TWISTED LUBIN-TATE FORMAL GROUP LAWS, RAMIFIED WITT VECTORS AND (RAMIFIED) ARTIN-HASSE EXPONENTIALS

M. HAZEWINKEL

zafing

REPORT 7712/M

ERASMUS UNIVERSITY ROTTERDAM, P.O. BOX 1738, ROTTERDAM, THE NETHERLANDS

TWISTED LUBIN-TATE FORMAL GROUP LAWS, RAMIFIED WITT VECTORS AND (RAMIFIED) ARTIN-HASSE EXPONENTIALS.

by Michiel Hazewinkel

ABSTRACT.

For any ring R let $\wedge(R)$ denote the multiplicative group of power series of the form $1 + a_1 t + \dots$ with coefficients in R. The Artin-Hasse exponential mappings are homomorphisms $W_{\mathbf{p},\infty}(\mathbf{k}) \rightarrow \wedge (W_{\mathbf{p},\infty}(\mathbf{k}))$, which satisfy certain additional properties. Somewhat reformulated the Artin-Hasse exponentials turn out to be special cases of a functorial ring homomorphism E: $W_{p,\infty}(-) \rightarrow W_{p,\infty}(-)$ $W_{p,\infty}(W_{p,\infty}(-))$, where $W_{p,\infty}$ is the functor of infinite length Witt vectors associated to the prime p. In this paper we present ramified versions of both $W_{p,\infty}(-)$ and E, with $W_{p,\infty}(-)$ replaced by a functor $W^{\rm F}_{q\,\infty}(-)$, which is essentially the functor of q-typical curves in a (twisted) Lubin-Tate formal group law over A, where A is a discrete valuation ring, which admits a Frobenius like endomorphism σ (we require $\sigma(a) \equiv a^q \mod m$ for all $a \in A$, where m is the maximal ideal of A). These ramified-Witt-vector functors $W_{q,\infty}^{F}(-)$ do indeed have the property that, if k = A/m is perfect, A is complete, and ℓ/k is a finite extension of k, then $W_{q,\infty}^{F}(\ell)$ is the ring of integers of the unique unramified extension L/K covering ℓ/k .

CONTENTS.

1. Introduction

2. The Functional Equation Integrality Lemma

- 3. Twisted Lubin-Tate Formal A-modules
- 4. Curves and q-typical Curves
- 5. The A-algebra Structure on $C_q(F;-)$, Frobenius and Verschiebung
- 6. Ramified Witt Vectors and Ramified Artin-Hasse Exponentials.

Sept. 13, 1977

I. INTRODUCTION.

For each ring R (commutative with unit element 1) let $\Lambda(R)$ be the abelian group of power series of the form $1 + r_1 t + r_2 t^2 + ...$ Let $W_{p,\infty}(R)$ be the ring of Witt vectors of infinite length associated to the prime p with coefficients in R. Then the "classical" Artin-Hasse exponential mapping is a map

E:
$$W_{p,\infty}(k) \rightarrow \Lambda(W_{p,\infty}(k))$$

defined for all perfect fields k as follows. (Cf e.g. [1] and [13]). Let $\Phi(y)$ be the power series

$$\Phi(y) = \prod_{\substack{(p,n)=1}} (1-y^n)^{\mu(n)/n},$$

where $\mu(n)$ is the Möbius function. Then $\Phi(y)$ has its coefficients in \mathbb{Z}_p , cf e.g. [13]. Because k is perfect every element of $\mathbb{W}_{p,\infty}(k)$ can be written in the form $\underline{b} = \sum_{i=1}^{\infty} \tau(c_i) p^i$, with $c_i \in k$, and $\tau: k \neq \mathbb{W}_{p,\infty}(k)$ the unique system of multiplicative representants. One now defines

E:
$$W_{p,\infty}(k) \rightarrow \Lambda(W_{p,\infty}(k)), E(\underline{b}) = \prod_{i=0}^{\infty} \Phi(\tau(c_i)t)^{p^i}$$

Now let W(-) be the ring functor of big Witt vectors. Then W(-) and \wedge (-) are isomorphic, the isomorphism being given by $(a_1, a_2, \ldots) \rightarrow \prod_{i=1}^{\infty} (1-a_i t^i)$, cf [2]. Now there is a canonical quotient i=1map W(-) $\rightarrow W_{p,\infty}(-)$ and composing E with \wedge (-) \simeq W(-) and W(-) $\rightarrow W_{p,\infty}(-)$ we find a Artin-Hasse exponential

E:
$$W_{p,\infty}(k) \rightarrow W_{p,\infty}(W_{p,\infty}(k))$$

<u>Theorem</u>. There exists a unique functorial homomorphism of ring-valued functors E: $W_{p,\infty}(-) \rightarrow W_{p,\infty}(W_{p,\infty}(-))$ such that for all n = 0,1,2,... $w_{p,n} \circ E = \underline{f}^n$, where \underline{f} is the Frobenius endomorphism of $W_{p,\infty}(-)$ and where $w_{p,n}: W_{p,\infty}(-)) \rightarrow W_{p,\infty}(-)$ is the ring homomorphism which assigns to the sequence $(\underline{b}_0, \underline{b}_1,...)$ of Witt-vectors the Witt-vector $\underline{\underline{b}}_{o}^{p^{n}} + p \underline{\underline{b}}_{1}^{p^{n-1}} + \cdots + p^{n-1} \underline{\underline{b}}_{n-1}^{p} + p^{n} \underline{\underline{b}}_{n}.$

It should be noted the classical definition of E given above works only for perfect fields of characteristic p > 0. In this form theorem 1.1 is probably due to Cartier, cf [5].

Now let A be a complete discrete valuation ring with residue field of characteristic p, such that there exists a power q of p and an automorphism σ of K, the quotient field of A, such that $\sigma(a) \equiv a^q \mod m$ for all $a \in A$, where m is the maximal ideal of A. It is the purpose of the present paper to define ramified Witt vector functors

$$\mathbb{W}_{q,\infty}^{F}(-): \underline{Alg}_{A} \rightarrow \underline{Alg}_{A},$$

where \underline{Alg}_{A} is the category of A-algebras, and a ramified Artin-Hasse exponential mapping

E:
$$W_{q,\infty}^{F}(-) \rightarrow W_{q,\infty}^{F}(W_{q,\infty}^{F}(-))$$
.

There is such a ramified Witt-vector functor $W_{q,\infty}^{F}$ associated to every twisted Lubin-Tate formal group law F(X,Y) over A. This last notion is defined as follows: let $f(X) = X + a_2 X^2 + \ldots \in K[[X]]$ and suppose that $a_i \in A$ if q does not divide i and $a_{qi} - \omega^{-1}\tau(a_i) \in A$ for all i for a certain fixed uniformizing element ω . Then $F(X,Y) = f^{-1}(f(X) + f(Y)) \in A[[X,Y]]$, and the formal group laws thus obtained are what we call twisted Lubin-Tate formal group laws. The Witt-vector-functors $W_{q,\infty}^{F}(-)$ for varying F are isomorphic if the formal group laws are strictly isomorphic. Now every twisted Lubin-Tate formal group law is strictly isomorphic to one of the form

$$\begin{split} G_{\omega}(X,Y) &= g_{\omega}^{-1}(g_{\omega}(X) + g_{\omega}(Y)) \text{ with } g(\omega)(X) = X + \omega^{-1}X^{q} + \omega^{-1}\sigma(\omega)^{-1}X^{q^{2}} + \\ \omega^{1}\sigma(\omega)^{-1}\sigma^{2}(\omega)^{-1}X^{q^{3}} + \dots \text{ which permits us to concentrate on the case} \\ F(X,Y) &= G_{\omega}(X,Y) \text{ for some } \omega; \text{ the formulas are more pleasing in this case, especially because the only constants which then appear are the <math>\sigma^{i}(\omega)$$
, which is esthetically attractive, because ω is an invariant of the strict isomorphism class of F(X,Y).

The functors $W_{q,\infty}^F$ and the functor morphisms E are Witt-vectorlike and Artin-Hasse-exponential-like in that

- (i) $W_{q,\infty}^{F}(B) = \{(b_{0}, b_{1}, ...) | b_{i} \in B\}$ as a set valued functor and the A-algebra structure can be defined via suitable Witt-like polynomials $w_{q,n}^{F}(Z_{0}, ..., Z_{n})$; cf below for more details.
- (ii) There exist a σ -semilinear A-algebra homomorphism \underline{f} (Frobenius) and a σ^{-1} -semilinear A-module homomorphism \underline{V} (Verschiebung) with the expected properties, e.g. $\underline{f}\underline{V} = \omega$ where ω is the uniformizing element of A associated to F, and $\underline{f}(\underline{b}) \equiv \underline{b}^{q} \mod \omega W_{q,\infty}^{F}(B)$.
- (iii) If k, the residue field of A, is perfect and l/k is a finite field extension, then $W_{q,\infty}^F(l) = B$, the ring of integers of the unique unramified extension L/K which covers l/k.
 - (iv) The Artin-Hasse exponential E is characterized by

 $w_{q,n}^{F} \circ E = \underline{f}^{n}$ for all n = 0, 1, 2, ...

I hope that these constructions will also be useful in a classfield theory setting. Meanwhile they have been important in formal A-module theory; the results in question have been announced in two notes, [9] and [10], and I now propose to take half a page or so to try to explain these results to some extent.

Let R be a Z (p)-algebra and let Cart (R) be the Cartier-Dieudonne ring. This is a ring "generated" by two symbols f,V over $W_{p,\infty}(R)$ subject to "the relations suggested by the notation used". For each formal group F(X,Y) over R let C (F;R) be its Cart (R) module of p-typical curves. Finally let $\widehat{W}_{p,\infty}(-)$ be the formal completion of the functor $W_{p,\infty}(-)$. Then one has

- (a) The functor $F \mapsto C_p(F; \mathbb{R})$ is representable by $\hat{W}_{p,\infty}([3])$
- (b) The functor F→ C_p(F;R) is an equivalence of categories between the category of formal groups over R and a certain (explicitly describable) subcategory of Cart_p(R) modules ([3]).

(c) There exists a theory of "lifting" formal groups, in which the Artin-Hasse exponential E: $W_{p,\infty}(-) \rightarrow W_{p,\infty}(W_{p,\infty}(-))$ plays an important rôle. These results relate to the socalled "Tapis de Cartier" and relate to certain conjectures of Grothendieck concerning cristalline cohomology, ([4] and [5]). Now let A be a complete discrete valuation ring with residue field k of q-elements (for simplicity and/or nontriviality of the theory). A formal A-module over $B \in \underline{Alg}_A$ is a formal group law F(X,Y)over B together with a ring homomorphism $\rho_F: A \to \text{End}_B(F(X,Y))$, such that $\rho_F(a) \equiv aX \mod(\text{degree } 2)$. Then there exist complete analogues of (a), (b), (c) above for the category of formal A-modules over B. Here the rôle of $C_p(F;R)$ is taken over by the q-typical curves $C_q(F;B), W_{p,\infty}(-)$ and $\widehat{W}_{p,\infty}$ are replaced by ramified-Witt vector functors $W_{q,\infty}^{\pi}(-)$ and $\widehat{W}_{q,\infty}^{\pi}(-)$ associated to an untwisted, i.e. $\sigma = \text{id}$, Lubin-Tate formal group law over A with associated uniformizing element π . Finally, the rôle of E in (c) is taken over by the ramified Hasse-Witt exponential $W_{q,\infty}^{\pi}(-) + W_{q,\infty}^{\pi}(W_{q,\infty}^{\pi}(-))$

As we remarked in (i) above, it is perfectly possible to define and analyse $W_{q,\infty}^{F}(-)$ by starting with the polynomials $w_{q,n}^{F}(Z)$ and then proceeding along the lines of Witt's original paper. And, in fact, in the untwisted case, where k is a field of q-elements, this has been done, independantly of this paper, and independantly of each other by E. Ditters ([7]), V. Drinfel'd ([8]), J. Casey (unpublished) and, very possibly, several others. In this case the relevant polynomials are of course the polynomials $x_{0}^{q^{n}} + \pi x_{1}^{q^{n-1}} + \ldots + \pi^{n-1} x_{n-1}^{q} + \pi^{n} x_{n}$.

Of course the twisted version is necessary if one wants to describe also all ramified discrete valuation rings with not necessarily finite residue fields. A second main reason for considering "twisted formal A-modules" is that there exist no nontrivial formal A-modules if the residue field of A is infinite.

Let me add, that, in my opinion, the formal group law approach to (ramified) Witt-vectors is technically and conceptually easier. Witness, e.g. the proof of theorem 6.6 and the ease with which one defines Artin-Hasse exponentials in this setting (cf. sections 6.1 and 6.5 below). Also this approach removes some of the mystery and exclusive status of the particular Witt polynomials

 $\begin{aligned} x_{o}^{p^{n}} + px_{1}^{p^{n-1}} + \ldots + p^{n}x_{n} \text{ (unramified case), } & x_{o}^{q^{n}} + \pi x_{1}^{q^{n-1}} + \ldots + \pi^{n}x_{n} \\ \text{(untwisted ramified case), } & x_{o}^{q^{n}} + \sigma^{n-1}(\omega)x_{1}^{q^{n-1}} + \sigma^{n-1}(\omega)\sigma^{n-2}(\omega)x_{2}^{q^{n-2}n} \\ & + \ldots + \sigma^{n-1}(\omega) \cdots \sigma(\omega)\omega x_{n} \text{ (twisted ramified case). From the} \end{aligned}$

5

theoretical (if not the esthetical and/or computational) point of view all polynomials $\tilde{w}_{q,n}(X_0,\ldots,X_n) = a_n^{-1}(a_nX_0^q + a_{n-1}X_1^q + \ldots + a_{n-1}X_1) \in A[X]$ are equally good, provided $a_0 = 1$, a_2 , a_3 ,... is a sequence of elements of K such that

 $a_i - \omega^{-1}\sigma(a_{i-1}) \in A$ for all $i = 1, 2, \dots$ Cf in this connection also [6].

2. THE FUNCTIONAL-EQUATION-INTEGRALITY LEMMA.

2.1. <u>The Setting</u>. Let A be a discrete valuation ring with maximal ideal **m**, residue field k of characteristic p > 0 and field of quotients K. Both characteristic zero and characteristic p > 0 are allowed for K. We use v to denote the normalized exponential valuation on K and ω always denotes a uniformizing element, i.e. $v(\omega) = 1$ and $m = \omega A$. We assume that there exists a power q of p and an automorphism σ of K such that

(2.2)
$$\sigma(\mathbf{m}) = \mathbf{m}$$
, $\sigma a \equiv a^{q} \mod \mathbf{m}$ for all $a \in A$.

The ring A does not need not be complete.

Further let $B \in \underline{Alg}_A$, the category of A-algebras. We suppose that B is A-torsion free (i.e. that the natural map $B \neq B \, \underline{\omega}_A K$ is injective) and we suppose that there exists an endomorphism $\tau : B \, \underline{\omega}_A K \neq B \, \underline{\omega}_A K$ such that

(2.3)
$$\tau(b) \equiv b^{q} \mod mB$$
 for all $b \in B$

Finally let f(X) be any power series over B $\boldsymbol{\omega}_A$ K of the form

(2.4)
$$f(X) = b_1 X + b_2 X^2 + \dots, b_i \in B, b_1 \text{ a unit of } B$$

for which there exists a uniformizing element $\omega \in A$ such that

(2.5)
$$f(X) - \omega^{-1} \tau_* f(X^q) \in B[[X]]$$

where τ_* means "apply τ to the coefficients". In terms of the coefficients b, of f(X) condition (2.5) means that

(2.6) $b_i \in B[[X]]$ if q does not divide i, $b_{qi} - \omega^{-1}\tau(b_i) \in B[[X]]$ for all i = 1, 2, ...

2.7. Functional-equation lemma. Let A, B, σ , τ , K, p, q, f(X), ω be as in 2.1 above such that (2.2) - (2.6) hold. Then we have

- (i) F(X,Y) = f⁻¹(f(X) + f(Y) has its coefficients in B and hence is a commutative one dimensional formal group law over B. (Here f⁻¹(X) is the "inverse function" power series of f(X); i.e. f⁻¹(f(X)) = X).
- (ii) If $g(X) \in B[[X]]$, g(0) = 0 and h(X) = f(g(X)) then we have $h(X) \omega^{-1} \tau_* h(X^q) \in B[[X]]$.
- (iii) If $h(X) \in B \bigotimes_{A} K[[X]]$, h(0) = 0 and $h(X) \omega^{-1}\tau_{*}h(X^{q}) \in B[[X]]$, then $f^{-1}(h(X)) \in B[[X]]$.
- (iv) If $\alpha(X) \in B[[X]]$, $\beta(X) \in B \bigotimes_A K[[X]]$, $\alpha(0) = \beta(0) = 0$, and r,m $\in \mathbb{N} = \{1, 2, ...\}$, then $\alpha(X) \equiv \beta(X) \mod(\omega^r B, \text{ degree } m) \iff f(\alpha(X)) \equiv f(\beta(X)) \mod(\omega^r B, \text{degree } m)$.

Proof. This lemma is a quite special case of the functional equation lemmas of [11], cf sections 2.2 and 10.2. There are also infinite dimensional versions. Here is a quick proof. First notice that (2.6) implies (with induction) that

(2.8)
$$b_j \in \omega^{-i}B$$
, if j is not divisible by q^{i+1} .

We now first prove a more general form of (ii). Let $g(Z) = g(Z_1, ..., Z_m) \in B[[Z_1, ..., Z_m]], g(0) = 0$. Then by the hypotheses of 2.1 we have

(2.9)
$$g(Z_1, ..., Z_m)^{q^r n} \equiv \tau g(Z_1^q, ..., Z_m^q)^{q^{r-1}n} \mod (\omega^r B)$$

Combining (2.8) and (2.9) and using (2.6) we see that mod(B[[X]]) we have

$$h(Z) = f(g(Z)) = \sum_{i=1}^{\infty} b_i g(Z)^i \equiv \sum_{j=1}^{\infty} b_{qj} g(Z)^{qj} \equiv \omega^{-1} \sum_{j=1}^{\infty} \tau(b_j) g(Z)^{qj}$$
$$\equiv \omega^{-1} \sum_{j=1}^{\infty} \tau(b_j) \tau_* g(Z^q)^j = \omega^{-1} \tau_* f(\tau_* g(Z^q)) = \omega^{-1} \tau_* h(Z^q).$$

This proves (ii). To prove (i) we write $F(X,Y) = F_1(X,Y) + F_2(X,Y) + \dots$, where $F_n(X,Y)$ is homogeneous of degree n. We now prove by induction that $F_n(X,Y) \in B[X,Y]$ for all $n = 1,2,\dots$. The induction starts because $F_1(X,Y) = X + Y$. Now assume that $F_1(X,Y), \dots, F_m(X,Y) \in B[X,Y]$. Mod(degree m+2) we have that $f(F(X,Y)) \equiv b_1F_{m+1}(X,Y) + f(g(X,Y))$, where $g(X,Y) = F_1(X,Y) + \dots + F_m(X,Y)$. Hence, using the more general form of (ii) proved just above, we find mod (B[[X,Y]], degree m+2).

$$f(F(X,Y)) \equiv b_1 F_{m+1}(X,Y) + f(g(X,Y)) \equiv b_1 F_{m+1}(X,Y) + \omega^{-1} \tau_* f(\tau_* g(X^q, Y^q)) \equiv$$
$$\equiv b_1 F_{m+1}(X,Y) + \omega^{-1} \tau_* f(\tau_* F(X^q, Y^q))$$
$$= b_1 F_{m+1}(X,Y) + \omega^{-1} \tau_* f(X^q) + \omega^{-1} \tau_* f(Y^q)$$
$$\equiv b_1 F_{m+1}(X,Y) + f(X) + f(Y) = b_1 F_{m+1}(X,Y) + f(F(X,Y))$$

where we have used the defining relation f(F(X,Y)) = f(X) + f(Y), which implies $\tau_* f(\tau_* F(X^q, Y^q)) = \tau_* f(X^q) + \tau_* f(Y^q)$, and where we have also used that $F(X,Y) \equiv g(X,Y) \mod(\text{degree } m+1) \Rightarrow F(X^q, Y^q) \equiv g(X^q, Y^q) \mod(\text{degree } m+2)$. It follows that $b_1 F_{m+1}(X,Y) \equiv 0 \mod(B[[X,Y]])$, degree m+2) and hence $F_{m+1}(X,Y) \in B[X,Y]$ because b_1 is a unit.

The proof of (iii) is completely analogous to the proof of (i).

The implication \Rightarrow of (iv) is easy to prove. If $\alpha(X) \equiv \beta(X) \mod \max(\omega^r B, \text{ degree } m) \mod \alpha(X) \in B[[X]]$ then $\alpha(X)^{q} \stackrel{j}{=} \beta(X)^{q} \stackrel{i}{=} \beta(X) \mod (\omega^{r+i}B, \text{ degree } m)$ which, combined with (2.8), proves that $f(\alpha(X)) \equiv f(\beta(X)) \mod (\omega^r B, \text{ degree } m)$. To prove the inverse implication \Leftarrow of (iv) we first do the special case $f(\beta(X)) \equiv 0 \mod (\omega^r B, \text{ degree } m) \Rightarrow \beta(X) \equiv 0 \mod (\omega^r B, \text{ degree } m)$. Now $\beta(X) \equiv 0 \mod (\text{ degree } l)$, hence $f(\beta(X)) = b_1\beta(X) + b_2\beta(X)^{2+1} \dots \equiv 0$ $\mod (\omega^r B, \text{ degree } m), \text{ implies } \beta(X) \equiv 0 \mod (\omega^r B, \text{ degree } 2), \text{ if } m \geq 2$ (if m = 1 there is nothing to prove), because b_1 is a unit. Now assume with induction that $\beta(X) \equiv 0 \mod (\omega^r B, \text{ degree } n)$ for some n < m. Then, because $\beta(X) \equiv 0 \mod (\text{degree } 1)$ we have $\beta(X)^i \equiv 0 \mod (\omega^{ri}B, \text{ degree } (n+i-1))$ and hence $b_j\beta(X)^j \equiv 0 \mod (\omega^r B, \text{ degree } n+1)$ if $j \geq 2$. Hence $f(\beta(X)) \equiv 0$ $\mod (\omega^r B, \text{ degree } m)$ then gives $b_1\beta(X) \equiv 0 \mod (\omega^r B, \text{ degree } n+1)$, so that $\beta(X) \equiv 0 \mod (\omega^r B, \text{ degree } n+1)$ because b_1 is a unit. This proves this special case of (iv). Now let $f(\alpha(X)) \equiv f(\beta(X)) \mod (\omega^r B, \text{ degree } m)$. Write $\gamma(X) = f(\beta(X)) - f(\alpha(X))$ and $\delta(X) = f^{-1}(\gamma(X))$. Then $\delta(X) = 0$ mod($\omega^r B$, degree m) by the special case just proved, and $\beta(X) = f^{-1}(f(\alpha(X)) + f(\delta(X)) = F(\alpha(X), \delta(X)) \equiv \alpha(X) \mod(\omega^r B, \text{ degree m})$ because F(X,Y) has integral coefficients, F(X,0) = 0 and because $\alpha(X)$ is integral. This concludes the proof of the functional equation lemma 2.7.

3. TWISTED LUBIN-TATE FORMAL A-MODULES.

3.1. <u>Construction and Definition</u>. Let A,K,k,p, m,σ,q be as in 2.1 above. We consider power series $f(X) = X + c_2 X^2 + \ldots \in K[[X]]$ such that there exists a uniformizing element $\omega \in m$ such that

(3.2)
$$f(X) - \omega^{-1} \tau_* f(X^q) \in A[[X]]$$

There are many such power series. The simplest are obtained as follows: choose a uniformizing element ω of A. Define

(3.3)
$$g_{\omega}(x) = x + \omega^{-1}x^{q} + \omega^{-1}\tau(\omega)^{-1}x^{q^{2}} + \omega^{-1}\sigma(\omega)^{-1}\sigma^{2}(\omega)^{-1}x^{q^{3}} + \dots$$

Given such a power series f(X), part (i) of the functional equation lemma says that

(3.4)
$$F(X,Y) = f^{-1}(f(X) + f(Y))$$

has its coefficients in A, and hence is a one dimensional formal group law over A. We shall call the formal group laws thus obtained <u>twisted</u> <u>Lubin-Tate formal A-modules over</u> A. The twisted Lubin-Tate formal A-module is called q-<u>typical</u> if the power series f(X), from which it is obtained, is of the form

(3.5)
$$f(X) = X + a_1 X^q + a_2 X^{q^2} + \dots$$

From now on all twisted Lubin-Tate formal A-modules will be assumed to be q-typical. This is hardly a restriction because of lemma 3.6 below. 3.6. Lemma. Let $f(X) = X + c_2 X^2 + \ldots \in K[[X]]$ be such that (3.2) holds. Let $\hat{f}(X) = \sum_{i=0}^{\infty} a_i X^{q^i}$ with $a_0 = 1$, $a_i = c_q^i$. Then $u(X) = \hat{f}^{-1}(f(X)) \in A[[X]]$ so that f(X,Y) and $\hat{f}(X,Y)$ are strictly isomorphic formal group laws over A. Proof. It follows from the definition of $\hat{f}(X)$, that $\hat{f}(X)$ also satisfies (3.2). The integrality of u(X) now follows from part (iii) of the functional equation lemma.

3.7. <u>Remarks.</u> Let k, the residue field of K, be finite with q elements, and let $\tau = id$. Then the twisted Lubin-Tate formal A-modules over A as defined above are precisely the Lubin-Tate formal group laws defined in [12], i.e. they are precisely the formal A-modules of A-height 1. If k is infinite there exist no nontrivial formal A-modules (cf [11], corollary 21.4.23). This is a main reason for considering also <u>twisted</u> Lubin-Tate formal group laws.

3.8. <u>Remark</u>. Let $f(X) \in K[[X]]$ be such that (3.2) holds for a certain uniformizing element ω . Then ω is uniquely determined by f(X), because $a_i - \omega^{-1}\tau(a_{i-1}) \in A \Rightarrow \omega \equiv a_i^{-1}\tau(a_{i-1}) \mod \omega^{2i}A$ as $v(a_i) = -i$. Using parts (ii) and (iii) of the functional equation lemma we see that ω is in fact an invariant of the strict isomorphism class of F(X,Y). Inversely given ω we can construct $g_{\omega}(X)$ as in 3.3 and then $g_{\omega}^{-1}(f(X)) = u(X)$ is integral so that F(X,Y) and $G_{\omega}(X,Y) = g_{\omega}^{-1}(g_{\omega}(X) + g_{\omega}(Y))$ are strictly isomorphic formal group laws. In case $\bigotimes k = q$ and $\tau = id$, ω is in fact an invariant of the isomorphism class of F(X,Y). For some more results on isomorphisms and endomorphisms of twisted Lubin-Tate formal A-modules cf [11], especially sections 8.3, 20.1, 21.8, 24.5.

4. CURVES AND q-TYPICAL CURVES.

Let F(X,Y) be a q-typical twisted Lubin-Tate formal A-module obtained via (3.4) from a power series $f(X) = X + a_1 X^q + a_2 X^{q^2} + \dots +$ 4.1. <u>Curves</u>. Let <u>Alg</u> be the category of A-algebras. Let $B \in \underline{Alg}_A$. A <u>curve</u> in F over B is simply a power series $\gamma(t) \in B[[t]]$ such that $\gamma(0) = 0$. Two curves can be added by the formula $\gamma_1(t) +_F \gamma_2(t) =$ $F(\gamma_1(t), \gamma_2(t), giving us an abelian group C(F;B)$. Further, if $\phi: B_1 \rightarrow B_2$ is in <u>Alg</u>, then $\gamma(t) \mapsto \phi_* \gamma(t)$ (= "apply ϕ to the coefficients") defines a homomorphism of abelian groups $C(F;B_1) \rightarrow C(F;B_2)$. This defines us an abelian group valued functor $C(F;-): \underline{Alg}_A \rightarrow \underline{Ab}$. There is a natural filtration on C(F;-) defined by the filtration subgroups $C^n(F;B) = \{\gamma(t) \in C(F;B) \mid \gamma(t) \equiv 0 \mod(\text{degree n})\}$. The groups C(F;B) $C^{n}(F;B), n = 1, 2, ...$

The functor C(F;-) is representable by the A-algebra A[S] = A[S₁,S₂,...]. The isomorphism Alg_A(A[S],B) $\stackrel{\sim}{\rightarrow}$ C(F;-) is given by $\phi \mapsto \sum_{i=1}^{\infty} F_{\phi}(S_i)t^i$, i.e. by $\phi \mapsto \phi_* \gamma_S(t)$, where $\gamma_S(t)$ is the "universal curve" $\gamma_S(t) = \sum_{i=1}^{\infty} F_S_i t^i \in C(F;A[S]).$

4.2. <u>q-typification</u>. Let $\gamma_{S}(t) \in C(F;A[S])$ be the universal curve. Consider the power series

$$h(t) = f(\gamma_{S}(t)) = \sum_{i=1}^{\infty} x_{i}(S)t^{i}$$

Let $\tau: K[S] \rightarrow K[S]$ be the ring endomorphism defined by $\tau(a) = \sigma(a)$ for $a \in K$ and $\tau(S_i) = S_i^q$ for i = 1, 2, Then the hypotheses of 2.1 are fulfilled and it follows from part (ii) of the functional equation lemma that $h(t) - \omega^{-1}\tau_*h(t^q) \in A[S][[t]]$. Now let

$$\hat{h}(t) = \sum_{i=0}^{\infty} x_i(S)t^{q^i}$$

Then, obviously, also $\hat{h}(t) - \omega^{-1} \tau_* \hat{h}(t^q) \in A[S][[t]]$ and by part (iii) of the functional equation lemma it follows that

(4.3)
$$\varepsilon_{q} \gamma_{S}(t) = f^{-1} (\sum_{i=0}^{\infty} x_{i}(S) t^{q^{i}}$$

is an element of A[S][[t]]. We now define a functorial group homomorphism $\varepsilon_{\mathbf{q}}$: C(F;-) \rightarrow C(F;-) by the formula

(4.4)
$$\varepsilon_q \gamma(t) = (\phi_\gamma)_* (\varepsilon_q \gamma_S(t))$$

for $\gamma(t) \in C(F;B)$, where $\phi_{\gamma}: A[S] \rightarrow B$ is the unique A-algebra homomorphism such that $\phi_{\gamma} \overleftrightarrow{}_{S}(t) = \gamma(t)$.

4.5. Lemma. Let B be A-torsion free so that $B \rightarrow B \otimes_A K$ is injective. Then we have for all $\gamma(t) \in C(F;B)$

(4.6)
$$f(\gamma(t)) = \sum_{i=1}^{\infty} b_i t^i \Rightarrow f(\varepsilon_q \gamma(t)) = \sum_{j=0}^{\infty} b_j t^{q^j}$$

4.7. Lemma. ε_q is a functorial, idempotent, group endomorphism of C(F; -).

Proof. ε_q is functorial by definition. The facts that $\varepsilon_q \varepsilon_q = \varepsilon_q$ and that ε_q is a group homomorphism are obvious from Lemma 4.5 in case B is A-torsion free. Functoriality then implies that these properties hold for all A-algebras B.

4.8. <u>The functor</u> $C_q(F;-)$ of <u>q-typical curves</u>. We now define the abelian group valued functor $C_q(F;-)$ as

(4.9)
$$C_{q}(F;-) = \varepsilon_{a}C(F;-)$$

For each $n \in \mathbb{N} \cup \{0\}$ let $C_q^{(n)}(F; B)$ be the subgroup $C_q^{(F; B)} \cap C_q^{(n)}(F; B)$. These groups define a filtration on $C_q^{(F; B)}$, and $C_q^{(F; B)}$ is complete with respect to the topology defined by this filtration.

The functor $C_q(F;-)$ is representable by the A-algebra $A[T] = A[T_0, T_1, ...]$.

Indeed, writing $f(X) = \sum_{i=0}^{\infty} a_i X^{q^i}$ we have

$$f(\gamma_{S}(t)) = f(\sum_{i=1}^{\infty} s_{i}t^{i}) = \sum_{j=0}^{\infty} \sum_{i=1}^{\infty} a_{j}s_{i}^{j}t^{q^{j}i}$$

and it follows that

$$\epsilon_{q\gamma_{S}}(t) = \sum_{j=0}^{\infty} \epsilon_{qj}^{F} s_{j} t^{qj}$$

From this one easily obtains that the functor $C_q(F;-)$ is representable by A[T]. The isomorphism $\operatorname{Alg}_A(A[T],B) \xrightarrow{\sim} C_q(F;B)$ is given by $\phi \mapsto \sum_{i=0}^{\infty} F_{\phi}(T_i) t^{q^i} = \phi_*(\gamma_T(t))$, where $\gamma_T(t)$ is the universal q-typical i=0

curve

(4.10)
$$\gamma_{T}(t) = \sum_{i=0}^{\infty} F_{i} t^{q^{i}} \in C_{q}(F;A[T])$$

4.11. Remarks. The explicit formulas of 4.8 above depend on the fact

that F was supposed to be q-typical. In general slightly more complicated formulae hold. For arbitrary formal groups q-typification (i.e. ε_q) is not defined (unless q=p). But a similar notion of q-typification exists for formal A-modules of any height and any dimension if % k = q.

5. THE A-ALGEBRA STRUCTURE ON C_q(F;-), FROBENIUS AND VERSCHIEBUNG.

5.1. From now on we assume that $f(X) = g_{\omega}(X) = X + \omega^{-1}X^{q} + \omega^{-1}\sigma(\omega)^{-1}X^{q^{2}} + ...$ for a certain uniformizing element ω . Otherwise we keep the notations and assumptions of section 4. Thus we now have $a_{i}^{-1} = \omega\sigma(\omega) \dots \sigma^{i-1}(\omega)$, $a_{o} = 1$. This restriction to "logarithms" f(X) of the form $g_{\omega}(X)$ is not very serious, because every twisted Lubin-Tate formal A-module over A is strictly isomorphic to a $G_{\omega}(X,Y)$, (cf. remark 3.8), and one can use the strict isomorphism $g_{\omega}^{-1}(f(X))$ to transport all the extra structure on $C_{q}(F;-)$ which we shall define in this section. The restriction $f(X) = g_{\omega}(X)$ does have the advantage of simplifying the defining formulas (5.4), (5.5), (5.8),... somewhat, and it makes them look rather more natural especially in view of the fact that ω , the only "constant" which appears, is an invariant of strict isomorphism classes of twisted Lubin-Tate formal A-modules; cf. remark 3.8 above.

In this section we shall define an A-algebra structure on the functor $C_q(F;-)$ and two endomorphisms \underline{f}_{ω} and $\underline{\mathbb{Y}}_q$. These constructions all follow the same pattern, the same pattern as was used to define and analyse ε_q in section 4 above. First one defines the desired operations for universal curves like $\gamma_T(t)$ which are defined over rings like A[T], which, and this is the crucial point, admit an endomorphism $\tau: K[T] \rightarrow K[T]$, viz. $\tau(a) = \sigma(a), \tau(T_i) = T_i^q$, which extends σ and which is such that $\tau(x) \equiv x^q \mod \omega A[T]$. In such a setting the functional equation lemma assures us that our constructions do not take us out of C(F;-) or $C_q(F;-)$. Second, the definitions are extended via representability and functoriality, and thirdly, one derives a characterization which holds over A-torsion free rings, and using this, one proves the various desired properties like associativity of products, σ -semilinearity of \underline{f}_{ω} , etc...

5.2. Constructions. Let $\gamma_{T}(t)$ be the universal q-typical curve (4.9). We write

(5.3.)
$$f(\gamma_{T}(t)) = \sum_{i=0}^{\infty} x_{i}(T)t^{q^{i}}$$

Let $f(X) = g_{\omega}(X) = \sum_{i=0}^{\infty} a_i X^{i}$; i.e. $a_i = \omega^{-1} \sigma(\omega)^{-1} \dots \sigma^{i-1}(\omega)^{-1}$ and let

a E A.

We define

(5.4)
$$\{a\}_{F}\gamma_{T}(t) = f^{-1}(\sum_{i=0}^{\infty}\sigma^{i}(a)x_{i}(T)t^{q^{i}})$$

(5.5)
$$f_{=\omega} \gamma_{T}(t) = f^{-1} (\sum_{i=0}^{\infty} \sigma^{i}(\omega) x_{i+1}(T) t^{q^{1}})$$

The functional equation lemma now assures us that (5.4) and (5.5) define elements of C(F;A[T]), which then are in C_q(F;A[T]) by lemma 4.5. To illustrate this we check the hypotheses necessary to apply (iii) of 2.7 in the case of $\underline{f}_{\underline{\omega}}$. Let τ : K[T] \rightarrow K[T] be as in 5.1 above. Then by part

(ii) of the functional equation lemma we know that

$$x_o \in A[T]$$
, $x_{i+1} - \omega^{-1}\tau(x_i) = c_i \in A[T]$

It follows by induction that

(5.6)
$$x_i \in \omega^{-i}A[T]$$

and we also know that

(5.7)
$$v(a_i^{-1}) = v(\omega\sigma(\omega) \dots \sigma^{i-1}(\omega)) = i$$

where v is the normalized exponential valuation on K. We thus have $\sigma^{o}(\omega)x_{1} = \omega x_{1} \in A[T] \text{ and } \sigma^{i}(\omega)x_{i+1} - \omega^{-1}\tau(\sigma^{i-1}(\omega)x_{i}) =$ $\sigma^{i}(\omega)c_{i} + \sigma^{i}(\omega)\omega^{-1}\tau(x_{i}) - \omega^{-1}\tau(\sigma^{i-1}(\omega)x_{i}) = \sigma^{i}(\omega)c_{i} \in A[T]. \text{ Hence part}$ (iii) of the functional equation lemma says that $\underline{f}_{\omega}\gamma_{T}(t) \in C(F;A[T]).$ To define the multiplication on $C_{\sigma}(F;-)$ we need two independant universal q-typical curves. Let

$$\gamma_{T}(t) = \Sigma^{F}T_{i}t^{q^{i}}, \delta_{\hat{T}}(t) = \Sigma^{F}\hat{T}_{i}t^{q^{i}} \in C_{q}(F;A[T;\hat{T}]).$$

We define

(5.8)
$$\gamma_{T}(t) * \delta_{\hat{T}}(t) = f^{-1} (\sum_{i=0}^{\infty} a_{i}^{-1} x_{i} y_{i} t^{q^{i}})$$

where $f(\gamma_T(t)) = \Sigma x_i t^{q^1}$, $f(\delta_{\hat{T}}(t)) = \Sigma y_i t^{q^1}$. To prove that (5.8) defines something integral we proceed as usual. We have $x_0, y_0 \in A[T;\hat{T}]$, $x_{i+1} - \omega^{-1}\tau(x_i) = c_i \in A[T;\hat{T}]$, $y_{i+1} - \omega^{-1}\tau(y_i) = d_i \in A[T;\hat{T}]$, where $\tau: K[T;\hat{T}] \rightarrow K[T;\hat{T}]$ is defined by $\tau(a) = a$ for $a \in K$, and $\tau(T_i) = T_i^q$, $\tau(\hat{T}_i) = T_i^q$, i = 0, 1, 2, ...Then $a_0 x_0 y_0 = x_0 y_0 \in A[T;T]$ and $a_{i+1}^{-1}x_{i+1}y_{i+1} - \omega^{-1}\tau(a_i^{-1}x_iy_i) = \omega\sigma(a_i)^{-1}(c_i^{+}\omega^{-1}\tau(x_i))(d_i^{+}\omega^{-1}\tau(y_i)) - \omega^{-1}\sigma(a_i^{-1})\tau(x_i)\tau(y_i) = \omega\sigma(a_i^{-1})c_i d_i + \sigma(a_i)^{-1}(c_i^{-1}\tau(y_i) + d_i^{-1}\tau(x_i)) \in A[T;\hat{T}]$ by (5.6) and (5.7). 5.9. <u>Definitions</u>. Let $\gamma(t)$, $\delta(t)$ be two q-typical curves in F over $B \in \underline{Alg}_A$. Let $\phi: A[T] \rightarrow B$ be the unique A-algebra homomorphism such that $\phi_* \gamma_T(t) = \gamma(t)$, and let $\psi: A[T;\hat{T}] \rightarrow B$ be the unique A-algebra homomorphism such that $\psi \gamma_T(t) = \gamma(t), \psi_* \delta_{\hat{T}}(t) = \delta(t)$. Let $a \in A$. We define

(5.10)
$$\{a\}_{F}\gamma(t) = \phi_{*}(\{a\}_{F}\gamma_{T}(t))$$

(5.11)
$$\underline{f}_{\omega} \gamma(t) = \phi_*(f_{\omega} \gamma_{T}(t))$$

(5.12)
$$\gamma(t) * \delta(t) = \psi_*(\gamma_{\pi}(t) * \delta_{\pi}(t))$$

5.13. <u>Characterizations</u>. Let B be an A-torsion free A-algebra; i.e B \rightarrow B \bigotimes_A K is injective, then the definitions (5.10) - (5.12) are characterized by the implications

(5.14)
$$f(\gamma(t)) = \sum_{i=0}^{\infty} x_i t^{q^i} \Rightarrow f(\{a\}_{F^{\gamma(t)}}) = \sum_{i=0}^{\infty} q^i(a) x_i t^{q^i}$$

(5.15)
$$f(\gamma(t)) = \sum_{i=0}^{\infty} x_i t^{q^i} \Rightarrow f(\underline{f}_{w}\gamma(t)) = \sum_{i=0}^{\infty} q^i(\omega) x_{i+1} t^{q^i}$$

(5.16)
$$f(\gamma(t)) = \sum_{i=0}^{\infty} x_i t^{q^i}, f(\delta(t)) = \sum_{i=0}^{\infty} y_i t^{q^i} \implies$$
$$f(\gamma(t) * \delta(t)) = \sum_{i=0}^{\infty} a_i^{-1} x_i y_i t^{q^i}$$

This follows immediately from (5.4), (5.5), (5.8) compared with (5.10) - (5.12), because ϕ_* and ψ_* are defined by applying ϕ and ψ to coefficients, and because $\gamma(t) \mapsto f(\gamma(t))$ is injective, if B is A-torsion free.

5.17. <u>Theorem</u>. The operators $\{a\}_{F}$ defined by (5.10) define a functorial A-module structure on $C_{q}(F;-)$. The multiplication * defined by (5.12) then makes $C_{q}(F;-)$ an A-algebra valued functor, with as unit element the q-typical curve $\gamma_{0}(t) = t$. The operator $\underline{f}_{=\omega}$ is a σ -semilinear A-algebra homomorphism; i.e. $\underline{f}_{=\omega}$ is a unit and multiplication preserving group endomorphism such that $\underline{f}_{=\omega}\{a\}_{F} = \{\sigma(a)\}_{F=\omega}$.

Proof. In case B is A-torsion free the various identities in

$$C_{g}(F;B)$$
 like $(\{a\}_{F}^{\gamma}(t))^{*}\delta(t) = \{a\}_{F}^{\gamma}(\gamma(t)^{*}\delta(t)),$

$$\gamma(t)*(\delta(t) +_{F} \varepsilon(t)) = (\gamma(t)*\delta(t)) +_{F} (\gamma(t)*\varepsilon(t)), \dots$$

are obvious from the characterizations (5.14) - (5.16). The theorem then follows by functoriality.

5.18. <u>Verschiebung</u>. We now define the Verschiebung operator $\underbrace{\mathbb{Y}}_{q}$ on $C_q(F;-)$ by the formula $\underbrace{\mathbb{Y}}_q\gamma(t) = \gamma(t^q)$. (It is obvious from lemma 4.5 that this takes q-typical curves into q-typical curves). In terms of the logarithm f(X) one has for curves $\gamma(t)$ over A-torsion free A-algebras B

(5.19)
$$f(\gamma(t)) = \sum_{i=0}^{\infty} x_i t^{q^i} \Rightarrow f(\underbrace{\mathbb{Y}}_{q}\gamma(t)) = \sum_{i=0}^{\infty} x_i t^{q^{i+1}}$$

5.20. Theorem. For q-typical curves $\gamma(t)$ in F over an A-algebra B

(5.21)
$$\underbrace{f}_{\omega=q} \nabla(t) = \{\omega\}_{F} \gamma(t)$$

(5.22)
$$\underline{\underline{f}}_{\omega} \gamma(t) = \gamma(t)^{*q} \mod \{\omega\}_{F} C_{q}(F;B)$$

Proof. (5.21) is immediate from (5.14), (5.15) and (5.19) in the case of A-torsion free B and then follows in general by functoriality. The proof of (5.22) is a bit longer. It suffices to prove (5.22) for curves $\gamma(t) \in C_{\alpha}(F;A[T])$. In fact it suffices to prove (5.22) for $\gamma(t) = \gamma_{T}(t)$, the universal curve of (4.9). Let

(5.23)
$$\delta(t) = f^{-1}(\sum_{i=0}^{\infty} y_i t^{q^1}), \quad y_i = x_{i+1} - \sigma^i(\omega) a_i a_i^{-q} x_i^{q}$$

where the x_i , i = 0, 1, 2, ... are determined by $f(\gamma(t)) = \sum x_i t^{q^1}$. It then follows from (5.14) - (5.16) that indeed

 $\underbrace{f}_{\omega} \gamma(t) - \gamma(t)^{*q} = \{\omega\}_{F} \delta(t), \text{ provided that we can show that } \delta(t)$ is integral, i.e. that $\delta(t) \in C_q(F;A[T])$. To see this it suffices to show that $y_o \in A[T]$ and $y_{i+1} - \omega^{-1}\tau(y_i) \in A[T]$ because of part (iii) of the functional equation lemma. Let $c_i = x_{i+1} - \omega^{-1}\tau(x_i) \in A[T]$. Then

$$y_{o} = x_{1} - \sigma^{o}(\omega)^{-1}x_{o}^{q} = c_{o} + \omega^{-1}\tau(x_{o}) - \omega^{-1}x_{o}^{q} \in A[T]$$

because $\tau(x_0) \equiv x_0^q \mod \omega A[T]$. Further from $x_{i+1} = c_i + \omega^{-1} \tau(x_i)$ we find

$$\mathbf{a}_{i+1}^{-1}\mathbf{x}_{i+1} = \omega\sigma(\omega) \dots \sigma^{i}(\omega)\mathbf{c}_{i} + \sigma(\omega) \dots \sigma^{i}(\omega)\tau(\mathbf{x}_{i}) = \omega^{i+1}\mathbf{d}_{i} + \tau(\mathbf{a}_{i}^{-1}\mathbf{x}_{i})$$

for a certain $d_i \in A[T]$, and hence

$$a_{i+1}^{-q}x_{i+1}^{q} = \tau(a_{i}^{-q}x_{i}^{q}) + \omega^{i+2}e_{i}$$

for a certain $e_i \in A[T]$. It follows that

$$y_{i+1} - \omega^{-1}\tau(y_{i}) = x_{i+2} - \sigma^{i+1}(\omega)^{-1}a_{i+1}a_{i+1}^{-q}x_{i+1}^{q} - \omega^{-1}\tau(x_{i+1}) + + \omega^{-1}\tau(\sigma^{i}(\omega)^{-1}a_{i}a_{i}^{-q}x_{i}^{q}) = c_{i+1} - \sigma^{i+1}(\omega)^{-1}(a_{i+1}a_{i+1}^{-q}x_{i+1}^{q} - \omega^{-1}\sigma(a_{i})\tau(a_{i}^{-q}x_{i}^{q})) = c_{i+1} - \sigma^{i+1}(\omega)^{-1}a_{i+1}(a_{i+1}^{-q}x_{i+1}^{q} - \tau(a_{i}^{-q}x_{i}^{q})) \in A[T]$$

because $a_{i+1} = \omega^{-1}\sigma(a_i)$ and because of (5.23). (Recall that $v(a_{i+1}) = -i - 1$ by (5.7)). This concludes the proof of theorem 5.20.

6. RAMIFIED WITT VECTORS AND RAMIFIED ARTIN-HASSE EXPONENTIALS.

We keep the assumptions and notations of section 5 above.

6.1. <u>A preliminary Artin-Hasse exponential</u>. Let B be an A-algebra which is A-torsion free and which admits an endomorphism $\tau : B \, {\bf a}_A \ K \neq B \, {\bf a}_A \ K$ which restricts to σ on A ${\bf a}_A \ K = K \subset B \, {\bf a}_A \ K$ and which is such that $\tau(b) \equiv b^q \mod \omega B$. We define a map $\Delta_B : B \neq C_q(F;B)$ as follows

(6.2)
$$\Delta_{B}(b) = f^{-1} \left(\sum_{i=0}^{\infty} \tau^{i}(b) a_{i} t^{q^{1}} \right)$$

This is well defined by part (iii) of the functional equation lemma. A quick check by means of (5.14) - (5.16) shows that $\Delta_{\rm B}$ is a homomorphism of A-algebras such that moreover

$$(6.3) \qquad \qquad \Delta_{\mathbf{B}} \circ \tau = \underline{\mathbf{f}}_{\omega} \circ \Delta_{\mathbf{B}}$$

(because $\sigma^{i}(\omega)a_{i+1} = a_{i}$), and that Δ_{B} is functorial in the sense that if $(B;\tau')$ is a second such A-algebra with endomorphism τ' of B' $\mathbf{\hat{\omega}}_{A}$ K and $\phi: B \rightarrow B'$ is an A algebra homomorphism such that $\tau'\phi = \phi\tau$, then $C_{\alpha}(F;\phi) \circ \Delta_{B} = \Delta_{B'} \circ \phi$.

6.4. <u>Remark.</u> Using (B,T) instead of (A, σ) we can view F(X,Y) as a twisted Lubin-Tate formal B-module over B, if we are willing to extend the definition a bit, because, of course, B need not be a discrete valuation ring, nor is B \mathfrak{B}_A K necessarily the quotient field of B. In fact B need not even be an integral domain. If we view F(X,Y) in this way then $\overset{\Lambda}{}_{\mathrm{B}}$: B \rightarrow C_q(F;B) is just the B-algebra structure map of C_q(F;B).

6.5. Now let B be any A-algebra. Then $C_q(F;B)$ is an A-algebra which admits an endomorphism τ , viz. $\tau = \underline{f}_{=\omega}$, which, as $\tau x \equiv x^q \mod \omega$ by (5.22), satisfies the hypotheses of 6.1 above (because $\underline{f}_{=\omega}$ is σ -semilinear). It is also immediate from (5.10) and (5.4), cf. also (5.14) that $C_q(F;B)$ is always A-torsion free. Substituting $C_q(F;B)$ for B in 6.1 we therefore find A-algebra homomorphisms

$$E_{B}: C_{q}(F;B) \rightarrow C_{q}(F;C_{q}(F;B))$$

which are functorial in B because \underline{f}_{ω} is functorial, and because of the functoriality property of the Δ_{B} mentioned in 6.1 above. This functorial A-algebra homomorphism is in fact the ramified Artin-Hasse exponential we are seeking and, as is shown by the next theorem, $C_{g}(F;B)$ is the desired ramified Witt vector functor.

6.6. <u>Theorem</u>. Let A be complete with perfect residue field k. Let B be the ring of integers of a finite separable extension L of K. Let & be the residue field of B. Consider the composed map

$$\mu_{B}: B \xrightarrow{\Delta_{B}} C_{q}(F;B) \rightarrow C_{q}(F;\ell)$$

Then μ_B is an isomorphism of A-algebras. Moreover if $\tau: B \rightarrow B$ is the unique extension of $\sigma: A \rightarrow A$ such that $\tau(b) \equiv b^q \mod B$, then $\underline{f}_{\omega}\mu_B = \mu_B \tau$, i.e. τ and \underline{f}_{ω} correspond under μ_B . Proof. Let $b \in B$. Consider $\Delta_B(\omega^r b)$. Then from (6.2) we see that

$$f(\Delta_{B}(\omega^{r}b)) \equiv a_{\tau}\tau^{r}(\omega^{r})\tau^{r}(b)t^{q^{r}} \mod(\omega B, \text{ degree } q^{r+1})$$

By part (iv) of the functional equation lemma 2.7 it follows that

$$\Delta_{B}(\omega^{r}b) \equiv y_{r}\tau^{r}(b)t^{q^{r}} \mod (\omega B, \text{ degree } q^{r+1})$$

where $y_r = a_r \tau^r(\omega^r)$ is a unit of B. It follows that μ_B maps the filtration subgroups $\omega^r B$ of B into the filtration subgroups $C_q^{(r)}(F; l)$ and that the induced maps

$$\ell \xrightarrow{\sim} \omega^{\mathbf{r}} B / \omega^{\mathbf{r}+1} B \xrightarrow{\mu_{B}} C_{q}^{(\mathbf{r})}(\mathbf{F};\ell) / C_{q}^{(\mathbf{r}+1)}(\mathbf{F},\ell) \xrightarrow{\sim} \ell$$

are given by $x \mapsto y_r x^{q^r}$, for $x \in l$. (Here $l \stackrel{\sim}{\to} \omega^r B/\omega^{r+1} B$ is induced by $\omega^r b \to \bar{b}$ with \bar{b} the image of b in l under the canonical projection $B \to l$, and $C_q^{(r)}(F;l)/C_q^{r+1}(F;l) \stackrel{\sim}{\to} l$ is induced by $C_q^{(r)}(F;l) \to l$, $\gamma(t) \mapsto$ (coefficient of t^q in $\gamma(t)$). Because l is perfect and $\bar{y}_r \neq 0$, it follows that the induced maps $\bar{\mu}_B$ are all isomorphisms. Hence μ_B is an isomorphism because B and $C_q(F;l)$ are both complete in their filtration topologies. The map μ_B is an A-algebra homomorphism because Δ_B is an A-algebra homomorphism and $C_q(F;-)$ is an A-algebra valued functor. Finally the last statement of theorem 6.6 follows because both τ and $\mu_B^{-1}\underline{f}_{\omega}\mu_B$ extend σ and $\tau(b) \equiv b^q \equiv \mu_B^{-1}\underline{f}_{\omega}\mu_B(b)$ mod ωB .

6.7. The maps $s_{q,n}$ and $w_{q,n}^F$. The last thing to do is to reformulate the definitions of $C_q(F;B)$ and E_B in such a way that they more closely ressemble the corresponding objects in the unramified case, i.e. in the case of the ordinary Witt-vectors. This is easily done, essentially because $C_q(F;-)$ is representable.

Indeed, let, as a set valued functor, $W_{q,\infty}^F$: Alg \rightarrow Set be defined by

(6.8)
$$W_{q,\infty}^{F}(B) = \{(b_{0}, b_{1}, b_{2}, ...) | b_{i} \in B\}, W_{q,\infty}^{F}(\phi)(b_{0}, b_{1}, ...) =$$

= $(\phi(b_{0}), \phi(b_{1}), ...)$

We now identify the set-valued functors $W_{q,\infty}^F(-)$ and $C_q(F;-)$ by the functorial isomorphism

(6.9)
$$e_{B}(b_{0}, b_{1}, ...) = \sum_{i=0}^{\infty} F_{b_{i}}t^{q_{i}},$$

and define $W_{q,\infty}^{F}(-)$ as an A-algebra valued functor by transporting the A-algebra structure on $C_{q}(F;B)$ via e_{B} for all $B \in \underline{Alg}_{B}$. We use \underline{f} and \underline{V} to denote the endomorphism of $W_{q,\infty}^{F}(-)$ obtained by transporting \underline{f}_{ω} and \underline{V}_{q} via e_{B} . Then one has immediately

(6.10)
$$\underline{V}(b_0, b_1, ...) = (0, b_0, b_1, ...)$$

and in fact

(6.11)
$$\underline{f}(b_0, b_1, \ldots) = (\hat{b}_0, \hat{b}_1, \ldots) \Rightarrow \hat{b}_i \equiv b_i^q \mod \omega B$$

(We have not proved the analogon of this for \underline{f}_{ω} ; this is not difficult to do by using part (iv) of the functional equation lemma and the additivity of \underline{f}_{ω}).

Next we discuss the analogue of the Witt-polynomials

 $x_o^{p^n} + px_1^{p^{n-1}} + \dots + p^nx_n$. We define for the universal curve $\gamma_T(t) \in C_q(F;A[T])$

(6.12)
$$s_{q,n}(\gamma_T(t)) = a_n^{-1}(\text{coefficient of } t^{q^{11}} \text{ in } f(\gamma_T(t)))$$

and, as usual, this is extended functorially for arbitrary curves $\gamma(t)$ over arbitrary A-algebras by

(6.13)
$$s_{q,n} \gamma(t) = \phi(s_{q,n} (\gamma_T(n)))$$

where $\phi: A[T] \rightarrow B$ is the unique A-algebra homomorphism such that $\phi_*\gamma_T(t) = \gamma(t)$. If B is A-torsion free one has of course that $s_{q,n}\gamma(t) = a_n^{-1}$ (coeff. of t^q^n in $f(\gamma(t))$. Using this one checks that

$$s_{q,n}(\gamma(t) + \delta(t)) = s_{q,n}(\gamma(t)) + s_{q,n}(\delta(t)), s_{q,n}(\gamma(t)*\delta(t)) = s_{q,n}(\gamma(t))s_{q,n}(\delta(t)), s_{q,n}(\{a\}_{F}\gamma(t)) = \sigma^{n}(a)s_{q,n}(\gamma(t)),$$
(6.14)
$$s_{q,n}(f_{\omega}\gamma(t)) = s_{q,n+1}(\gamma(t)), s_{q,n}(\underbrace{\mathbb{V}}_{=q}\gamma(t)) = \sigma^{n-1}(\omega)s_{q,n-1}(\gamma(t)) \text{ if } \geq 1, s_{q,0}(\underbrace{\mathbb{V}}_{=q}\gamma(t)) = 0$$

$$s_{q,n}(t) = 1 \text{ for all } n.$$

Now suppose that we are in the situation of 6.1 above. Then, by the definition of Δ_{R} , we have

(6.15)
$$s_{q,n}(\Delta_B(b)) = \tau^n(b)$$

Now define $w_{q,n}^F(B)$: $W_{q,\infty}^F(B) \rightarrow B$ by $w_{q,n}^F = s_{q,n} \circ e_B$. It is not difficult to calculate $w_{q,n}^F$. Indeed

$$f(\gamma_{T}(t)) = f(\sum_{i=0}^{\infty} F_{T_{i}}t^{q_{i}}) = \sum_{j=0}^{\infty} \sum_{i=0}^{\infty} a_{j}T_{i}^{j}t^{q_{i}} = \sum_{r=0}^{\infty} (\sum_{i=0}^{\infty} a_{i}T_{r-i}^{q_{i}})t^{q_{r}}$$

and it follows that $w_{q,n}^{F}$ is the functorial map $W_{q,m}^{F}(B) \rightarrow B$ defined by the polynomials

(6.16)

$$w_{q,n}^{F}(Z_{0},...,Z_{n}) = a_{n}^{-1}(\sum_{i=0}^{n} a_{i}Z_{n-i}^{q^{i}})$$

$$= Z_{0}^{q^{n}} + \sigma^{n-1}(\omega)Z_{1}^{q^{n-1}} + \sigma^{n-1}(\omega)\sigma^{n-2}(\omega)Z_{2}^{q^{n-2}} + ... + \sigma^{n-1}(\omega) \dots \sigma(\omega)\omega Z_{n}$$

6.17. <u>Theorem</u>. Let (A, σ) be a pair consisting of a discrete valuation ring A of residue characteristic p > 0 and a Frobenius-like automorphism $\sigma : K \rightarrow K$ such that (2.2) holds for some power q of p. Let ω be any uniformizing element of A, and let $w_{q,n}^F(Z)$, n = 0, 1,... be the polynomials defined by (6.15). Then there exists a unique A-algebra valued functor $W_{q,\infty}^F : \underline{Alg}_A \rightarrow \underline{Alg}_A$ such that

- (i) as a set-valued functor $W_{q,\infty}^{F}(B) = \{(b_0, b_1, b_2, \ldots) | b_i \in B\}$ and $W_{q,\infty}^{F}(\phi)(b_0, b_1, \ldots) = (\phi(b_0), \phi(b_1), \ldots)$ for all $\phi: B \to B'$ in \underline{Alg}_A
- (ii) the polynomials $w_{q,n}^{F}(Z)$ induce functorial σ^{n} -semilinear A-algebra homomorphisms $w_{q,\infty}^{F}: W_{q,\infty}^{F}(B) \rightarrow B$, $(b_{0}, b_{1}, \ldots) \mapsto w_{q,\infty}^{F}(b_{0}, \ldots, b_{n})$. Moreover, the functor $W_{q,\infty}^{F}(-)$ has σ^{-1} -semilinear A-module functor endomorphism \underline{V} and a functorial σ -semilinear A-algebra endomorphism \underline{f} which satisfy and are characterized by

(iii)
$$\mathbf{w}_{q,n}^{F} \circ \underline{\mathbf{y}} = \sigma^{n-1}(\omega)\mathbf{w}_{q,n-1}^{F}$$
 if $n = 1, 2, ...; \mathbf{w}_{q,o}^{F} \circ \underline{\mathbf{y}} = 0$
(iv) $\mathbf{w}_{q,n}^{F} \circ \underline{\mathbf{f}} = \mathbf{w}_{q,n+1}^{F}$

These endomorphisms \underline{f} and \underline{V} have (among others) the properties (v) $\underline{f}\underline{V} = \omega$ (vi) $\underline{f}\underline{b} \equiv \underline{b}^{q} \mod \omega W_{q,\infty}^{F}(B)$ for all $\underline{b} \in W_{q,\infty}^{F}(B)$, $B \in \underline{A}\underline{l}\underline{g}_{A}$ (vii) $\underline{V}(\underline{b}(\underline{f}\underline{c})) = (\underline{V}\underline{b})\underline{c}$ for all \underline{b} , $\underline{c} \in W_{q,\infty}^{F}(B)$, $B \in \underline{A}\underline{l}\underline{g}_{A}$

Further there exists a unique functorial A-algebra homomorphism

E:
$$W_{q,\infty}^{F}(-) \rightarrow W_{q,\infty}^{F}(W_{q,\infty}^{F}(-))$$

which satisfies and is characterized by

(viii)
$$\bigvee_{q,n}^{F} o E = f^{n}$$
 for all $n = 0, 1, 2, ...$

21

(Here $w_{q,n}^{F}: W_{q,\infty}^{F}(W_{q,\infty}^{F}(B)) \rightarrow W_{q,\infty}^{F}(B)$ is short for $w_{q,n,w_{q,\infty}}^{F}(B)$, i.e. it is the map which assigns to a sequence $(\underline{b}_{0}, \underline{b}_{1}, \ldots)$ of elements of $W_{q,\infty}^{F}(B)$ the element $w_{q,n}^{F}(\underline{b}_{0}, \underline{b}_{1}, \ldots) \in W_{q,\infty}^{F}(B)$. The functor homomorphism E further satisfies

(ix)
$$W_{q,\infty}^{F}(w_{q,n}^{F}) \circ E = \underline{f}^{n},$$

where $W_{q,\infty}^{F}(w_{q,n}^{F}): W_{q,\infty}^{F}(W_{q,\infty}^{F}(B)) \rightarrow W_{q,\infty}^{F}(B)$ assigns to a sequence $(\underline{b}_{0}, \underline{b}_{1}, \ldots)$ of elements of $W_{q,\infty}^{F}(B)$ the sequence $(w_{q,n}^{F}(\underline{b}_{0}), w_{q,n}^{F}(\underline{b}_{1}), \ldots)$ $\in W_{q,\infty}^{F}(B)$

Finally if A is complete with perfect residue field k and ℓ/k is a finite separable extension, then $W_{q,\infty}^{F}(\ell)$ is the ring of integers B of the unique unramified extension L/K covering the residue field extension under this A-algebra isomorphism f corresponds to the ℓ/k and unique extension of σ to τ : $B \rightarrow B$ which satisfies $\tau(b) \equiv b^q \mod \omega B$. In particular $W_{g,\infty}^{\mathbf{F}}(\mathbf{k}) \simeq \mathbf{A}$ with $\underline{\mathbf{f}}$ corresponding to σ . Proof.Existence of $W_{a,\infty}^{F}(-)$, \underline{V} , \underline{f} , E such that (i), (ii), (iii), (iv) (viii) hold follows from the constructions above. Uniqueness follows because (i), (ii), (iii), (iv), (viii) determine the A-algebra structure on $\mathbb{B}^{\mathbb{N}\cup\{0\}}$, $\underline{\mathbb{V}}$, $\underline{\mathbb{f}}$, E uniquely for A-torsion free A-algebras B, and then these structure elements are uniquely determined by (i) - (iv), (viii) for all A-algebras, by the functoriality requirement (because for every A-algebra B there exists an A-torsion free A-algebra B together with a surjective A-algebra homomorphism $B' \rightarrow B$. Of the remaining identities some have already been proved in the $C_q(F;-)$ -setting ((v) and (vi). They can all be proved by checking that they give the right answers whenever composed with the $w_{q,n}^{F}$. This proves that they hold over A-torsion free algebras B, and then they hold in general by functoriality. So to prove (vii) we calculate

$$\begin{split} \mathbf{w}_{q,n}^{F}(\underline{\mathbb{V}}(\underline{\mathbb{b}}(\underline{\mathbb{f}}\underline{\mathbb{c}}))) &= 0 \\ \mathbf{w}_{q,n}^{F}(\underline{\mathbb{V}}(\underline{\mathbb{b}}(\underline{\mathbb{f}}\underline{\mathbb{c}}))) &= \sigma^{n-1}(\omega)\mathbf{w}_{q,n-1}^{F}(\underline{\mathbb{b}}(\underline{\mathbb{f}}\underline{\mathbb{c}})) &= \sigma^{n-1}(\omega)\mathbf{w}_{q,n-1}^{F}(\underline{\mathbb{b}}) = \sigma^{n-1}(\omega)\mathbf{w}_{q,n-1}^{F}(\underline{\mathbb{b}}) \\ &= \sigma^{n-1}(\omega)\mathbf{w}_{q,n-1}^{F}(\underline{\mathbb{b}})\mathbf{w}_{q,n}^{F}(\underline{\mathbb{c}}) \end{split}$$

and, on the other hand

$$w_{q,o}^{F}((\underline{\underline{\underline{V}}\underline{\underline{b}}})\underline{\underline{c}}) = w_{q,o}^{F}(\underline{\underline{V}}\underline{\underline{b}})w_{q,o}^{F}(\underline{\underline{c}}) = o w_{q,o}^{F}(\underline{\underline{c}}) = 0$$
$$w_{q,n}^{F}((\underline{\underline{V}}\underline{\underline{b}})\underline{\underline{c}}) = w_{q,n}^{F}(\underline{\underline{V}}\underline{\underline{b}})w_{q,n}^{F}(\underline{\underline{c}}) = \sigma^{n-1}(\omega)w_{q,n-1}^{F}(\underline{\underline{b}})w_{q,n}^{F}(\underline{\underline{c}})$$

This proves (vii). To prove (ix) we proceed similarly

$$w_{q,m}^{F} \circ W_{q,\infty}^{F}(w_{q,n}^{F}) \circ E = w_{q,n}^{F} \circ w_{q,m}^{F} \circ E = w_{q,n}^{F} \circ \underline{f}^{m}$$
$$= w_{q,n+m}^{F} = w_{q,m}^{F} \circ \underline{f}^{n}$$

(Here the first equality follows from the functoriality of the morphisms $w_{q,m}^F$ which says that for all $\phi: B' \rightarrow B \in \underline{Alg}_A$ we have $w_{q,m}^F \circ W_{q,\infty}^F(\phi) = \phi \circ w_{q,m}^F$; now substitute $w_{q,n}^F$ for ϕ).

6.18. <u>Remark</u>. $\underline{Vf} = \underline{fV}$ does of course not hold in general (also not in the case of the usual Witt vectors). It is however, true in $W_{q,\infty}^{F}(B)$ if $\omega B = 0$, as easily follows from (6.11), which implies that $f(b_0, b_1, \ldots) = (b_0^q, b_1^q, \ldots)$ if $\omega B = 0$.

REFERENCES.

- E. Artin, H. Hasse, Die beide Ergänzungssätze zum Reciprozitätsgesetz der ⁿ_k-ten Potenzreste im Körper der ⁿ_k-ten Einheitswürzeln, Abh. Math. Sem. Hamburg 6 (1928), 146-162.
- P. Cartier, Groupes formels associés aux anneaux de Witt génélisés, C.R. Acad. Sci.(Paris) 265(1967). A50-52.
- 3. P. Cartier, Modules associes à un groupe formel commutatif. Courbes typiques, C.R. Acad. Sci (Paris) 265(1967). A 129-132.

- P. Cartier, Relèvement des groupes formels commutatifs, Sem. Bourbaki 1968/1969, exposé 359, Lect. Notes Math. 179, Springer, 1971.
- 5. P. Cartier, Seminaire sur les groupes formels, IHES 1972 (unpublished notes)
- J. Dieudonné, On the Artin-Hasse exponential series, Proc. Amer. Math. Soc. 8(1957), 210-214.
- 7. E.J. Ditters, Formale Gruppen, die Vermutungen von Atkin-Swinnerton Dyer und verzweigte Witt-vektoren, Lecture Notes, Göttingen, 1975
- V.G. Drinfel'd, Coverings of p-adic symmetric domains (Russian), Funkt. Analiz i ego pril. 10, 2(1976), 29-40.
- 9. M. Hazewinkel, Une théorie de Cartier-Dieudonné pour les A-modules formels, C.R. Acad. Sci. (Paris) 284 (1977), 655-657.
- M. Hazewinkel, "Tapis de Cartier" pour les A-modules formels, C.R. Acad. Sci. (Paris) 284 (1977), 739-740.
- 11. M. Hazewinkel, Formal groups and applications, Acad. Press, to appear.
- 12. J. Lubin, J. Tate, Formal complex multiplication in local fields, Ann. of Math 81 (1965), 380-387.
- 13. G. Whaples, Generalized local class field theory III. Second form of the existence theorem. Structure of analytic groups, Duke Math. J. 21(1954), 575-581.
- 14. E. Witt, Zyklische Körper und Algebren der Characteristik p vom Grad p^m, J. reine und angew. Math. <u>176(1937)</u>, 126-140.