 

- 1. Hence G is an affine algebraic 
l.J 

variety in the sense of 5.2 above. 

Examples of such Lie groups are: 

U (IC) 
n 

{x E GLn (JC) det(x) = 1}, 

son (IC) {x E SLn (IC) 
t x x I}, 

SBn (X::) = {x E Bn (IC) I det (x) = 1}, 

where xt is the transposed matrix of x and I is the nxn identity 

matrix. In the following we shall write GLn, ... ,SBn instead of 

GLn (IC) , ... ,SBn (JC). 

5.4. The variety of unipotent elements 
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A matrix x E GLn is said to be unipotent if all its eigenvalues 

are 1, or, equivalently, if (x-I) n = 0. Let G be as in 5. 3 above. Then 

U(G) {g E G I (g-I)n = O} is called the unipotent variety of G. 

This is a closed subset of G defined by polynomial equations, hence 

it is an affine algebraic variety in the sense of 5.2 above. 

EXAMPLE A. G = SL2. Then U(SL2) = {(l+x y) 
z 1-x 

isomorphic to the complex cone {(x,y,z) E JC3 

2 x + yz = 0}. This is 

I x 2 + yz O} with top 

in (0,0,0). This top corresponds to I E SL2 . The point I E U(SL2) is 

singular, all other points are smooth. 



278 HAZEWINKEL ET AL. 

EXAMPLE B. G SB n 
Then U(G) Un' which is a smooth variety. 

EXAMPLE C. G = SL Then U(G) {gxg 
-1 I SL u } g E n' X E n n 

UgESLn 
-1 

gUng 

Thus we have written U(G) as a union of smooth varieties in 

this case. This is a general phenomenon, cf. below in S.S. 

S.5. The variety IB(G) of Borel subgroups 

A Lie subgroup G c GLn is solvable if it is conjugate in GLn to 

a subgroup of B . If G is solvable then U(G} is smooth (as in example 
n 

B), cf. [35], 19.1. A maximal solvable Lie subgroup of G is called a 

Borel subgroup (cf. also section 4 above). Every two Borel subgroups 

are conjugate ([35], 21.3) and it follows that the set of Borel sub­

groups is the homogeneous variety G/B because the normalizer of B in 

G is B itself ([3S], 29.3). In fact G/B is a projective variety ([3S], 

21. 3). 

THEOREM ([35], 23.4). 

(i) IB(G) is a non-empty smooth connected compact variety on which 
-1 G acts transitively (by (g,B) f-+ gBg ; i.e. all Borel subgroups 

are conjugate); 

(ii) G = UBElB (G) B; 

(iii) U(G) UBEIB(G)U(B), and all the U(B) are smooth and connected. 

In case G = GLn, part (ii) is proved by the fact that every x E GLn 

is triangulizable. 

EXAMPLE A (continued). IB(SL2) 

by hand. 

1 "' lP (IC) as is easily checked 

EXAMPLE C (continued): lB(SLn) consists of SBn and its conjugates. 

5.6. Reductive Lie groups 

The intersection nBEIB(G) U(B) is a normal subgroup of G and one 

can take the quotient of G by this subgroup without changing the 

singularities of U(G). We shall therefore from now on suppose that 
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this normal subgroup is trivial, i.e. that G is reductive. The groups 

GLn' SLn' son are reductive but Bn and Un are not reductive if n~2. 

5.7. Conjugacy classes 

Let x E G. Then C(x) = {gxg-l I g E G}, the conjugacy class of 

x 1 is a connected homogeneous and smooth subvariety of G. 

THEOREM (RICHARDSON-LUSZTIG [55],[44]). The variety U(G) is a disjoint 

union of a finite number of conjugacy classes. 

EXAMPLE C (continued). In the case of G = SLn this follows from the 

theory of the Jordan normal form. 

5.8. Regular unipotents 

THEOREM (STEINBERG [43], pp. 108, 110). 

(i) There is precisely one conjugacy class C c U(G) which is reg 
open and dense in U(G}; 

(ii) the variety U(G) is smooth in the points of C ; reg 
(iii) for every x E c there is precisely one B E JB(G) such reg 

that x E U(B); 

(iv) for every x E U ( G) \ C there are infinitely many B E lB ( G) reg 
such that x E U(B). 

The elements of C are called the regular unipotents. They can be reg 
characterized in various ways (cf. [43], 3.7). 

EXAMPLE A (continued). The cone U(SL2 ) is the union 

c is the conjugacy class of c
0
1 

1
1). Through every reg 

{I} U C 
reg where 

X E C reg there 

passes precisely one line U(B) on the cone. All these lines pass 

through I. 

EXAMPLE C (continued). In case G =SL, C is the conjugacy class n reg 
of the "one Jordan block" matrix with eigenvalue 1. E.g. if n = 4 

C is the conjugacy class of reg 
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5.9. The Springer desingularisation 

Let V(G) = {(B,x) J x E U(B)} c lB(G)x G, and 1f: V(G) + U(G) be 

defined by 1f (B,x) = x. Then V(G} is a closed subvariety of lB (G} x G. 

The algebraic morphism 1f is a desingularisation in that the following 

theorem holds. 

THEOREM ([42],[15],[44],[43], 3.9). 

(i) V(G} is smooth and connected; 

(ii) 1f is surjective and proper (that is 1f-l(Y} is compact if Y is 

compact); 
-1 

(iii) 1f: 1f (C ) -+ C 
reg reg 

is an isomorphism and 1f-l(C ) is open 
reg 

and dense in V(G) (i.e. 1f is a birational morphism) • 

-1 
The fibre 1f (x) for x E U(G) is the set of all Borel subgroups 

of G containing x, i.e. it is the set of fixed points of x E G 

acting on lB(G) ~ G/B as in the theorem of section 5.5 above. It 

follows that rr- 1 (x) is a projective variety. This variety is also, 

connected ([43], 3.9, prop.1). 

EXAMPLE A (continued). The desingularisation of the cone U(SL2) looks 

as follows: 

.. --- --
B 

1f z/ ----~-7 

----

(where we have, of course, only drawn the real points of the 2-dimen­

sional complex surfaces involved). 

5.10. The parabolic lines of lB(G) 

For simplicity we assume that G is quasi-simple. We have seen 

in section 4.2 above how to associate a parablic subgroup P to every 

subset I of the set of simple roots S. For each ai E S let Pi be the 

parabolic subgroup corresponding to I= {a.}. These are the minimal 
J. 
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parabolic subgroups# Bin G. (Do not confuse them with the P(i)' the 

maximal parabolic subgroups used in 4.2.) Of the six parabolic sub­

groups of 4.1 above the first three are minimal. They are also called 

simple parabolic subgroups, as is every parabolic subgroup conjugate 

to one of these. 

For each Pl.., lB(P.) = P./B, cf. [49], 3.2.3, is isomorphic to l. l. 
lP 1 (IC). We shall call IB(P} c lB(G) a parabolic line of type i if P 

is conjugate to Pi. 

THEOREM ([43], p.146). 

(i) Every point B E lB(G) lies on 2 parabolic lines, one of each 

type (here 2 is the number of vertices of the Dynkin diagram); 

(ii) two parabolic lines of different type intersect each other in 

at most one point. 

EXAMPLE C (contined). The Dynkin diagram of SLn is - •.. - . 
1 2 n-1 

The Borel subgroup SBn lies on the parabolic lines lB (P 1), ... , m (~n-·l). 

:: : {(~ ~In~)}:P
2

~:30a{(~r~s~e~)}~e1:3e:u{(!t~ ~ ~)} 
In this case one easily checks by hand that lB (Pi)"' P i/B "' JP

1 
(IC) . 

5.11. Subregular unipotents 

As in 5.10 above let G be quasi-simple, so that the Dynkin 

diagram of G is connected. 

THEOREM (STEINBERG-TITS [43], p.145,153). 

(i) There is precisely one conjugacy class Csub which is open and 

dense in U(G) \ C • reg _
1 

(ii) For x E U(G) we have x E cub 4-=+ dim(TI (x)J = 1. 
s -1 

(iii) If x E csub' then the fibre TI (x) = {B E :D3(G) I x E U(B)} is 

a connected one dimensional projective variety. It is a finite 

union of projective lines whose intersection diagram is the 

unfolded Dynkin diagram of G. 

Here the unfolded versions of An 1 ••• ,G2 are defined as follows: 
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(a) A ,D ,E remain the same 
n n n 

(b) -- ~ becomes -- . . . . • .... -1 2 1 2 Q.-1 Q. Q.-1 2 1 

(c) -- ~ becomes - ""i-K:: 1 2 Q. 1 2 

(d) ~ becomes 1~4 
1 .. ~ 

(e) ~ becomes ~~2 
Notice that, apart from the numbering of the vertices, all unfolded 

Dynkin diagrams are of the types An' Dn, E6 , E7 , E8 . 

Thus if G has Dynkin diagram BQ., then part (iii) of the theorem 

above says that rr- 1 (x) consists of a union of 2 lines each of types 

1,2, ... ,Q.-1 and one line of type Q. 1 which intersect as indicated by 

the diagram. (Two lines intersect iff the corresponding vertices 

are joined.) 

EXAMPLE D. Let G so7 with Dynkin diagram B3 . The unfolded Dynkin 
1 2 3 2 1 

diagram is • • • • •• Thus the 

Dynkin curve 
-1 

'TT (x) for x E csub 

consists of 5 projective lines, 

two of type 1, two of type 2, and 

one of type 3, which intersect as 

indicated in the picture on the 

right. 

2 2 

1 

3 

EXAMPLE E. Let G = Sp
6

, a symplectic 

c 3 with unifolding ~ ~ . 

group. Sp6 has the Dynkin diagram 
3 

Thus the Dynkin curve rr- 1 (x)consists 

of two lines of type 3 and one each 

of type 1 and 2, which intersect each 

other as in the picture on the right. 

2 

3 
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EXAMPLE C (continued) . G = SL has 
n 

Dynkin diagram An-l with unfolding 

e e o ..• e---e. Thus n- 1 (x) 
1 2 n-1 
consists of (n-1) lines, one each 

of type 1,2, •.• ,n-1 which inter­

sect each other as indicated in the 

diagram on the right for the case 

n = 6. 

5 

5.12. Local descr.iption of singularities with a Dynkin curve as 

exceptional fibre in a resolution 

THEOREM (BRIESKORN [15]). In a. neighbourhood of a subregular element x 

U (G) is isomorphic with a neighbourhood of the origin in x
2 

x JCr where 

X 
2 

is a surface in :ic
3 with rational singularity in ( 0, 0, 0) • This means 

that x
2 

is one of the following surfaces with isolated singularity 

AR,: {(x,y,z) € JC 
3 

x2+1 + yz = O} R, ?: 1, 

{ (x,y,z) JC3 Hl 2 2 O}, R, ?: 3, DR,: € x + xy + z 

E6: {(x,y,z) € JC3 I x 4 + y3 + z2, = O} 

E7: { (x,y,z) JC3 I 3 3 2 = O} € x y + y + z 

ES: { (x,y,z) € :ic3 I 5 3 x + y + z 2 = O} 

(There is a nonlinear coordinate transformation which takes n3 into 

A3.) 

5.13. Transversal sections 

A different more concrete method for getting at the structure of 

the singularities at x € Csub is as follows. Construct a smooth sub­

variety S of G through x such that Tx(S) + Tx(Csub) = Tx(G). By the 

implicit function theorem a neighbourhood of x in U(G) is isomorphic 

with a neighbourhood of ( x, 0) in ( S n U ( G) ) x X::r for a certain r. By 

choosing S cleverly one finds that S n U(G) ~ x
2

. Cf. [4], [15], [32]. 

EXAMPLE G. Let G GL3 . Take n 3. The matrix x0 is then a subregular 

unipotent. 
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x = (~ ~), 
0 

0 0 1 

0 
z ). 

1+t 

The variety of matrices x with det(x) ~ 0 is a transverbal section, 

and S n U(GL
3

) consists of the matrices x E S which satisfy tra~e:x) = 
= 3, det(x) ~ 1 and 

det(l+v 1> + det(l+v 
w 1 y 

z 
l+t) = 3 · 

This gives v = -t, w = -t2 , t 3 
+ yz = 0. Hence S n U(GL3 ) is the 

singularity A2, and one verifies that the Dynkin curve consists of 

two intersecting lines. (Remark: U(GL3) = U(SL3), so whether one 

considers GL 3 or SL3 does not matter much.) 

6. QUIVERS AND THEIR REPRESENTATIONS 

6.1. Introduction 

A quiver Q is a finite connected directed graph. A representation 

over a field K assigns to each vertex of the graph a vector space over 

Kand to each arrow a homomorphism of vector spaces. It now turns out 

that a quiver Q has (up to isomorphism) only finitely many indecompos­

able representations if and only if the underlying undirected graph 

of Q is one of the Dynkin diagrams An, Dn, E6 , E7 , E8 . 

6.2. Quivers and representations 

A quiver is a finite connected directed graph. Thus it consists 

of a finite set PQ of vertices and a finite set AQ of arrows between 

elements of PQ. Let s,r: AQ + PQ be the two maps which assign to an 

arrow a E A0 its initial vertex s(a) and its end vertex r(a). Some 

examples of quivers are 
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() .--...,,. ~Q ~ • • 4t___J • ...____;>i 

(a) (b) (c) (d) 

• • ~· / "-,, Jb .____..,. ·~· ill---+·~ • • 
• ""'/ • 

(e) (f) {g) (h) 

Let K be a field. A representation V of a quiver Q assigns to 

each p € PQ a vector space V(p) over k (finite dimensional) and to 
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each arrow a E AQ a homomorphism of vector spdces V(a) :V(s (a))+ V(r (a)). 

The zero representation assigns to each p E PQ the zero vector space 

(and to each a E AQ the zero mapping). Given two representations' 

v 1 , v2 their direct sum is the representation (Vl e v 2 ) (p) = 
= v 1 (p) e v2 (p), (v1 e v2) (a) = v 1 (a) e v 2 (a). A representation vis 

called indecomposable if it cannot be written as a direct sum 

v = v 1 e v 2 with both v 1 and v2 ~ o. 
Finally two representations v 1 and v 2 are said to be isomorphic 

if there exists for each p E PQ an isomorphism $(p): v1 (p) + v2 (p) 

such that for all a E AQ, ~(r{a))ov1 (a) = v2 (a)o~(s(a)). 

EXAMPLE (a). A representation of quiver (a) above consists of a vector 

space and an endomorphism; i.e. after choosing a basis a representa­

tion is given by a square matrix M. Two representations M, M' are 

isomorphic iff there is an invertible matrix S such that M' = SMS- 1 • 

A representation M over an algebraically closed field k is indecompos­

able iff its Jordan canonical form consists of one Jordan block, and 

the indecomposables over k are classified by their sizes and the 

eigenvalue appearing. 

EXAMPLE (b).Here a representation is given by two (not necessarily 

square) matrices M, N and two representations (M,N), (M' ,N') are 
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isomorphic if and only if there exist invertible matrices S and T 

such that SM == M'T, SN = N'T. Thus the theory of the representations 

of quiver (b) is the theory of Kronecker pencils of matrices. Cf. 

[25] for the results of this theory. 

6.3. Gabriel's theorem 

A quiver Q is said to be of finite type if, up to isomorphism, 

there are only finitely many indecomposable representations of Q; 

the quiver Q is said to be tame if there are infinitely many iso­

morphism classes of indecomposable representations but these can be 

parametrized by a finite set of integers together with a polynomial 

irreducible over k; the quiver Q is said to be wild if for every 

finite dimensional algebra E over k there are infinitely many pair­

wise nonisomorphic representations of Q which have E as their endo­

morphism algebra. These three classes of quivers are clearly exclusive; 

they are, as it turns out, also exhaustive. 

THEOREM (GABRIEL [23]). A quiver Q is of finite type if a.nd only if 

its underlying undirected graph is one of the Dynkin diagrams An' Dn' 

E6' E7, ES. 

EXAMPLES. The quivers (f) and (g) of the examples of 6.2 above are 

of finite type. 

Let Q be a quiver. We chose a fixed ordering of PQ. For each 

representation V of Q we now define n(V), the dimension vector of V, 

as the vector n(V) = (dim(V(p 1)), ... ,dim(v(pR.))). 

THEOREM (GABRIEL, cf. also [7]). Let Q be a quiver of finite type. 

The map V 1---+ n(V) sets up a bijective correspondence between the 

indecomposable representations of Q and the set of positive roots of 

the underlying Dynkin diagram of v. 

6.4. Nazarova's extension of Gabriel's theorem 

THEOREM ([38]). The quivers of tame E:l.I!!!_ are precisely the quivers 

whose underlying undirected graph is one of the extended Dynkin 
~ ~ ~ 

diagrams An' Dn' E6 , E7, E8 . (Cf. section 3.14 above for a discrip-

tion of these Dynkin diagrams.) 
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EXAMPLES. The quivers (a), (b), (h) of the examples of 6.2 above are 

tame. The quivers (c), (d}, (e) are wild. 

6.5. Quadratic form of a quiver 

Let Q be a quiver with 2 vertices. We associate to Q a quadratic 

form in £-variables as follows: 

2 

l 
i=l 

2 x -
i I xs(a)xr(a)" 

aEAQ 

EXAMPLES. The quadratic forms of the quivers (a), (b), (c), (d), (f), 
2 2 2 2 

(g) of 6. 2 above are respectively 0, x
1 

+ x2 - 2x
1 

x2 , x
1 

+ x3 - x
1 
x

2 
- x2x3 , 

2 2 2 2 2 2 2 2 2 
x 1 + x2 - 3x1x 2 , x

1 
+ x2 + x3 - x 1x

2 
- x2x3 , x

1 
+ x

2 
+ x

3 
+ x

4 
- x

1
x

2 
- x 2x3 -

THEOREM ([7]). A quiver Q is of finite type (resp. tame) iff BQ is 

positive definite (resp. semipositive definite). 

6.6. Proof of "Q is of finite type" .,. BQ is positive definite (Tits) 

Let Q be a quiver of finite type and let n = (n1 , ... ,n
2

) be a 

fixed dimension vector. Because Q is of finite type there are only 

finitely many isomorphism classes of representations V such that 

n(V) = n. Now giving a representation with n(V) = n is the same as 

specifying an nr(a) xns(a} matrix for each a E Qa. This gives us a 

L Q n ( )n ( ) dimensional space of representations. The group aE A s a r a 
G = GLn

1 
(k) x ••• x GLn2 (k) acts on this space of representations 

by (M ) A + (T (a)MaT-1 , ) A and the isomorphism classes of a aE Q r s(aJ aE Q 
representations V with n(V) = n are precisely the orbits X/G. The 

subgroup H = { (sin, •.. ,sin2J j s Ek} of G acts trivially. Because 

X/G is finite it follows (if we are working over an infinite field) 

that dim G-1;:: dim(X). Hence n~+ ... +n~-1;:: }.a ns(a)nr(a); i.e. 

BQ(n
1

, .•. ,n2 ) ;:: 1. This holds for all sequences of positive integers 

n = (n 1 , ... ,n
2

J and hence, because clearly BQ(x
1

, ... ,x
2

) ;:: 

;:: BQ(ix1 1, ix2 1> , ••• , ix2 1J, it follows that BQ is positive definite. 

6.7. EXAMPLE. Let Q be a quiver with underlying Dynkin diagram A
2

. 

For all r,s E JN with 1 S r < s :;; n. Let V (i) = k for r :S: i :S: s 
r,s 
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and V (j) = 0 for j < r or j r,s > s. For a E QA we set V (a) = id r,s 
if a joints two points in {i r ~ i ~ s} and V (a) = 0 otherwise. r,s 
Then V is an indecomposable r,s 

representation of Q and all indecomp-

able representations of Q are isomorphic to one of these. 

6.8. EXAMPLE ([24],[26]). Consider the quiver Q5 : 

3 

'·~r/·' 
1 • •+----• 5 

0 

with the vertices numbered as indicated. This quiver is wild. We show 

that every finite dimensional algebra A arises as an endomorphism 

algebra of Q
5

. To this end consider first Q4 , the quiver obtained 

from Q
5 

by removing the vertex 5 and the arrow incident with it. We 

now first construct a representation U of Q4 over a field k with ' 

dim(U) = 2n+l, n 1,2, ... such that the endomorphism algebra of U 

is k. To this end let E be an n + 1-dimensional vector space over k 

with basis e 1, ... ,en+l and F an n-dimensional vector space with basis 

f 1, •.. ,fn. We set U(O) = E Ell F, U( 1) = E Ell 0, u (2) = 0 Ell F, 

U(3) = { (;\(f) ,f) I f E p}, U(4) = {(Ii (f) ,f) I f E p}. Where ;\,Ii: F-+ E 

are defined by ;\(fi) ei, li(fi) = ei+l' The maps associated to the 

arrows are the natural inclusions. An endomorphism of U is then given 

by an endomorphism a of U(O) = E Ell F, which preserves the subspaces 

U(l) , ... ,U(4). One easily checks that this means a is multiplication 

with an element of k, i.e. one finds End(U) = k. Now let A be any 

finite dimensional algebra over k and let a 1, ... ,am be a set of 

generators of A (as a k-module) . Let a0 = 1 and see to it that m is 

even, m ~ 2. Let U be the representation of Q4 constructed above with 

dim(U) = m+ 1. We now define a representation V of Q5 by V(O) = 

=A® U(O), V(i) A® U(i), i 1, ... ,4, 

V(5) = {/,:=O aai ® ei I a EA} c A® U(O), where e0 , ... ,em is a basis 

for U(O). An endomorphism of Vis an endomorphism of V(O) which 

preserves the five subspaces V(j), j = 1, ... ,5. Because End(U) = k 
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the endomorphisms of V(O) which preserve V(l) , .•. ,V(4) are necessarily 

of the form <j> © 1 where <j> is a k-vector space endomorphism of A. 

Now ($ © 1) (\~ 0 aa. © ei) = \~ 0 <j>(aa.) © e; and it follows that l·i= l. li= l. ~ 
if <j> © 1 also preserves V(S), there must be, for all a€ A, a b(a) 

such that l~=O <j>(aai) © ei = I~=O b(a)ai © ei. Now 1 © e0 , •.. ,1 ©em 

is a basis for A© U(O) as a module over A, hence <j>(aai) = b(a)ai 

for all i. Taking i = 0 we find <j>(a) = b(a). Hence we have for all 

a E A and all i that <j>(aai) = <j>(a)ai. 

Let c = $(1), then <j>(ai) cai for all i and we see that <j> is given 

by multiplication with c E A. This shows that indeed End(V) = A. 

7. SIMPLE SINGULARITIES AND DYNKIN DIAGRAMS 

7.1. Fintely determined map germs 

Let f: U -+ JC, 0 E U c JCn+l be a holomorphic mapping with 

isolated critical point in O. I.e. 0 is critical (that is df (O) 0) 

and there is a a > 0 such that for llzll < a, df(z) f 0 if z" o. 
A critical point 0 is nondegenerate if 

de t( Cl 
2 

f ( 0 ) ) f O • 
Clz. Clz, 

l. J 

PROPOSITION (Morse lemma). If f has a nondegenerate critical point 

in 0 then there is a biholomorphic change of coordinates <j> such that 
2 2 

f<j>(z
0

, ••• ,zn) = f(O)+z
0

+ ... +zn. 

More generally one has 

THEOREM. if 0 is an isolated critical point of f then there is a loca~ 

biholomorphic change of coordinates $ such that f$ is equal to a finite 

part of the Taylor expansion of f around O. 

A proof can e.g. be found in [16], chapter 11. It uses the 

Nullstellensatz for holomorphic function germs, which shows that df 

is a finite mapping, and next a theorem of Tougeron. One can give 
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a bound for the degree of the Taylor approximation in this theorem 

in terms of the ideal (a0f, ..• ,8nf) c JC<<20 , ..• ,2n>> generated by 

the partial derivatives of f. If the critical point is nondegenerate 

this number is 2 and one reobtains the Morse lemma. 

From now on we consider polynomials with an isolated critical 

point in 0 E JCn+l. (This is justified by the theorem above.) 

7.2. Right equivalence and simple germs 

Two germs of holomorphic mappings f,g are right equivalent 

(or are of the same type) if there exists a biholomorphic change of 

coordinates ~ such that g = f~. A germ f is called simple if there 

is a finite list of germs such that every small perturbation of f is 

equivalent to a germ from this list. 

n+1 
THEOREM (ARNOLD [6]). f: JC => U + JC is simple if f is equivalent 

to a germ in the following list: 

k+1 2 2 2 (k ;,: 0) x + y + 22 + ... + 2 type ~ n 

2 k-1 2 2 
type (k ;,: 4) x y + y + 22 + ... + 2 Dk n 

3 4 2 2 
x + y + z2 + ... + z type E6 n 

3 3 2 2 
x + xy + z2 + ... + z type E7 n 

3 + 5 2 2 
type E

8 
x y + z2 + ... + z 

n 

7.3. Morsifications 

Let f be a polynomial with isolated critical point in O E JCn+l 

A morsification of f is a polynomial mapping F: :n:::n+2 
+ JC such that 

F(2,0) = f(2) and fA (z) F(2,A) has only nondegenerate critical 
n+l 

points in a neighbourhood of 0 E JC for small enough A r 0. 

Morsifications always exist. In fact, one can take F(z,A) 

f(z) + ~~ 
0 

A,z. for suitable (generic) A. = A. (A). 
Li= i i i i 
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7.4. Milnor number 

n+l For a small enough neighbourhood of 0 in JC and small enough 

A 'I 0 the number of critical points of f A in this neighbourhood is 

constant. This number i1 (f) is called the Milnor number of f. This 

definition is independent of the choice of the Morsification. In fact 

ii (f) 
l:<<z

0
, ... ,zn>> 

<a
0
f, ... ,anfl 

which is finite if and only if f has an isolated critical point. For 

different characterisations of u(f) cf. [39]. 

7.5. Examples of Morsifications 

We now give a n:miber of examples of Morsifications of polynomi­

als :n:2 
+ X:: with real coefficients. The Morsifications given below 

all have the property that all critical points are real and all saddle 

points have the same critical value. Let 

if m 2k 

{ 

(x+A) 2 (x+2A) 2 
•.• (x+k/..) 2 

2 2 (x+A) ••. (x+(k-1)).) (x+k/..) if m 2k- 1. 

EXAMPLE (i). Morsifications for type Am. 

Polynomial m+l 2 
x - y 

2 
Morsification: $m+l (x,A) - y 

Picture of the zero level 

'\~~~~/ 
/~~~C/ .. , 

8888( 
m 9 

m 8 
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EXAMPLE (ii). Morsifications for type D 
m 

m-1 2 m-2 2 Polynomial x - xy = x(x -y ) 
2 Morsification: x(~m_2 (x,A)-y ) 

Picture of the zero level 

• 
I" 

I/ 

"~~~~/· 
/·c;·C7·~·C7·~, 

• 
I" 

m 

m 

In the following three examples one first constructs a deformation 

11 

12 

fA with one critical point in 0 and the othe·r critical points non­

degenerate. Moreover, the lowest degree part gA of fA is a polynomial 

of type D 4 , which factors over lR in three different linear factors. 

Let gA,µ be a Morsification for gA. Then forµ small enough 

f = g + (f,-g,) js a Morsification off, since the nondegenerate 
A,µ A,µ {\ {\ " 

critical points of fA survive and stay approximately in the same place. 

For appropriateµ= µ(A) this gives us a Morsification for f. 
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EXAMPLE (iii). Morsification for type E6 

Polynomial 

Deformation 

Morsification: 

3 4 
:x: + y 

2 2 4 x(x -/...y ) + y 
2 2 4 (x-µ) (x -/...y ) + y 

Pictures of the zero level for various /...,µ 

/ 
/...=O,µ=O /... > 0, µ 0 

EXAMPLE (iv). Morsification for type E
7 

3 3 2 3 
Polynomial x + xy = x(x +y ) 

2 3 2 Deformation x(x +y +/...y -6/...xy) 
2 3 2 Morsification: (x-µ) (x +y +/...y -6/...xy) 

Pictures of the zero level for various /...,µ 

0 /... > O, µ 0 

() 
"/'1: 

•------o 

/~\ 

~ 
/... > 0, /... >> µ > 0 

I .. @ 
.-----;; 

\ / 

I 
I 

• 

\/ 
I 

I 
I 

~ 
i'--

A > O, /... >> µ > 0 

293 
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EXAMPLE (v) • 

Polynomial : 

Deformation 

HAZEWINKEL ET AL. 

Morsification for type ES 
3 5 

x + y 

x3 + y3(y-S)2 + 3a.xy2(y-S) + 2a.2(x2-y) 

Pictures of the zero levels 

Cl. = s 0 Cl. >> s > 0 morsi fica tion 

7.6. Separatrices 

For the examples given above in 7.5 consider the gradient vector 
. af af fields (ax(x,y,\) 1-ay(x,y,\)), A~ 0 and construct the corresponding 

separatrix diagrams. These consist of a number of vertices, corre­

sponding to the critical points of f and a number of lines, joining 

these vertices, where there is a line joining two given vertices if 

and only if there is an integral curve which joins the two corre­

sponding critical points. An example is E6 : 

I 

In the examples (i) - (v) of 7.5 above the separatrix diagrams 

of the Morsifications of the polynomials given are precisely the 

Coxeter-Dynkin diagrams An' Dn' E6 , E7 , ES. 

The following example shows that Morsifications and separatrix 

diagrams are not unique. Consider x4 - xy2 = x(x3-y2) which is of 
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type o5 • Two Morsifications of this polynomial are 

2 2 x((x+/..) (x+2A) -y) 

and 
3 2 2 

(x+2/..)((x+A) (x+2A)-y) 

with zero level pictures and separatrix diagrams 

7.7. The Milnor fibration 

As above we consider a polynomial f: ICn+l + :X::: with f(O) 0 

and 

Let 

isolated critical point in 0. 
-1 

X r = B n f (Dr\{O}), where 
E, u E u 

{ z E :X::: I II zll :> o} and 

{z e: :JCn+l I llzll :>d. Let 

FE,t =BE n f- 1 (t). The restric-

tion f: xE,o + o0\{0} is, for 

E and o sufficiently small, a 

locally trivial fibre bundle 

(cf. MILNOR [37]). Moreover, 

in the case of an isolated 

critical point at 0 the fibre 

F = F is homotopy equivalent E,o 
to a wedge of µ (the Milnor 

number) copies of the n-sphere Sn. 

Thus Hn(F) = 2'Zµ, Ho(F) = Zl, 

H . (F ) = 0 for i 'i' 0, n. 
l. 

n+1 
:r: 

f (0) 

295 
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2 2 The equations for the fibre F are EXAMPLE. Let f = z
0 

+ zl. 
2 

+ lz~I 5 £, z~ + zi = 8. Writing lz
0

1 zj x. + iy. we find 
J J 2 2 2 2 2 2 2 y2 0 t 2xoyo 2xlyl 0. XO + xl + Yo + Y1 5 c, XO + xl - Yo - + 

1 
Thus x2 + x2 0 + 2 2 h. h gives 

0 1 Yo + Y1 w ic 

Thus F is dif feomorphic to the bundle of tangent vectors to the 

circle s1 , the circle s1 
itself being obtained for y0 = y 1 

= 0. 

The pictures of the real points of the situation look as follows: 

/ 

I 

• 

_, -- - -

' 

/ 

\ 

\ 

I 

I 
I 

I 
I 

I 

s 1 
is the level line 

2 2 
x0 + x

1 
= o 

/ 
• • 

s1 intersects IR
2 in two points 

of the level lines x2 - x2 
= o 

0 1 

THEOREM (TJURINA [ 51] I BRIESKORN [ 13]) • Let n = 2 and let F 0-+ F G 
-1 £I £I 

be the resolution of the isolated singularity at 0 of f (0) • Then 

f is simple iff F O is diffeomorphic with F O" 
£I £I 

Cf. also section 5 above (especially 5.11 and 5.12) for a 

statement on the exceptional fibre of F 
0 

-+ F 0
. 

s, c, 

7.8. Monodromy 

Using the local triviality of the fibre bundle f: xc,o-+ D0\{0}, 

every piecewise smooth path w: [0,1]-+ D
0
\{0} can be made to induce 

a diffeomorphism Fw(O) -+ Fw(l). (In fact one defines a so-called 
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connection.) Let w(t) = oe2nit. The corresponding diffeomorphism 

F + F is called the geometric monodromy; the induced map on homology 

h: Hn(F) + Hn(F) is called the algebraic monodromy. 

7.9. Vanishing cycles 

:r:: 

Now let fA be a given Morsification of f. Let the critical points 

of f (for a given small A) be 

z. '-----+ 
1 

6 

diffeo 
F. F. 

1 

c
1

, .•• ,cµ and let the corresponding 

critical values be d
1

, .•• ,dµ. For 

small A we obtain a fibration over 

D\{d
1

, ... ,dµ}, which, over ao, the 

boundary of D, is equivalent to the 

Milnor fibering of f. (Cf. 7.7 

above.). Near every ci we have 

again a Milnor fibration. Let 

t
1 , ... ,tµ be values near d1 , ... ,d 

-1 . ' µ such that locally f (ti) is a 

Milnor fibre near c. • Set F. = F t • 
1 1 e:,, i 

Since c. 
1 

is nondegenerate each 

fibre Fi contains an n-sphere Zi. 

And using paths (as in the picture) 

from o to ti we find embeddings 

In this way we findµ embedded n-spheres s
1

, ... ,Sµ in F. These are 

called the vanishing cycles. 

THEOREM (BRIESKORN [14]). The homology classes [s
1
J, ... ,[sµ] are a 

basis for Hn(F). 

7.10. Intersection form 

Now consider the intersection numbers <S.,S.> of the spheres S; 
1 J • 

and S .. The intersection form<,> is defined on H (F) and (using small 
J n 

deformations of representing cycles if necessary) can be computed by 

counting intersection points (with multiplicities). 
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The intersection form is symmetric if n is even and antisymmetric if 

n is odd. If n is even then <S. ,S.> = (-1)k2. DURFEE [22] proved that 
J. J 

the intersection matrix (<S.,S .>) determines the topology of the 
J. J -

Milnor fibration. 

THEOREM (TJURINA [51]). Let n = 2 (mod 4). Then f is simple if and 

only if the intersection form is negative definite. 

7.11. Separatrix diagrams (contined) 

We return to real Morsifications and the separatrix diagram. 

3 ') 
EXAMPLE. f = x - y~ with Morsification fA. The intersection numbers 

of the vanishing cycles can be 

computed from the picture of 

the Morsification. In this 

example we have two vanishing 

cycles (one near c
1

, the other 

near c
2

) . After transporting 

them to the same level curve 
-1 

fA (a) we see that their 

intersection number is one. 

THEOREM (GUSEIN-ZADE [28], cf. also A'CAMPO [2] for a slightly 

different version) . Let f be a polynomial in two variables with real 

coefficients and let fA be a Morsification with real critical points 

and let all saddle points have the same critical value. Then 

is a saddle point and c. a minimu~, then <S. ,S.> is 
J J. J 

(i) if c. 
J. 

equal to the number of integral curves joining ci and cj; 

is a maximum and c. a saddle point, then <S. ,S.> is 
J J. J 

(ii) if c. 
J. 

equal to the number of integral curves joining ci and cj; 

(iii) if c. is a minimum and c. a maximum, then <S.,S.> is equal to 
J. J J. J 

(iv) 

the number of families of integral curves joining ci with cj; 

in all other cases <S. ,S.> 
J. J 

o. 

If g(x,y,z) = f (x,y) + z2 one obtains almost the same result. 

In fact the critical points of g all satisfy z = 0 and (otherwise) 
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coincide with those of f. Thus µ(f) = µ(g). The intersection numbers 

are equal to -l<s.,s.>I in the maximum-minimum case and equal to 
l. J 

l<Si,sj>I in all other cases except if i = j then <Si,Si> = -2. 

More or less as usual one represents the intersection matrix by 

a diagram of µ vertices, with two vertices joined by a number of 

lines equal to the intersection number of the corresponding vanishing 

cycles. Negative intersection numbers are represented by dotted lines 

(and no lines are drawn joining a vertex to itself). 

2 2 EXAMPLE. (x +y -A)X. 

(
-( ~2 _02 ~ 1 ) 

-1 1 -2 

3 

1<> 
2 

If there are only saddle points and minima we do not find negative 

entries off the diagonal and we obtain exactly the separatrix di~gram. 

THEOREM (A'CAMPO [3]). The following are equivalent: 

(i) f has a Morsirication with two critical values; 

(ii) the diagram of the intersection matrix is a tree; 

(iii) f is simple. 

A'CAMPO [2] and GUSEIN-ZADE [29] have shown that for an arbitrary 
2 ~ 2 

polynomial f: IC + :n: one can always find a f: :JC + JC with real 

coefficients, the same intersection matrix and admitting a Morsifica­

tion fA, which satisfies the conditions of the theorem above. In fact 

f and f can be joined by a family of constant Milnor number. 

7.12. The monodromy group 

The monodromy group Wf is the image of the mapping 

TI l (D\{d1, ... ,dµ}) + Aut(Hn (F)), 

cf. 7.9 above. Given a Morsification off one considers paths wi as 

indicated in the picture on the next page. 
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(First go from o to t., then go 
J. 

around di, then back from ti to o.) 
Let a.: H (F) + H (F) be induced 

J. n n 
by the diffeomorphism corresponding 

tow. (cf. 7.8 above). 
J. 

THEOREM (LAMOTKE [36]). 

(i) 

(ii) 

(iii) 

a
1

, ••• ,a generate Wf; 
µ (n-l)n/2 

ai (x) = x- (-1) <x,Si>Si; 

h = a oa 
1 

o ... o a
1 

is the algebraic monodromy. µ µ-

Let n: 2 (mod 4). Then Wf is a Coxeter group if the intersection 

form<,> is negative definite. 

THEOREM. f is simple if and only if Wf is finite. 

7.13. Bibliographical note 

General references for this section are [5], [6], [12] and the 

very recent survey paper [30]. These papers are suitable as intro­

ductions and summaries of the subject. Of these papers [12] also 

pays attention to singularities of differential equations. 

8. CONCLUDING REMARKS AND ADDITIONAL BIBLIOGRAPHICAL NOTES 

8.1. Systems of lines at angles of TI/3 and TI/2 

A star is a planar set of three lines which all make an angle of 

TI/3 with each other. A set of lines in Euclidean n-space which 

mutually have the angles TI/3 or TI/2 is star closed if with any two 

it also contains the third line of a star. In [17] all such indecom­

posable (same notion as in 3.12 (iii)) sets of lines are determined, 

They are the root systems An, Dn, E6 , E7 , ES. These are all maximal apart 

from As c ES' DB c Es, A7 c E7. 



COXETER-DYNKIN DIAGRAMS 301 

8.2. Species and their representations 

If one extends the notion of quiver a bit (cf. section 6 above) 

the "missing" Dynkin diagrams Bn' en, F4 , G2 also appear.. More 

precisely: let k be a field, a k-species (GABRIEL [24]), 

(K.,.M.)i . I is a finite set of fields K., which are finite dimen-
1. l. J ,Je: 1. 

sional over a common central subfield k, together with a set of 

Ki-KJ. bimodules .M., such that for all a e: k, me: .M., am= ma, and 
1. J 1. J 

such that iMj is finite dimensional over k (for all i,j). The diagram 

of a species is defined as follows. The set of vertices is I, and 

there are 

di~ ( . M. ) x di~ ( . M. ) + di~ ( . M. ) x di~ ( . Mi) 
i 1. J j 1. J j J 1. i J 

edges between the vertices i and j. In the special case .M. "'0 and 
J 1. 

dimKi (iMj) < dimKj(iMj) we shall pictorially represent these facts 

by 

i -~· j 

A representation (Vi'jcpi) of the k-species (Ki'iMjli,je:I is a 

set of right vector spaces V
1
• over K. together with a set of K.-linear 

1. J 
mappings 

. cp . : V. ®K . M . -+ V . , 
J 1. 1. il. J J 

i,j e: I. 

A homomorphism of representations a: (Vi'jcpi) -+ (Vi,jcJii) is 

a set of Ki-linear mappings ai: Vi-+ Vi such that 

A k-species if a k-quiver if Ki = k for all i. Such a quiver is 

completely determined by its diagram where the number of arrows going 

from i to j is equal to the k-dimension of jMi. 

There is an obvious notion of direct sum and being indecompos­

able for representations of k-species. A k-species is of finite type 

if it has only finitely many non isomorphic indecomposable represen­

tations. 
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THEOREM (GABRIEL [24], DLAB-RINGEL [20]). A k-species is of finite 

type if and only if its diagram is a finite disjoint union of the 

Dynkin diagrams An' Bn' en, Dn' E6 , E7 , ES, F4 , G2 . Moreover the 

number of indecomposable representations of a K-species of the type 

of one of these Dynkin diagrams is equal to the number of positive 

roots of the corresponding root system. 

S.3. Rational singularities 

Let V be the germ at v of a normal two-dimensional complex 

analytic space with singularity at v. (For definitions cf. [53]; 
-1 for example V = f (0), where f(x,y,z) is the germ at 0 of a complex 

analytic function of 3 variables with isolated critical point at O.) 

Let TI: M + V be a resolution of the singularity. The genus p of V is 
1 

the dimension of the complex vector space H (M,OM) where OM is the 

sheaf of holomorphic functions on M. The analytic set V has a rational 

singularity at v if p = 0. There are many characterizations of ration­

al singularities. One of them says that V has a rational singularity 
-1 iff V is isomorphic (as a germ of a complex analytic space) to f (0) 

with f(x,y,z) one of the polynomials of type An' Dn' E6 , E7 , ES dis­

cussed above; cf. 7.2. For more characterizations, cf. [21], and 

also [53], [15], [56]. 

S.4. Finite subgroups of SU(2) 

The group SU(2) acts linearly on x:: 2 . The discrete subgroups of 

SU(2) are the so-called binary cyclic, dihedral, tetrahedral octa­

hedral and icosahedral groups. (By factoring out the centre {±I} one 

obtains the corresponding group of rotations of the sphere.) The 

quotient manifold M = :n:2/r where r is a discrete subgroup of SU(2) 

is an algebraic surface with singularity. The ring of polynomials in 

two variables invariant under r has 3 generators. There is one rela­

tion (syzygy) connecting these 3 generators and this equation then 

is the equation of Mas a surface in :n:3 . The singularities (of poly­

nomials) which one obtains in this way are respectively of type An 

(cyclic), Dn (dihedral), E6 (tetrahedral), E7 (octahedral), ES 

(isosahedral). Cf. [21], [5] and [15]. 



COXETER-DYNKIN DIAGRAMS 303 

REFERENCES 

[1] ARAKI, S., On root systems and an infinitesimal classification 

of irreducible symmetric spaces, J. of Math. Osaka City 

Univ . ..Q (1962) 1-34. 

[2] A'CAMPO, N., Le groupe de monodrornie du deploiement des singula­

rites isolees de courbes planes r, Math. Ann. 213 (1975) 

1-32. 

[3] A'CAMPO, N., Le groupe de monodrornie du deploiement des singula­

rites isolees de courbes planes II, Proc. Int. Congres Math. 

Vancouver 1974, Vol. 1, 395-404. 

[4] ARNOL'D, V.I., On matrices depending on parameters, Usp. Mat. 

Nauk ~' 2(1971) 101-114 (Translation: Russ. Math. Surv. 

~. 2(1971) 29-43). 

[5] ARNOL'D, V.I., Critical points of smooth functions and thei1: 

normal forms, Usp. Mat. Nauk 30, 5(1975) 3-66 (Transl~tion: 

Russ. Math. Surveys 30, 5(1975) 1-75). 

[6] ARNOL'D, V.I., Critical points of smooth functions, Proc. Int. 

Congress Math. Vancouver, 1974, Vol. 1, 19-39. 

[7] BERNSTEIN, I.N., GELFAND, I.M. & V.A. PONOMAREV, Coxeter functors 

and Gabriel's theorem (Russian), Usp. Mat. Nauk 28 2(1973) 

19-33 (Translation: Russ. Math. Surveys~' 2(1973) 17-32). 

[B] BOURBAKI, N., Groupes et algebres de Lie, Ch. 4,5,6 (Groupes de 

Coxeter et systemes de 'l.'its; Groupes enqendres par des 

reflexions; systemes de racines), Hermann, 1968. 

[ 9] BOURBAKI, N., Groupes et algebres de Lie, Ch. 7, B (Sous-a.Igebres 

de Cartan, elements reguliers; Algebres de Lie semisimples 

deployees), Hermann, 1975. 

[10] BRENNER, S., Quivers with commutativity conditions and some 

phenomenology of forms, Leet. Notes Math. 488, Springer, 

1975, 29-53. 



304 HAZEWINKEL ET AI,. 

[ 11] BRENNER, s., Endomorphism <'llg~)bras of vector spaces with dis-

t insruished set of subspaces, J. of Algebra .§_(1967) 100-114. 

l 12] BRIESKORN, E., S.ingular i ta ten, ,T. ber. Deutsche Math. Vere in 78, 

H2(1976) 93-112. 

[ 13] BRIF.SKORN, E., Die:' 11uflosung d£~r ratiorialen Singulari ta ten 

holomorpher Abbilduns:ren, M<lth. Ann. ~- (1968) 255-270. 

[ 14] BRIESKORN, E., Die Monodromie der isolierten Singularitaten von 

Hyperflachen, Manuscripta Math. ±_ (1970) 103-161. 

[ 15] BRIESKORN, E., Singular elements of semi simple algebraic groups, 

Actes congr. Inst. Math. (Nice 1970), Tome 2, 279-284, 

Gauthier-Villars, 1971. 

[ 16] BROCKER, TH. , Differentiable germs and catastrophes, London Math. 

Soc. Leet. Notes .!2_, Cambridge Univ. Pr., 1975. 

[17] CAMERON, P.J., GOETHALS, J.M., SEIDEL, J.L. & E.E. SHULT, Line 

graphs, root systems and elliptic geometry, J. of Algebra 

~· 1(1976) 305-327. 

[18] CARTAN, E., Les groupes reels simples finis et continus, Ann. Ee. 

Norm Sup. ll_ (1914) 263-355. 

[19] COXETER, H.S.M. & w.o.J. MOSER, Generators and relations for dis-

. 2nd d 1965 crete groups, Springer, e ., . 

[20] DLAB, v. & C.M. RINGEL, On algebras of finite representation type, 

J. of Algebra l2_ (1975) 306-394. 

[21] DURFEE, A.H., Fourteen characterizations of rational double points 

and simple critical points (to appear). 

[22] DURFEE, A.H., Fibered knots and algebraic singularities, Topology 

.!.l (1974) 47-59. 

[23] GABRIEL, P., Unzerlegbare Darstellungen I, Manuscripta Math. 6 

(1972) 71-103. 

[24] GABRIEL, P., Indecomposable representations II, Symp. INDAM XI, 

Acad. Press, 1973, 81-104. 



COXETER-DYNKIN DIAGRAMS 305 

[25] GANTMACHER, F.R., Matrizenrechnung, Vol. II, Deutsche Verlag der 

Wissenschaften, 1959. 

[26] GELFAND, I.M. & V.A. PONOMAREV, Indecomposable representations 

of the Lorentz group (Russian), Usp. Mat. Nauk 23 (1968) 

3-60. 

[27] GELFAND, I.M. & V.A. PONOMAREV, Free modular lattices and their 

representations (Russian), Usp. Mat. Nauk ~' 6(1974) 3-58 

(Translation: Russian Math. Surv. ~' 6(1974) 1-56). 

[28] GUSEIN-ZADE, S.M., Intersection matrices for certain singularities 

of functions of two variables (Russian), Funk. Analiz i 

pril . .§_, 1(1974) 11-15 (Translation Funct. Analysis Appl . 

.§_, 1 (1974) 10-13). 

[29] GUSEIN-ZADE, S.M., Dynkin diagrams for singularities of functions 

of two variables (Russian), Funk. Analiz i pril . .§_, 4(1974) 

23-30). 

[30] GUSEIN-ZADE, S.M., The Monodromy group of isolated singularities 

of hypersurfaces (Russian}, Usp. Mat. Nauk ~' 2(1977) 

23-66. 

[31] HELGASON, S., Differential geometry and symmetric spaces, Acad. 

Press, 1962. 

[32] HESSELINK, W., Singularities in the nilpotent scheme of a classic­

al group, Trans. Amer. Math. Soc. 222 (1976) 1-32. 

[33] HOCHSCHILD, G., Structure of Lie groups, Holden-Day, 1965. 

[34] HUMPHREYS, J.E., Introduction to Lie-algebras and representation 

theory, Springer, 1972. 

[35] HUMPHREYS, J.E., Linear algebraic groups, Springer, 1975. 

[36] LAMOTKE, K., Die Homologie isolierter Singularitaten, Math. z. 
143 (1975) 27-44. 

[37] MILNOR, J., Singular points of complex hypersurfaces, Ann. Math. 

Studies .§1_, Princeton Univ. Pr., 1968. 



306 HAZr::WINKEL ET AL. 

[ 38] NAZAROVA, L.A., Re•presentations of quivEirs of .infi.nite type 

lRussia.nl, Izv. Akad. Nauk SSSR Ser. Mat:. 2_~ ( 1'373) 7S2-791 

(Translat.ion: Math. USSR rzv. 7 (1973) 749-792. 

[ Yl] ORLIK, P., The mult.ip.licity of ci holomorphic map at an isolated 

cr.itical point:, Pr·oc. Nord.le Suumwr School Math., 08lo 

1976 (to appear) • 

[40] SERRE, J.P., 1Ugebres de Lie-simples complexes, Benjamin, 1966. 

[41] SHAFAREVICH, I.R., Basic algebraic geometry, Springer, 1974. 

[42] SPRINGER, T.A., The unipotent variety of a semi-simple group, 

Alqebraic geometry (Int. Coll. Bombay, 1968), Oxford Univ. 

Pr., 1969, 373-391. 

[43] STEINBERG, R., Conjugacy classes in algebraic groups, Leet. Notes 

in Math. 366, Springer, 1974. 

[44] STEINBERG, R., On the desingularization o.f the unipotent variety, 

Inv. Math. ~ ( 1976) 209-224. 

[45] TITS, J., Surles analogues alg6briques des groupes semisimples 

complexes, Coll. d'Alg. Sup. CBRM (Bruxelles 1956), 

Ceuterick, Louvain, 1957, 261-289. 

[46] TITS, J., Groupes semisimples complexes et geom6trie projective, 

Sem. Bourbaki, exp. 112 (Fevrier 1955). 

[47] TITS, J., Geom6tries JXJlyedriques et groupes simples, II6 Reunion 

de Math. d'Expression Latine (Florence 1961), Ed. Cremonese, 

Roma (1962) 66-88. 

[48] TITS, J., Geom6tries JXJlyedriques finies, Simp. Geom. Finita 

(Roma 1963), Rendiconti di Mat. 23 (1964) 156-165. 

[49] TITS, J., Buildings of spherical typf.~ and finite BN-pairs, 

Leet. Notes Math. 386, Springer, 1974. 

[50] TITS, J., On buildings and their applications, Proc. Int. Congres 

Math. 1974 (Vancouver), Vol. I, 209-220, can. Math. Congr., 

1975. 



COXETER-DYNKIN DIAGRAMS 307 

[51] TJURINA, G.N., The topological properties of isolated singula­

rities of complex spaces in codimension one (Russian), 

Izv. Akad. Nauk SSSR Ser. Mat. ~ (1968) 605-620. 

(Translation: Math. USSR Izv. ~ (1968) 557-571). 

[52] Problems of present day mathematics, in: Mathematical Develop­

ments arising from Hilbert's Problems, F.E. BROWDER (ed.}, 

Proc. Symp. Pure Math.~, Amer. Math. Soc., 1976, 35-80. 

[53] LAUFER, H., Normal two-dimensional singularities, Ann. of Math. 

Studies 21.• Princeton Univ. Pr., 1971. 

[54] BOREL, A. & J. DE SIEBENTHAL, Les sous-groupes fermes de rang 

maximum des groupes de Lie clos, Comm. Math. Helv. 23 

(1949) 200-221. 

[55] LUSZTIG, G., On the finiteness of the number of unipotent 

classes, Inv. Math. ii_ (1976) 201-213. 

[56] HESSELINK, W., Cohomology and the resolution of singularitiee 

of the nilpotent variety, Math. Ann. 223 (1976) 249-252. 

(Received, April 8, 1977) 


