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ABSTRACT. 

For any ring R let A(R) denote the multiplicative group 

of power series of the form 1 + a1 t + ••• with coefficients 

in R. The Artin-Hasse exponential mappings are homomorphisms 

W (k) + A(W (k))twhich satisfy certain additional properties. p,co p,co 

Somewhat reformulated the Artin-Hasse exponentials turn out to be 

special cases of a functorial ring homomorphism E: W (-)-r 
p ,oo 

W (W (-)), where W is the functor of infinite length Witt 
p,co p,co p,co 

vectors associated to the prime p. In this paper we present ramified 

versions of both W (-) and E,with W (-) replaced by a functor p,co p,co · 

'1' (-),which is essentially the functor of q-typical curves in 
q ,co 

a (twisted) Lubin-Tate formal group law over A, where A is a 

discrete valuation ring~which admits a Frobenius like endomorphism 

a (we require o(a) = aq modm. for all a E A, where ln. is the maximal 

ideal of A). These ramified-Witt-vector functors '1' (-)do indeed 
q,oo 

have the property that, if k = A/m, is perfect, A is complete, and 

£/k is a finite extension of k, then wf' (£) is the ring of integers q,co 
of the unique unramif ied extension L/K covering £/k. 

CONTENTS. 

1. Introduction 

2. The Functional Equation Integrality Lemma 

3. Twisted Lubin-Tate Formal A-modules 

4. Curves and q-typical Curves 

5. The A-algebra Structure on C (F;-}, Frobenius and Verschiebung 
q 

6. Ramified Witt Vectors and Ramified Artin-Hasse Exponentials. 

Sept. 13, 1977 



2 

I • INTRODUCTION. 

For each ring R (connnutative with unit element 1) let A(R) 
2 

be the abelian group of power series of the form 1 + r 1t + r 2 t + ••• 

Let W (R) be the ring of Witt vectors of infinite length 
p,oo 

associated to the prime p with coefficients in R. Then the 

"classical" Artin-Hasse exponential mapping is a map 

E: W (k) + A(W (k)) p,oo - p,oo 

defined for all perfect fields k as follows. (Cf e.g. [J] and 

[13]). Let ~(y) be the power series 

~(y) = TI (l-yn)µ(n)/n, 
(p,n)=l 

where µ(n) is the Mobius function. Then ~(yl has its coefficients 

in 7l , cf 
p 

e.g. [13]. Because k is perfect every element of 

W (k) can be written in the form b = E T(c.}pi, with c. Ek, 
p,oo i=l 1 1 

and T: k + W (k) the unique system of multiplicative representants. 
p ,co 

One now defines 

00- 1 

II ~(T(c.)t)p 
• 1 
1=0 

Now let W(-) be the ring functor of big Witt vectors. Then 

W(-) and A(-) are isomorphic, the isomorphism being given by 
00 • 

(a 1,a2 , ••• ) + IT (l-a.t 1 ), cf [2]. Now there is a canonical quotient 
i=l 1. 

map W(-) + W (-) and composing E with A(-) ~ W(-) and W(-) + W (-) 
p,oo p,oo 

we find a Artin-Hasse exponential 

E: W (k) + W (W (k)) p,oo p,oo p,oo 

IQ~£E~· There exists a unique functorial homomorphism of ring-valued 

functors E: W (-) + W (W (-)) such that for all n = 0,1,2, ••• 
p;:io p~ P~-

n w o E = £ , where £ is the Frobenius endomorphism of W (-) and 
p,n p,oo 

where w : W (-)) + W (-) is the ring homomorphism which assigns 
p,n p,oo p,oo 

to the sequence (~0 ,£ 1 , ••• ) of Witt-vectors the Witt-vector 



n-1 
+ pt/ 

•1 
... . .. n-1 p n 

+ I) h + p b 
' "'n-1 =11° 

It ~hould bt• nott.!d the classical definition uf I': given above 
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works only for perfect fields of characteristic p > O. In this form 

theorem l.J is probably due to Cartier, cf [S]. 

Now let A be a complete discrete valuation ring with residue field 

of characteristic p, such that there exists a power q of p and an 

automorphism cr of K, the quotient field of A, such that cr(a) - aq mod l1t 

for all a E A, where 'Jn. is the maximal ideal of A. It is the purpose 

of the present paper to define ramified Witt vector functors 

where Alg is the category of A-algebras, and a ramified Artin-Hasse ==-A 
exponential mapping 

E: vr (-) ~ WF cwf (-)). q,oo q,oo q,oo 

There is such a ramified Witt-vector functor vf associated q,oo 
to every twisted Lubin-Tate·formal group law F(X,Y) over A. This 

last notion is defined as follows: let f(X) = X + a2x2 + ••• E K[[X]] 

and suppose that a. E A if q does not divide i and a .. - w-1T(a.) E A 
1 qi 1 

for all i for a certain fixed uniformizing element w. Then 

F(X,Y) = f- 1(f(X) + f(Y)) E A[[X,Y]],and the formal group laws thus 

obtained are what we call twisted Lubin-Tate formal group laws. The 

Witt-vector-functors vf (-) for varying F are isomorphic if the 
q,oo 

formal group laws are strictly isomorphic. Now every twisted Lubin-Tate 

formal group law is strictly isomorphic to one of the form 

G (X, Y)_ = g - l (g (X) 
w w w3 

2 -J q -1 -1 q 
+ gw(Y)) with g(wt(X) = X + w X + w cr(w) X + 

-1 -] 2 -1 q w cr(w) cr (w) X + ••• which permits us to concentrate on the case 

F(X,Y) = G (X,Y) for some w; the formulas are more pleasing in this w 
case, especially because the only constants which then appear are the 

cri(w), which is esthetically attractive,because w is an imrariant of 

the strict isomorphism class of F(X,Y). 

The functors if and the functor morphisms E are Witt-vector­
q,oo 

like and Artin-Hasse-exponential-like in that 



(i) 
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WF 00 (B) = ((b ,b 1 , ••• )jb. E B} as a RCt valued functor 
q, 0 i . 

and the A-algebra structure can be defined via suitable 

Witt-like polynomials wF (Z , ••• ,Z ); cf below for q,n o n 
more details. 

(ii) There exist a a-semilinear A-algebra homomorphism £ 
(Frobenius) and a a~ 1 -semilinear A-module homomorphism V = 
(Verschiebung) with the expected properties, e.g. £X = w 
where w is the uniformizing element of A associated to F, 

and ~(g):: ~q modww!, 00 (B). 

(iii) If k, the residue field of A, is perfect and i/k is a finite 

field extension, then if (i) = B, the ring of integers of q,oo 
the unique unramified extension L/K which covers i/k. 

(iv) The Artin-Hasse exponential E is characterized by 

F n 
w oE=f foralln=0,1,2, ••• q,n = 

I hope that these constructions will also be useful in a class­

field theory setting. Meanwhile they have been important in formal 

A-module theory; the results in question have been announced in two 

notes, [9] and [10], and I now propose to take half a page or so to 

try to explain these results to some extent. 

Let R be a 7l (p)-algebra and let Cartp(R) be the Cartier-Dieudonne 

ring. This is a ring "generated" by two symbols f,V over wp,00 (R) subject 

to "the relations suggested by the notation used". For each formal 

group F(X,Y) over R let C (F;R) be its Cart (R) module of p-typical 
- p p 

curves. Finally let W (-) be the formal completion of the functor p ,co 

W (-). Then one has p,oo 

(a) The functor F..-+ C (F;R) is representable by w ([3]) 
p p,oo 

(b) The functor F-. C (F;R) p is an equivalence of categories 

between the category of formal groups over R and a certain 

(explicitly describable) subcategory of Cart (R) modules p 
([3]). 

(c) There exists a theory of 11 lifting" formal groups, in which 

the Artin-Hasse exponential E: W (-)-+ W (W (-)) plays an 
p,oo p,oo p,eq, 

important role. These results relate to the socalled "Tapis de Cartier" 

and relate to certain conjectures of Grothendieck concerning cristalline 

cohomology 1 ([4] and [5]). 
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Now let A be a complete discrete valuation ring with residue 

field k of q-elements (for simplicity and/or nontriviality of the 

theory). A formal A-module over BE ~1~A is a formal group law F(X,Y) 

over B together with a ring homomorphism pF: A+ EndB(F(X,Y)), such 

that pF(a) = aX mod(degree 2). Then there exist complete analogues 

of (a), (b), (c) above for the category of formal A-modules over B. 

Here the role of C (F;R) is taken over by the q-typical curves 
p A 

C (F;B), W 00 (-) and W are replaced by ramified- Witt vector functors 
q p, p,oo 

W1T (-) and ~TI (-} associated to an untwisted, i.e. o = id, 
q,oo q,oo 

Lubin-Tate formal group law over A with associated uniformizing element 

1T • Finally, the role of E in (c) is taken over by the ramified 

Hasse-Witt exponential W1T (-) + W1T (W1T (-)) 
q,oo q,oo q,oo 

As we remarked in (i) above, it is perfectly possible to define 

and analyse ~ (-) by starting with the polynomials wF (Z) and then 
q,oo q,n 

proceeding along the lines of Witt's original paper. And, in fact, 

in the untwisted case, where k is a field of q-elements, this has been 

done, independantly of this paper, and independantly of each other 

by E. Ditters ([7]), V. Drinfel'd ([8]), J. Casey (unpublished) and, 

very possibly, several others. In 
n 

are of course the polynomials Xq 
0 

this case 
n-1 

+ 1TXq 
1 

the relevant polynomials 

n-1 q n.. 
1T X 1 +1TX. 

n- n + ••• + 

Of course the twisted version is necessary if one wants to describe 

also all ramified discrete valuation rings with not necessarily finite 

residue fields. A second main reason for considering "twisted formal 

A-modules" is that there exist no nontrivial formal A-modules if the 

residue field of A is infinite. 

Let me add, that, in my opinion, the formal group law approach 

to (ramified) Witt-vectors is technically and conceptually easier. 

Witness, e.g. the proof of theorem 6.6 and the ease with which one 

defines Artin-Hasse exponentials in this setting (cf. sections 6.1 

and 6.5 below). Also this approach removes some of the mystery and 

exclusive status of the particular Witt polynomials 
n n-1 

xP + pXP 
0 ] 

n n-J 
+ ••• + p~ (unramified case), Xq + 1TXq1 + ••• + 1T~ 

n o n-2 n 
qn n-1 qn-l n-J n-2 q 

(untwisted ramified case), X + o (w}X +a (WLO (w)X2 0 1 
n-1 

+ ••• +a (w) •.• o(w)wX (twisted ramified case). From the 
n 



6 

theoretical (if not the esthetical and/or computational) R~fnt of 

view all polynomials~ (X , ••• ,X) = a-1(a Xq +a 1xq1 + ••• + q,n o n n n o n-

a0Xn) E A[X] are equally good, provided a0 = 1, a2 , a3, ••• is a 

sequence of elements of K such that 

-1 
a. - w cr(a. 1) EA for all i = 1,2, •••• Cf in this connection also 

1 1-

[6]. 

2. THE FUNCTIONAL-EQUATION-INTEGRALITY LEMMA. 

2 • .1. !!!~-~~.!:!i:!!S.! Let A be a discrete valuation ring with maximal 

ideal m., residue field k of characteristic p > 0 and field of 

quotients K. Both characteristic zero and characteristic p > 0 are 

allowed for K. We use v to denote the normalized exponential 

valuation on K and w always denotes a uniformizing element, i.e. 

v(w) = 1 and m. = wA. We assume that there exists a power q of p 

and an automorphism cr of K such that 

(2.2) cr(m) = m, cra - aq modm for all a EA. 

The ring A does not need not be complete. 

Further let B E ~!~A' the category of A-algebras. We suppose 

that B is A-torsion free (i.e. that the natural map B + B 9AK 

is injective) and we suppose that there exists an endomorphism 

T : B ~A K + B QA K such that 

(2.3) T(b) - bq mod ·rriB for all b E B 

Finally let f (X) be any power series over B ~A K of the form 

(2.4) 

for which there exists a uniform.izing element w E A such that 

(2.5) 

where T* means "apply T to the coefficients". In terms of the 

coefficients b. of f(X) condition (2.5) means that 
1 



(2.6) b. E B[[X]] if q does not divide i, 
l. 

-1 
bqi - ul T(bi) E B[[X]] for all i = 1 ~ 2, ••• 
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2.7. I~~~!i~~~l:~S~~!i~~-l~~~· Let A,B,cr,T,K,p,q,f(X),w be as in 

2.1 above such that (2.2) - (2.6) hold. Then we have 

(i) F(X,Y) = f- 1 (f(X) + f(Y) has its coefficients in B and hence 

is a commutative one dimensional formal group law over B. 

(Here f- 1 (X) is the "inverse function" power series of 

f(X); i.e. f-1 (f(X)) = X). 

(ii) If g(X) E B[[X]], g(O) = 0 and h(X) f(g(X)) then we have 

h(X) - w-JT*h(Xq) E B[[X]]. 

(iii) If h(X) E B ~A K[[X]], h(O) 

then £-1 (h(X)) E B[[X]]. 

-1 q 
0 and h(X) - w T*h(X ) E B[ [X]], 

(iv) If et(X) E B[[X]], S(X) E B ~A K[[X]], Cl(O) = S(O) = O, and 

r,m EJN = {J,2, ••• }, then a(X) = 8(X) mod(wrB, degree m) -

f(et(X)) = f(S(X)) mod(wrB,degree m). 

Proof. This lemma is a quite special case of the functional equation 

lemmas of [11], cf sections 2.2 and 10.2. There are also infinite 

dimensional versions. Here is a quick proof. First notice that (2.6) 

implies (with induction) that 

(2.8) 
-i i+J 

b. E w B, if j is not divisible by q 
J 

We now first prove a more general form of (ii). Let 

g(Z) = g(Z 1 , ••• ,Zm) E B[[z 1 , ••• ,Zm]], g(O) = O. Then by the 

hypotheses of 2.1 we have 

(2.9) 

Combining (2.8) and (2.9) and using (2.6) we see that mod(B[[X]]) 

we have 

h(Z) f(g(Z)) = 

co 

00 

J.: 
i=l 

i b.g(Z) 
l. 

co 

J.: b . g(Z) qj -
j=l q]_ 

-1 
w 

00 • 

2.: T(b.)g(Z)qJ 
j=l J 

- w-1 J.: T(b.)T*g(Zq)j = w- 1T*f(T*g(Zq)) = w-1T*h(Zq). 
j= I J 
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This proves (ii). To prove (i) we write F(X,Y) = F1(X,Y) + F2(X,Y) + ••• , 

whPn' F (X, Y) is homogc•nf'ous of degree n. We now prove by induction n . 

that F n (X, Y) E B[X, Y] for all n = 1, 2, •••• The induction starts 

because F1(X,Y) = X + Y. Now assume that F1 (X,Y), ••• , Fm(X,Y) E B[X,Y]. 

Mod(degree m+2) we have that f(F(X,Y)) = b1Fm+l(X,Y) + f(g(X,Y)), where 

g (X, Y) = F 1 (X, Y) + ••• + Fm (X, Y). Hence, using the more general form of 

(ii) proved just above, we find mod (B[[X,Y]], degree m+2)o 

where we have used the defining relation f(F(X,Y)) = f(X) + f(Y), which 

implies Tttf(T*F(X\Yq)) = T*f(Xq) + T*f(Yq), and where we have also used 

that F(X,Y) = g(X,Y) mod(degree m+l) • F(Xq,Yq) = g(Xq,Yq) mod(degree m+2). 

It follows that b 1F 1(X,Y) = 0 mod(B[[X,Y]], degree m+2) and hence m+ 
Fm+l(X,Y) E B[X,Y] because b1 is a unit. 

The proof of (iii) is completely analogous to the proof of (i). 

The implication ,.. of (iv) is easy to prove. If a(X) = f3(X) mod 
1. i· . 

mod(wrB, degree m) and a(X) E B[[X]] then a(Xlq J=SCX)q J mod(wr+iB,degree ~ 

which, combined with (2.8), proves that f(a(X))· = f(f3(X)) mod(wrB,degree m). 

To prove the inverse implication+= of (iv) we first do the special case 

f(8(X)) = 0 mod(wrB, degree m) :+ f3(X) = 0 mod (wrB, degree m). Now 

f3(X) = 0 mod (degree 1), hence f(f3(X)) = b1 (3(X) + b2f3(X) 2+ ••• :: 0 

mod(wrB, degree m), implies f3(X) = 0 mod(wrB, degree 2), if m > 2 -(if m = l there is nothing to prove), because b1 is a unit. Now assume 

with induction that f3(X) = 0 mod(wrB, degree n) for some n < m. Then, 

because f3(X) = 0 mod(degree I) we have f3(X)i = 0 mod(wri.B, degree (n+i-1)) 

and hence b.(3(X)j = 0 mod(wrB, degree n+l) if j > 2. Hence f(f3(X)) ·= 0 
J - . 

mod(wrB, degree m) then gives b1(3(X) = 0 mod(wrB, degree n+J)• so that 

f3(X) = 0 mod(wrB, degree n+l) because b1 is a unit. This proves this 

special case of (iv). Now let f(a(X)) = f(f3(X)) mod(wrB, degree m}. 
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Wri l l• y (X) ". f (f~(X)) - f (<t(X)) nn<l a (X) • f-I (y(X)). Then o(X) ,. 0 
r 

mod(ui H, deKree m) by the sped ~11 case just provt•d, and 

13(X) = f-l(f(a(X)) + f(o(X)) = F(a(X), o(X)).::: a(X) mod(wrB, degree m) 

because F(X,Y) has integral coefficients, F(X,O) = 0 and because a(X) is 

integral. This concludes the proof of the functional equation lemma 2~7. 

3. TWISTED LUBIN-TATE FORMAL A-MODULES. 

3.1. fonstruction and Defin!!f~~~ Let A,K,k,p,m..,cr,q be as in 2.1 

above. We consider power series f(X) = X + c2x2 + ••• E K[[X]] such 

that there exists a uniformizing element w Em. such that 

(3. 2) 

There are many such power series. The simplest are obtained as follows: 

choose a uniformizing element w of A. Define 

(3 .3) 

Given such a power series f(X), part (i} of the functional equation 

lemma says that 

(3.4) F(X,Y) = f-l(f(X) + f(Y)) 

has its coefficients in A, and hence is a one dimensional formal group 

law over A. We shall call the formal group laws thus obtained twisted 

Lubin-Tate formal A-modules over A. The twisted Lubin-Tate formal 

A-module is called q-typical if the power series f(X), from which it is 

obtained, is of the form 

2 
(3 .52 f(X) X + a 1xq + a 2xq + ••• 

From now on all twisted Lubin-Tate formal A-modules will be assumed 

to be q-typical. This is hardly a restriction because of lemma 3.fr below. 

3.6. Lemma. Let f(X} == x 
QO i 

Let f (X) = t a.Xq with 
i=o l. 

"' 

a = 1 a. = 
0 ' l. 

E K[[X]] be such that (3.2) holds. 
.. 1 

c .• Then u(X} = f- (f(X)) E A[[X]] 
l. 

q 

so that F(X,Y) and F(X,Y) are strictly isomorphic formal group laws over A. 
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Proof. It follows from the definition of f(X), that f(X) also satisfies 

(3.2). The integrality oft.(X) now follows from part (iii) of the 

functional equation lemma. 

3.7. g~~E~§~ Let k, the residue field of K, be finite with q elements, 

and let T = id. Then the twisted Lubin-Tate formal A.:..modules over A 

as defined above are precisely the Lubin-Tate formal group laws defined 

in [ 12], i.e. they are precisely the formal A-modules of A-height l. 

If k is infinite there exist no nontrivial formal A-modules (cf [11], 

corollary 21.4.23). This is a main reason for considering also twisted 

Lubin-Tate formal group laws. 

3.8. Remark. Let f(X). E K[[X]] be such that (3.2) holds for a certain 

uniformizing element w. Then w is uniquely determined by f(Xl, because 

-1 -1 2i a. - w T(a .. I) EA• w = a. T(a. 1). mod w A as v(a.) = -i. Using 
1 1- 1 1- 1 

parts (ii) and (iii) of the functional equation lemna we see that w is 

in fact an invariant of the strict isomorphism class of F(X,Y). Inversely 

given w we can construct g (X) as in 3.3 and then g-1(f(X)) = u(X) is 
w -1 w 

integral so that F(X,Y) and Gw(X,Y) = gw (gw(X) + gw(Y)) are strictly 

isomorphic formal group laws. In case ~k = q and T =id, w is in fact 

an invariant of the isomorphism class of F(X,Y). For some more results 

on isomorphisms and endomorphisms of twisted Lubin-Tate formal A-modules 

cf [11], especially sections 8.3, 20.1, 21.8, 24.5. 

4. CURVES AND q-TYPICAL CURVES. 

Let F(X,Y) be a q-typical twisted Lubin-Tate formal A-module 
2 

obtained via (3.4) from a power series f(X) = X + a1xq + a 2Xq +· ••• • 

4.1. £~EY~~· Let ~l~A be the category of A-algebras. Let B:E ~1~A· 

A ~- in F over B is simply a power series y (tl E B[ [t]] such that 

y(O) = O. Two curves can be added by the formula y1 (tl +F y2(t) = 
F(y1 (t), y 2(t), giving us an abelian group C(F;B). FurtheT, if 

<j>: B1 -+ B2 is in ~l~A' then y(t) i-+- cp._y(t) (= "apply <I> to the coefficients") 

defines a homomorphism of abelian groups C(F;B 1) -+ C(F;B2). This 

defines us an abelian group valued functor C(F;-): ~1SA-+ ~~· There is 

a natural filtration on C(F;-) defined by the filtration subgroups 

Cn(F;B) = {y(t) E C(F;B)I y(t) = 0 mod(degree n)}. The groups C(F;B) 

:irl" c-nmn11"tP with rP.~nPc-t: tn the tonolo11:v defined bv the filtration 
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n 
C (F;B), n= 1,2, ••• 

The functor C(F;-) is representable by the A-algebra A(S] = A[S 1 ,s2, ••• l. 
oo. 

The isomorphism AlgA(A[S],B) ~ C(F;-) is given by ~r+ E F$(S.)ti, i.e. 
. I 1. i.= 

by cf>i-+ $*y8 (t), where y8 (t) is the "universal curve" 
00 

y8 (t) = E FS.ti E C(F;A[S]). 
• ] 1. 
i.= 

4.2. 9=!ypification. Let y8 (t) E C(F;A[S]} be the universal curve. Consider 

the power series. 

EX) 

h(t) = f(y8(t)) = E x.(S)ti 
• ] 1. 
i.= 

Let T: K[S] + K[S] be the ring endomorphism defined by T(a) = cr(a) 

for a EK and T(S.) = S~ for i = 1,2, •••• Then the hypotheses of 2.1 
l. l. 

are fulfilled and it follows from part (ii} of the functional 

equation lemma that h(t} - w-lT*h(tq) E A[S][It]]. Now let 

h(t) 
00 i 
E x .(S)tq 

i=o qi 

1 .... 
Then, obviously, also h(t) - w- T*h(tq} E A[S][[t]] and by part (iii) 

of the functional equation leonna it follows that 

(4.3}_ 
00 i 

eqyS(t) = f- 1(.r x i(S)tq 
i=o q 

is an element of A[S][[t]]. We now define a functorial group 

homomorphism£ : C(F;-)_ + C(F;-) by the formula 
q 

(4.4) 

for y(t) E C(F;B), where et> : A[SJ +Bis the unique A-algebra 
y 

homomorphism such that cf>y*1s(tl = y(t), 

4.5. ~~~· Let B be A-torsion free so that B + R QA K is injective. 

Then we have for all y(t} E C(F;Bl 

i=l 

00 

b.ti' f(£ y(t}) = 
l. q (4.6) f(y(t)) = 



l 2 

and LqC(F;B) = ty(t) E C(F;B)if(y(t)) = l: cjtqJ for certain cj E B ~AK} 
Proof. Immediate from (l~.3) and (4.4). 

4.7. Lemma. E: is a funct<Drial, idempotent, group endomorphism of q 
C(F;-). 

Proof. E: is functorial by definition. The facts that E: E: = E: and q q q q 

that E is a group homomorphism are obvious from Lennna 4.5 in case q 
B is A-torsion free. Functoriality then implies that these properties 

hold for all A-algebras B. 

4.8. ~b~-f~g£~~E Cq(F;-) ~~ g:~YEi£~!_£~~~~· We now define the 
abelian group valued functor Cq(F;-) as 

(4.9) C (F·-) = E C(F·-) q ' q , 

n 
For each n ElN U {O} let C(n)(F;E) be the subgroup C (F;B) 

q q 
n cq (F;B). 

These groups define a filtration on C (F ;B), and C (F ;B) is q q 
with respect to the topology defined by this filtration. 

The functor C (F;-) is representable by the A-algebra 
q 

A[T] = A[T0 ,T 1 , ... ]. 

Indeed, writing f(X) = 

and it follows that 

we have 

00• 00 • j. 
z l: a . s~ t q i 

j=o i=l J 1 

complete 

From this one easily obtains that the functor C (F;-) is representable q 
by A[T]. The isomorphism AlgA(A{TJ,B) ~ Cq(F;B) is given by 

<llO• l. 

cpl-+ L:. Fcp(Ti)tq = <P*(yT(t)), where YT(t) is the universal q-typical 
i=o 

curve 

(4.10) 
co F i 
L: T.tq E C (F;A[TJ) 

i=o 1. q 

4.11. ~~~E~~· The explicit formulas of 4.8 above depend on the fact 
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lhat F was supposl'd Lo IH! q-typical. In general slightly more 

compl i.cated formulae hold. For arbitrary formal group.s q-typificat ion 

(i.e. £) is not defined (unless q=p). But a similar notion of q 
q-typification exists for formal A-modules of any height and any 

dimension if 1J,. k = q. 

5. THE A-ALGEBRA STRUCTURE ON C (F;-}, FROBENIUS 
q 

AND VERSCHIEBUNG. 
2 

5.1. From now on we assume that f(X) = gw(X) = X + w-lXq + w- 1cr(w}-JXq + ••• 

for a certain uniformizing element w. Otherwise we keep the notations 
-1 i-1 and assumptions of section 4. Thus we now have a. = wa(w) ••• a (w), 
1 

a0 = 1. This restriction to "logarithms" f(X) of the form ~(X) is not 

very serious, because every twisted Lubin-Tate formal A-module over A 

is strictly isomorphic to a Gw(X,Y), (cf. remark 3.8), and one can 

use the strict isomorphism g- 1(f(X)) to transport all the extra structure 
w 

on C (F;-) which we shall define in this section. The restriction 
q 

f(X) = g (X) does have the advantage of simplifying the defining w 
formulas (5.4), (5.5), (5.8),... somewhat, and it makes 

them look rather more natural especially in view of the fact that w, 

the only "constant" which appears,is an invariant of strict isomorphism 

classes of twisted Lubin-Tate formal A-modules; cf. remark 3.8 above. 

In this section we shall define an A-algebra structure on the 

functor C (F·-) and two endomorphisms f and V • These constructions 
q ' =w =q 

all follow the same pattern, the same pattern as was used to define 

and analyse £ in section 4 above. First one defines the desired 
q 

operations for universal curves like YT(t) which are defined over rings 

like A[T], which, and this is the crucial point, admit an endomorphism 

T: K[T] + K[T] , viz. T(a) cr(a), T(T.) = T~, which extends cr and 
1 l. 

which is such that T(x) = xq mod wA[T]. In such a setting the functional 

equation lemma assures us that our constructions do not take us out of 

C(F;-) or C (F;-). Second, the definitions are extended via representability 
q 

and functoriality, and thirdly, one derives a characterization which 

holds over A-torsion free rings, and using this, one proves the various 

desired properties like associativity of products, o-semilinearity of 

f , etc ••• =w 



) • 1. Const rue l i 1ms. Let y (t) lw the universal q-typic:il curve (l~.9). ------------- T 
We write 

(5.3.) 

00 

Let f(X) = g (X) = L: w 
1=0 

a E A. 

1-

a.Xq 
1-

00 

L: 
i=o 

i.e. a. 
1 

i 
x.(T)tq 

1 

-J -1 i-1 .-1 w a(w) •.. a (w) and let 

We define 

(5 .4) 

(5.5) 
00 • i 

~wyT(t) = f- 1 ( L: o1 (w}xi+J(T)tq} 
1=0 

The functional equation lerrnna now assures us that (5.41 and (5.5) define 

elements of C(F;A[T]), which then are in C (F;A[T]) by lemma 4.5. To 
q 

illustrate this we check the hypotheses necessary to apply (iii) of 2.7 in 

the case of ~w· Let T : K[T] -+ K[T] be as in 5.1 above. Then by part 

(ii) of the functional equation lemma we know that 

c. E A[T] 
1 

It follows by induction that 

(5.6) 

and we also know that 

(5.7) 
-I i-1 

v(a. ) = v(wo(wl ••• a (w}) = i 
1 

where v is the normalized exponential valuation on K. We thus have 

i -1 i-1 
= wx 1 E A[T] and a (w)xi+I - w 1"(0 (w)xi) = 

i a (w)c. + 
1 

(iii) of 

i -l -1 i-1 i a (wlw T(xil - w T(o (w)xi) =a (w)ci E A[T]. Hence part 

the functional equation lemma says that ~w yT(t)_ E C(F;A[T]). 

To define the multiplication on Cq(F;-) we need two independant 



universal q-typical curves. Let 

() \'F. q1 "'() )'F~ qiEC(F [:lo]) YT t = ,, '[it , u't t • , Tit , ;A T;r • 
q 

We define 

(lO i 
(5.8) £- 1 c r 

i=o 

-1 q 
a . .x.y.t ) 

l. l. l. 

l. i 

15 

where f(yT(t)) = L xitq , f(oT(t)) = 1: yitq • To prove that (5.8) 

defines something integral we proceed as usual. We have x ,y E A[T;T], 
0 0 

-1 .... -1 A 

x.+l - w T(x.) =c. E A[T;T], Y·+l - w T(y.) =d. E A[T;T],where 
l. 1 1 1 1 1 

T: K[T;T] + K[T;T] is defined by T(a) =a for a E K,and T(Ti) = T{, 

T(T.) = T~, 1 = 0,1,2, •••• 
l. 1 

-1 -1 -1 Then a x y = x y E A[T;T] and a. 1x. 1y. 1 - w T(a. x.y.) = 
0 0 0 0 0 1+ i+ 1+ l. l. l. 

wcr(a.)- 1 (c.+w- 1T(x.))(d.+w- 1T(y.)) - w- 1cr(a: 1)T(x.)T(y.) = 
l. l. 1 1 l. l. l. l. 

-1 -1 " wcr(a. )c.d. + cr(a.) (c.T(y.) + d.T(x.)) E A[T;T] by (5.6) and (5.7). 
1 l. l. l. l. l. 1 l. 

5.9. Definitions. Let y(t), o(t) be two q-typical curves in F over 

BE ~4~A •. Let ~: A[T] ~ B be the unique A-algebra homomorphism such 

that ~*yT(t) = y(t), and let w: A[T;T] + B be the unique A-algebra 

homomorphism such that W yT(t) = y(t),w*oT(t) = o(t). Let a EA. We 

define 

(5. 1 O) 

(5.11) 

(5.12) y(t)*o(t) 

5.13. Characterizations. Let B be an A-torsion free A-algebra; i.e 

B + B ~AK is injective, then the definitions (5.10) - (5.12) are 

characterized by the implications 

00 i 00 

qi(a)x.tq 
l. 

z x.tq =:> f({a}Fy(t)) z 
1 i=o 

l. 
i=o 

( 5 • I 4) f (y ( t ) ) 

( 5 • 1 5) f (y ( t ) ) 

00 1 00 i q i r x. tq =:> f(fy(t)) E cr (w)xi+lt 
i=o l. =w . 

i=o 
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00 ]_ 00 ]_ 

(S.16) f(y(t)) l: x. tq f(o(t)) = L y. tq 
i=o 

]_ 1 
1=0 

00 1 

f(y(t)*o(t)) = L: 
-I q 

a. x.y.t 
i=o 1 1 1 

This follows innnediately from (5.4), (5.5), (5.8) compared with 

(5.10) - (5.12), because~* and~* are defined by applying~ and W 
to coefficients, and because y(t)t-+ f(y(t)) is injective,if Bis 

A-torsion free. 

5.17. Theorem. The operators {a}F defined by (5.10) define a 

functorial A-module structure on C (F;-). The multiplication* defined 
q 

by (5.12) then makes C (F;-) an A-algebra valued functor, with as 
q 

unit element the q-typical curve y 0 (t) = t. The operator ~w is a 

cr-semilinear A-algebra homomorphism; i. e. £w is a unit and multiplication 

preserving group endomorphism such that £w{a}F = {cr(a)}F~w· 

Proof. In case B is A-torsion free the various identities in 

Cq(F;B) like ({a}Fy(t))*cS(t) = {a}F(y(t)*o(t)), 

y(t)*(o(t) +F €(t)) = (y(t)*o(t)) +F (y(t)*€(t)), ••• 

are obvious from the characterizations (5.14) - (5.16). The theorem 

then follows by functoriality. 

5.18. Verschiebung. We now define the Verschiebung operator Xq 
on C (F;-) by the formula V y(t) = y(tq). (It is obvious from lennna q =q . 
4.5 that this takes q-typical curves into q-typical curves). In terms 

of the logarithm f(X) one has for curves y(t) over A-torsion free 

A-algebras B 

(5.19) f(y(t)) = f(V y(tl) = =q 

00 i+J 
l: x.tq 

i=o 1 

5.20. J_!leor_em~ For q-typical curves y(t) in F over an A-algebra B 

(S.21) 

(5.22) 

Proof. (5.21) is innnediate from (5.14), (5.15) and (5.19) in the case 

of A-torsion free B and then follows in general by functoriality. 

The proof of (5.22) is a bit longer. It suffices to prove (5.22) for 

curves y(t) E C (F;A [T1). In fact it suffices to prove (5.22) 
q 



for y(t) = 

(5.23) 

Y (t), the universal curve of (4.9). Let 
T 

oCt) 
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where the x., i = O,J,2, ••. 
l. 

i 
are determined by f(y(t)) = r x.tq 

l. 

It then follows from (S.14) - (S.16) that indeed 

£wY(t) - y(t)iE-q "" {w}Fo(t), pr_o~i_de<l: that we can show that o(t) 

is integral, i~e. that o(t) E C (F;A[T]). To see this it suffices 
q -1 

to show that y E A[T] and y. 1 - w T(y.) E A[T] because of part 
0 1+ l. -1 

(iii) of the functional equation lermna. Let c. = x.+l - w T(x.) E A[T]. 
1 1 l. 

Then 

0 -1 q 
y = x - a (w) x 

o I o 

because T(x) - xq mod wA[T]. Further from x. 1 0 0 l.+ 
c. + w- 1T(x.) we find 

l. 1. 

i 1 a (w)c. + cr(w) ••• a (w}T(x.) = 
1 1 

i+ 1 d ( -] ) W • + T a. x. 
1 l. l. 

for a certain d. E A[T], and hence 
l. 

-q q i+2 T(a. x.) + w e. 
l. l ]_ 

for a certain e. E A[T]. It follows that 
l. 

-1 i -I -q i 
+ w T(O (w) a.a. x.) 

1. l l. 

i + 1 -I -q q -1 -q q ) 
= ci.+l - cr (w) (a. 1a. 1x. 1-w cr(a.)T(a. JC.) i.+ i.+ 1+ 1 l. 1. 

i+l -1 -q q -q q - c a (w) (a x - T (a. -x.)) E A[T] - i+l - ai+l i+l i+I l i. 

because ai+l = w-1cr(ai) and because of (5.23). (Recall that 

v(ai+l) =-i. - J by (5.7)). This concludes the proof of theorem 5.20. 



6. RAMIFIED WITT VECTORS AND RAMIFIED ARTIN-HASSE 

EXPONENTIALS. 

We keep the assumptions and notations of section 5 above. 
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6.1. A preliminary Artin-Hasse exponential. Let B be an A-algebra 

which is A-torsion free and which admits an endomorphism 

T : B 9A K + B eA K which restricts to a on A eA K = K c B eA K and 

which is such that T(b) = bq mod wB. We define a map 

6B: B + Cq(F;B) as follows 

(6. 2) 
1 CX) • i 

6B(b) = £- ( E T1 (b)aitq ) 
i=o 

This is well defined by part (iii) of the functional equation lettmla. 

A quick check by means of (5.14) - (5.16) shows that 6B is a 

homomorphism of A-algebras such that moreover 

(6.3) 

(because cr1 (w)ai+l = ai), and that ~B is functorial in the sense 

that if (B!T') is a second such A-algebra with endomorphism T' of 

B' 9A K and $: B + B' is an A algebra homomorphism such that 

T'~ = ~T, then Cq(F;$) o 6B = 6B' o ~. 

6.4. ~~~E~~ Using (B,T) instead of (A,a) we can view F(X,Y) as 

a twisted Lubin-Tate formal B-module over B, if we are willing to 

extend the definition a bit, because, of course, B need not be a 

discrete valuation ring, nor is B eA K necessarily the quotient field 

of B. In fact B need not even be an integral domain. If we view 

F(X,Y) in this way then~~: B + Cq(F;B) is just the B-algebra structure 

map of C (F;B). 
q 

6.5. Now let B be any A-algebra. 

admits an endomorphism T, viz. T 

(5.22), satisfies the hypotheses 

Then C (F;B) 
q 

= f , which, 
=W 

of 6.1 above 

is an A-algebra which 

as Tx = xq mod w by 

(because f is 
=W 

cr-semilinear). It is also immediate from (5.10) and (5.4), cf. also (5.14) 

that C (F;B) is always A-torsion free. Substituting C (F;B) for B in 
q q 

6.1 we therefore find A-algebra homomorphisms 

EB: C (F;B) + C (F;C (F;B)) q q q 
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which are functorial in B because f is functorial,and because of 
=W 

the functoriality property of the 6B -mentioned in 6.1 above. This 

functorial A-algebra homomorphism is in fact the ramified Artin-Hasse 

exponential we are seeking and,as is shown by the next theorem, 

C (F;B) is the desired ramified Witt vector functor. q 

6.6. !~~~E~~· Let A be complete with perfect residue field k. 

Let B be the ring of integers of a finite separable extension L of K. 

Let !l be the residue field of B. Consider the composed map 

6B - C (F;B) + C (F;!l) 
q q 

ThenµB is an isomorphism of A-algebras. Moreover if T: B + B is the 

unique extension of o: A + A such that T(b) = bq mod B, then 

£wµB = µBT , i.e. T and ~w correspond under µB. 

r Proof. Let b E B. Consider 6B(w b). Then from (6.2) we see that 

r r r r qr r+l 
f(bB(w b)) = aTT (w )T (b)t mod(wB, degree q ) 

By part (iv) of the functional equation lemma 2.7 it follows that 

r+l 
mod(wB, degree q ) 

where y =a Tr(wr) is a unit of B. It follows that µB maps the 
r r 

filtration subgroups wrB of B into the filtration subgroups 

C(r)(F·!l) and that the induced maps 
q ' 

r 
are given by x !-+ y xq , for x E !l. (Here !l ~ wrB/wr+l B is induced by 

r 
wrb + b with b the image of b in !l under the canonical projection 

B + !l, and C(r)(F;!l)/Cr+l(F;!l) ~ !l is induced by C(r)(F;!l) + !l, 
q q r q 

y(t)i--+- (coefficient of tq in y(t))). Because !l is perfect and 

Yr ~ o. it follows that the induced maps µB are all isomorphisms. 

Hence µB is an isomorphism because Band Cq(F;!l) are both complete 

in their filtration topologies. 
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The map JJB is an A-algebra homomorphism because 6B is an A-algebra 

homomorphism and C (F;-) is an A-algebra valued functor. Finally q 
the last statement of theorem 6.6 follows because both L and 
-1 q -1 

µB ~wµB extend o and T(b) = b = µB ~wµB(b) mod wB. 

6.7. ~~~-~~E~ sq,n ~~£ w!,n··The last thing to do is to reformulate 

the definitions of Cq(F;B) and EB in such a way that they more closely 

ressemble the corresponding objects in the unramified case, i.e. 

in the case of the ordinary Witt-vectors. This is easily done, 

essentially because C (F;-) is representable. 
q 

Indeed, let, as a set valued functor,~, 00 : ~1~A +~~~be defined 

by 

(6.8) J' (B) 
q,oo 

We now identify the set-valued functors rJF (-) and C (F;-) by the 
q,oo q 

functorial isomorphism 

(6.9) 
oo. F qi 
l: b.t ' 

i=o i 

and define J' (-) as an A-algebra valued functor by transporting the q,ro 
A-algebra structure on Cq(F;B) via eB for all B E ~1~B· We use £ and y 
to denote the endomorphism of ~,00 (-) obtained by transporting £w and Yq 
via eB. Then one has immediately 

( 6. 1 0) 

and in fact 

(6,Jl) b. - b~ mod wB 
i i 

(We have not proved the analogon of this for f • this is not difficult =w' 
to do by using part (iv) of the functional equation lemma and the 

additivity of ~w). 

Next we discuss the analogue of the Witt-polynomials 
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n n-1 
xP + pXP + ••. + pnX • We define for the universal curve 

o 1 n 

(6.12) 
n 

( ( ) ) - l ( ff . . f q s YT t = a coe ic1ent o t q,n n 

and, as usual, this is extended functorially for arbitrary curves 

y(t) over arbitrary A-algebras by 

(6.13) s Y(t) = cjl(s (YT(n)} q,n q,n 

where~: A[T] + B is the unique A-algebra homomorphism such that 

cp*yT(t) = y(t). If Bis A-torsion free one has of course that 
-1 n 

s y(t) = a (coeff. of tq in f(y(t)). q,n n 
Using this one checks that 

(6.14) 

s CYCt) +F o(t)) = s (y(t}) + s coCt)), s CY(t)*oCt)) = q,n q,n q,n q,n 

s (y(t))s (o(t)), s ({a}Fy(t)) = crn(a)s (y(t)), q,n q,n q,n q,n 

sq n(fwy(t)) = sq +l (y(t)), s· (y y(tl) ;::; , ,n q,n -q 
n-1 

a (t.>) sq,n-l (y(t)) if > 1, s (V y(t)) = Q - q,o =q 

s (t) = 1 for all n. q,n 

Now suppose that we are in the situation of 6.1 above. Then, 

by the definition of ~B,we have 

(6.J 5) 

Now define wF (B): r./ (B) 
q, n q,oo 

F 
+ B by w - s o eB. It is not difficult q,n · q,n 

to calculate wF • Indeed 
q,n 

00 i 
f( E FT.tq ) = 

i=o i 

00 00 • i+j 
E E a .T~ tq 

j=o i=o J 1 
= 

oo r i r 
E ( E a.Tq .)tq 

. i r-i r=o i=o 

and it follows that wF is the functorial map WF (B} + B defined by 
q, n Qf' 

the polynomials 



(6.16) 
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F -I n l 
w (Z , ••• ,z ) =a ( E a.Zq .) 

q,n o n n . 1. n-1 
1=0 

qn n-1 1 2 n-2 
Z0 + on-l (w)z{ + an"" (w)o0 - (w)zi + ..... 

a(w)wZ 
n 

6.17. Theorem. Let (A,cr) be a pair consisting of a discrete valuation 

ring A of residue characteristic p > 0 and a Frobenius-like automorphism 

a : K + K such that (2.2) holds for some power q of p. Let w be any 
F uniformizing element of A, and let w (Z}, n = 0, 1, ••• be the q,n 

polynomials defined by (6.15). Then there exists a unique A-algebra 

valued functor ~,00 : ~1~A + ~1~A such that 

(i) as a set-valued functor r.! (B) = {(b ,b1,b2, ••• )!b. E B} and q,oo o l 

vf 00(~}(b ,b1 , ••• ) = ($(b ), $(b1), ••• ) for all$:~+ B' in ~~~A 
q, 0 0 

(ii) the polynomials wF (Z) induce functorial crn-semilinear A-algebra 
. F q,n _ _F F 

(iii) 

(iv) 

(v) 

(vi) 

(vii) 

homomorphisms w : W- (B) + B, (b ,b1 , ••• )t-+- w (b , ••• ,b0 ). q,oo q,oo 0 q,oo o 

Moreover, the functor vf (-) has cr-1-semilinear A-module 
q ,oo 

functor endomorphism y and a functorial cr-semilinear A-algebra 

endomorphism ~ which satisfy and are characterized by 

F 
0 ¥ = crn-l(w)wF 1 if 1,2, ••. ; 

F oV 0 w n = w = 
q,n q,n- q,o = 
F 

0 ~ 
F 

w = w q,n q,n+l 

These endomorphisms f and V have (among others) the properties 
= = 

fV = w == 

fb - bq mod wWF (B) for all b E vf' (Bl, = q,oo = q,w 

¥(!?(£~)} = C¥g)~ for all g, ~ E w!,~On, 
B € ~l~A 

B € ~l~A 

Further there exists a unique functorial A-algebra homomorphism 

E: r,/ (-) + v! (rj! (-)} 
q,oo q,oo q,oo 

which satisfies and is characterized by 

(viii) 
F 

w q,n o E = £0 for all n = 0,1,2, ••• 
= 
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F F __ F F 
(Here w : W (W- (B)) ·• W (B) is short for q,n q,oo q,oo q,oo 

F 
w F ( )' i.e. it q,n,w R q,uo 

is the map which assigns to n sequence (£0 ,~ 1 , ... ) of elements of 

WF (B) the elemPnt wr (b ,b 1, .•. ) Er/ (B)). The functor homomorphtsm 
q,oo q,n =o = q,oo 

E further satisfies 

(ix) 
.~ F 
W- (w ) o E = fn 

q,ao q,n = ' 

where r}' (wF ): rJ' (r/' (B)) + r,/ (B) assigns to a sequence 
q,w q,n q,oo q,oo q,oo 

F F F 
(~0 ,~ 1 , ••• ) of elements of ~,00 (B) the sequence (wq,n(g0 ),wq,n(2 1), ••• ) 

E J' (B) 
q '00 

Finally if A is complete with perfect residue field k and i/k is a 

finite separable extension, then r/ (tl is the ring of integers B of 
q ,ex> 

the unique unramified extension L/K covering the residue field extension 

i/k and under this A-algebra isomorphism ~ corresponds to the 

unique extension of a to T: B + B which satisfies T(b) :: bq mod wB. 

In particular r}' (k) ~ A with __ f corresponding to a. . q,oo 

Proof .Existence of ~.00(-), X• ~' E such that (i), (ii), (iii}, (iv) 

(viii) hold follows from the constructions above. Uniqueness follows 

because (i), (ii), (iii), (iv), (viii) determine the A-algebra structure 

on gNU{O}, ¥• ~. E uniquely for A-torsion free A-algebras B, and then 

these structure elements are uniquely determined by (il - (iv), (viii) 

for all A-algebras.by the functoriality requirement (because for every 

A-algebra B there exists an A-torsion free A-algebra B together with a 

surjective A-algebra homomorphism B' + B. Of the remaining identities 

some have already been proved in the C (F;-)-setting ((v) and (vi). 
q 

They can all be proved by checking that they give the right answers 

whenever composed with the wF • This proves that they hold over 
q,n 

A-torsion free algebras B, and then they hold in general by 

functoriality. So to prove (vii) we calculate 



wF (V(b(f c))) • O 
q,o "' ....... 

an-l(w)wF (b(fc)) 
q,n-1 = == 

and, on the other hand 

F 
w ((Vb)c) q,o == = vl (Vb)J' (£) q,o q,o 

.F o w (c) = 0 q,o = 

This proves (vii). To prove (ix) we proceed similarly 

F 
w q,m o -r/ (wF ) o E = q,oo q,n 

F F 
= w = w q,n+m q,m 

F 
w q,n 

F 
0 w 

q,m 
o E 

F 
= w q,n 
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(Here the first 

wF which says 
q,m 

equality follows from the functoriality of the morphisms 

that for all <jl: B' + B E ~1~A we have 
F _F F 

w o W- ( </l) = </l o w ; now q,m q, 00 q,m substitute wF for <jl). q,n 

6.18. Remark. Vf = fV does of course not hold in general (also not in ------ == == 
the case of the usual Witt vectors). It is however, true in r./ (B) if q,co 
wB = 01 as easily follows from (6.11),which implies that f(b0 ,b1 , ••• ) = 

= (b~,hj, ••• ) if wB = O. 
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