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TWISTED LUBIN-TATE FORMAL GROUP LAWS, RAMIFIED WITT
VECTORS AND (RAMIFIED) ARTIN-HASSE EXPONENTIALS.

by Michiel Hazewinkel

ABSTRACT,

For any ring R let A(R) denote the multiplicative group
of power series of the form 1 + alt + ... with coefficients
in R, The Artin-Hasse exponential mappings are homomorphisms

Wp (k) = /\(Wp o(K)), which satisfy certain additional properties.
H 3

Somewhat reformulated the Artin~Hasse exponentials turn out to be
special cases of a functorial ring homomorphism E: Wp ()
b

Wp °°(wp (7)), where Wp » 1s the functor of infinite length Witt
b b b

vectors associated to the prime p. In this paper we present ramified

versions of both wp () and E, with Wb »(~) replaced by a functor
L s

Wi,m(—),which is essentially the functor of q-typical curves in
a (twisted) Lubin-Tate formal group law over A, where A is a
discrete valuation ring,which admits a Frobenius like endomorphism
0 (we require 0(a) = a% modm for all a € A, where m is the maximal
ideal of A). These ramified-Witt-vector functors Wg (=) do indeed
have the property that, if k = A/m is perfect, A is’complete, and
2/k is a finite extension of k, then Wz’w(l) is the ring of integers

of the unique unramified extension L/K coverin g %/k.
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1. INTRODUCTION,

For each ring R (commutative with unit element 1) let A(R)

2

be the abelian group of power series of the form 1 + ¢ t+ cee

+
1t r

Let Wp »(R) be the ring of Witt vectors of infinite length

b
associated to the prime p with coefficients in R. Then the

2

"classical" Artin-Hasse exponential mapping is a map

B W () > AGE (k)

defined for all perfect fields k as follows. (Cf e.g. [1] and
[13]). Let ®(y) be the power series

o(y) = T (]_yn)u(n)/n’
(p,n)=1

where H(n) is the Mobius function. Then ®(y) has its coefficients

in ZZP, cf e.g. [13]. Because k is perfect every element of
W_ (k) can be written in the form b = I T(ci)pl, with c; € k,
’ T =l

and T: k > Wp »(K) the unique system of multiplicative representants.
b

One now defines

o0}

' i
S, E(R) = T o(t(e)e)?

E: W k) - AW
p,w( ) ( b o

b4

Now let W(-) be the ring functor of big Witt vectors., Then
W(-) and A(-) are isomorphic, the isomorphism being given by
e o]

(al,az,...) ~ I (l—aitl), cf [2]. Now there is a canonical quotient
i=1

map W(-) - Wp co(—) and composing E with A(=) = W(-) and W(=) - Wb ®(~)
b ]
we find a Artin-Hasse exponential

[oe]
’

Br W 00 > W ()

functors E: W (=) > W. (W (-)) such that for all n = 0,1,2,...
Do Pso  DPyo.

o E = gn, where f is the Frobenius endomorphism of Wp (-) and
- - o

w
P,n 1)

where w : W -))> W (=) is the ring homomorphism which assigns
pP,n Py Py®

to the sequence (ho,gl,...) of Witt-vectors the Witt-vector



n n-1
p

bP o+ pg‘ el Ty

=0

)n—l bp n
=n—| =n

It should be noted the classical definition of K given above
works only for perfect fields of characteristic p > 0. In this form
theorem 1.1 is probably due to Cartier, cf [5].

Now let A be a complete discrete valuation ring with residue field
of characteristic p, such that there exists a power q of p and an
automorphism 0 of K, the quotient field of A, such that o(a) = a? mod m
for all a € A, where mm is the maximal ideal of A. It is the purpose

of the present paper to define ramified Witt vector functors

Wy ()3 Alg, ~ Alg,,

where é;gA is the category of A-algebras, and a ramified Artin-Hasse

exponential mapping
E: WF -) > WF WF =)).
q’m( ) q’m( q’m( ))

There is such a ramified Witt-vector functor Wi’m associated
to every twisted Lubin-Tate formal group law F(X,Y) over A. This
last notion is defined as follows: let £(X) = X + a2X2 +...l€ K[[x]]
and suppose that a; € A if q does not divide 1 and aqi - W T(ai) € A
for all i for a certain fixed uniformizing element w, Then
F(X,Y) = fﬁ](f(X) + £(Y)) € A[[X,Y]], and the formal group laws thus
obtained are what we call twisted Lubin-Tate formal group laws. The
Witt-vector-functors WF »(~) for varying F are isomorphic if the
formal group laws are gérictly isomorphic. Now every twisted Lubin-Tate
formal group law is strictly isomorphic to one of the form

2
= . -1 -1 -1
Gw(X,Y) = gwl(gw(x) + gw(Y)) with g(w)(X) = X + W 9+ w o) x4
- _ 3
w o (w) ]02(w) x4 4 ... which permits us to concentrate on the case

F(X,Y) = Gw(X,Y) for some w; the formulas are more pleasing in this
cgse,especially because the only constants which then appear are the
Ol(w), which is esthetically attractive,because w is an invariant of
the strict isomorphism class of F(X,Y).

The functors Wﬂ « and the functor morphisms E are Witt-vector-

b
like and Artin-Hasse—exponential-like in that



. I
(1) wq,m(B) = [(bo,bl,...)lbi € B} as a set‘valued functor
and the A-algebra structure can be defined via suitable
Witt—like polynomials wF (Z yeeesZ )3 cf below for
g,n o n

s
more details.

(ii) There exist a O-semilinear A-algebra homomorphism £

(Frobenius) and a o '-semilinear A-module homomorphism

<3

(Verschiebung) with the expected properties, e.g. fvy=uw
where w is the uniformizing element of A associated to F,
and £(b) = pq modu)W§ w(B).

- ’

(iii) If k, the residue field of A, is perfect and %/k is a finite
field extension, then Wﬁ »(%) = B, the ring of integers of
b

the unique unramified extension L/K which covers %/k.

(iv) The Artin-Hasse exponential E is characterized by

W oE =f" for all m = 0,1,2,...
gdg,n =

I hope that these constructions will also be useful in a class-
field theory setting. Meanwhile they have been important in formal
A-module theory; the results in question have been announced in two
notes, [9] and [10], and I now propose to take half a page or so to
try to explain these results to some extent.

Let R be a Zi(p)—algebra and let CartP(R) be the Cartier-Dieudonné
ring. This is a ring '"generated" by two symbols £,V over Wp’m(R) subject
to "the relations suggested by the notation used". For each formal
group F(X,Y) over R }et Cp(F;R) be its Cartp(R) module of p-typical

curves. Finally let Wp »(~) be the formal completion of the functor
?

W (). Then one has
P,*®

(a) The functor F»»-CP(F;R) is representable by Wp uf[3])

>
(b) The functor Fm> CP(F;R) is an equivalence of categories
between the category of formal groups over R and a certain
(explicitly describable) subcategory of Cartp(R) modules
([3D).
(c) There exists a theory of "1lifting" formal groups, in which
the Artin-Hasse exponential E: Wp’m(—)-+ Wb,w(wp,«}—)) plays an
important rdle. These results relate to the socalled "Tapis de Cartier"
and relate to certain conjectures of Grothendieck concerning cristalline

cohomology, ([4] and [5]).



Now let A be a complete discrete valuation ring with residue
field k of g-elements (for simplicity and/or nontriviality of the
theory). A formal A-module over B € é;gA is a formal group law F(X,Y)
over B together with a ring homomorphism Pp: A > EndB(F(X,Y)), such
that pF(a) = aX mod(degree 2). Then there exist complete analogues
of (a), (b), (c) above for the category of formal A-modules over B.
Here the rdle of Cp(FiR) is taken over by the q-typical curves

Cq(F;B), Wp () and WP » are replaced by ramified- Witt vector functors
>

b

™ om . . . .
Wq °°(-) and Wq °°(---) associated to an untwisted, i.e., 0 = id,
b 5

Lubin-Tate formal group law over A with associated uniformizing element
T . Finally, the rGle of E in (c) is taken over by the ramified

Hasse-Witt exponential Wg (™) > W m(wz o))
s ’ b4

As we remarked in (i) above, it is perfectly possible to define

and analyse Wi »(~) by starting with the polynomials wﬁ n(Z) and then
b

proceeding along the lines of Witt's original paper. And, in fact,

in the untwisted case, where k is a field of g-elements, this has been
done, independantly of this paper, and independantly of each other

by E. Ditters ([7]), V. Drinfel'd ([8]), J. Casey (unpublished) and,

very possibly, several others. In this case the relevant polynomials

n—-1 -1
e ST i

n
are of course the polynomials x4+ ﬂXq
o n-1 n

1
Of course the twisted version is necessary if one wants to describe
also all ramified discrete valuation rings with not necessarily finite
residue fields. A second main reason for considering "twisted formal
A-modules" is that there exist no nontrivial formal A-modules if the
residue field of A is infinite.
Let me add, that, in my opinion, the formal group law approach
to (ramified) Witt-vectors is technically and conceptually easier.
Witness, e.g. the proof of theorem 6.6 and the ease with which one
defines Artin-Hasse exponentials in this setting (cf. sections 6.1
and 6.5 below). Also this approach removes some of the mystery and

exclusive status of the particular Witt polynomials

n n-1 n n-1
P+ pX] + ...+ ann (unramified case), Xg + WX? + e *+ ﬁan
- -2
. e q n-1 qn ! n-1, ( n-2 qn
(untwisted ramified case), Xo + g (w)X] + 0 (w)o (w)XZ
n—-1

+ .. + 0 W) «.. O(w)an (twisted ramified case). From the



theoretical (if not the esthetical and/or compugational) Rg?nt of

. . v _ -1 q q
view all polynomials wq,n(XO""’Xn) =a (anX0 + an_]X] + .. +

aoXn) € A[X] are equally good, provided a, = 1, a5, 855..0 15 2

sequence of elements of K such that

a; = w—ld(ai_l) € A for all i = 1,2, ...,Cf in this connection also

[6].

2. THE FUNCTIONAL-EQUATION-INTEGRALITY LEMMA.

ideal m, residue field k of characteristic p > O and field of
quotients K. Both characteristic zero and characteristic p > 0 are
allowed for K. We use v to denote the normalized exponential
valuation on K and w always denotes a uniformizing eleﬁent, i.e.
v(w) = 1 and m = wA. We assume that there exists a power q of p
and an automorphism ¢ of K such that

(2.2) o(m) =m, o0oa = a% modwm for all a € A.

The ring A does not need not be complete.
Further let B € éigA, the category of A—algebras. We suppose

that B is A-torsion free (i.e. that the natural map B +~ B QAK

is injective) and we suppose that there exists an endomorphism

T : B ﬁA K-+ B @A K such that
(2.3) 7(b) = b? mod mB for all b € B
Finally let f£(X) be any power series over B QA K of the form

(2.4)  E(X) = bX + b,X" + ..., b, € B, b, a unit of B

for which there exists a uniformizing element w € A such that
(2.5) £(X) - 0 T, £ € BIIX]]

where T, means "apply T to the coefficients". In terms of the

coefficients bi of £(X) condition (2.5) means that



(2.6) b, € B[[X]] if q does not divide i,

...] .
bqi - w T(bi) € B[[X]] for all i =1, 2, ...

2.7. Functional—equation lemma, Let A,B,0,7,K,p,q,f(X),w be as in
2.1 above such that (2.2) - (2.6) hold. Then we have

(i) F(X,Y) = £ 1(f(X) + £(Y) has its coefficients in B and hence
is a commutative one dimensional formal group law over B.
(Here f—l(X) is the "inverse function" power series of
£(R); i.e. £ (X)) = X).

(ii) If g(X) € B[[x1], g(0) = 0 and h(X) = £(g(X)) then we have
n(x) - wiT,h(xd) € BIIx]].

(i1i) If b(X) € B 8, K[[X]], h(0) = 0 and h(X) - w T,hxY € BI[X]I,
then £ (h(X)) € BL[X]].

(iv) If a(X) € B[[X]], B(X) € B e, K[[x]], a(0) = B(0) = O, and
r,m €EN = {1,2,...}, then a(X) = B(X) mod(er, degree m) <>
f(aX)) = £(B(X)) mod(er,degree'm).

1

Proof. This lemma is a quite special case of the functional equation
lemmas of [11], cf sections 2.2 and 10.2. There are also infinite
dimensional versions. Here is a quick proof. First notice that (2.6)
implies (with induction) that

(2.8) by € w 'B, if j is not divisible by q*'1.

We now first prove a more general form of (ii). Let
g(2) = g(2,,...,2) € B[[Zl,...,Zm]], g(0) = 0. Then by the
hypotheses of 2.1 we have

r r—1
(2.9) -g(zl,...,zm)q Dz g(Zq,...,Zg)q % nod (wFB)

Combining (2.8) and (2.9) and using (2.6) we see that mod(B[[X]])

we have
[ R co . 1 <] .
h(Z) = £(g(2)) = 2 big(Z)l = b .g(z)qJ Zw I T(bj)g(Z)qJ
i=1 j=1 q] j=]

=y 3 T(bj)T*g(Zq)j = Wl £(TezD) = o ltnEd).

3=1



This proves (ii). To prove (i) we write F(X,Y) = F](X,Y) + FZ(X,Y) + ceey
where Fn(X,Y) is homogeneous of degree n., We now prove by induction

that F_(X,Y) € B[X,Y] for all n = 1,2,,.. . The induction starts

because F, (X,Y) = X + Y. Now assume that F](X,Y), cees Fm(X,Y) € B[X,Y].

Mod(degree m+2) we have that f(F(X,Y)) = blFm+1(X’Y) + f(g(X,Y)), where
g(X,Y) = Fl(X,Y) + oe.. t Fm(X,Y). Hence, using the more general form of
(ii) proved just above,we find mod (B[[X,Y]], degree m+2),

i

£(F(X,Y)) = b, F_ (X,7)

1" m+1

+

£(g(X,¥)) = b X,Y) + ol f(r,ex%,YY) =

lFm*]

i

b w T f(r, F 3, YD)

+

lFm+1(X’Y)

w~lr*f(xq) + w—lT*f(Yq)

+

byF , (KT)

+

biE L (1) + £(X) + £(1) = bF_ (X,Y) + £(F(X,1))

where we have used the defining relation f(F(X,Y)) = £(X) + £(Y), which
implies T*f(T;F(Xq,Yq)) ='1¥f(Xq) + T*f(Yq), and where we have also used
that F(X,Y) = g(X,Y) mod(degree m+1) a~F(Xq,Yq) = g(Xq,Yq) mod (degree m+2).
It follows that blFm+1(X’Y) = 0 mod(B[[X,Y]], degree m+2) and hence |
Fm+l(X’Y) € B[X,Y] because b, is a unit.

The proof of (iii) is completely analogous to the proof of (i).

The implication = of (iv) is easy to provei'If a(X) = B(X) mod
mod (w'B, degree m) and a(X) € B[[X]] then a(X)? I28(x)9J mod(w 1B, degree 1
which, combined with (2.8), proves that f(a(X)) = £(B(X)) mod(er,degree m).
To prove the inverse implication « of (iv) we first do the special case
f(BR(X)) =0 mod(mrB, degree m) = R(X) = 0 mod (er, degree m). Now
B(X) = O mod (degree 1), hence £(B(X)) = b B(X) + b,B(X) %+ ... 2 0
mod(mrB, degree m), implies B(X) = O mod(er, degree 2), if m > 2
(if m = 1 there is nothing to prove), because b] is a unit. Now assume
with induction that B(X) = O'mod(er, degree n) for some n < m. Then,
because B(X) = 0 mod(degree 1) we have B(X)i Z0 mod(wriB, degree (n+i-1))
and hence bjB(X)j =0 mod(mrB, degree n+l) if j > 2, Hence f(B(X))'E 0
mod (w' B, degree m) then gives blB(X) = 0 mod(w'B, degree n+l), so that
B(X) =0 mod(er, degree n+l1) because bl is a unit. This proves this

special case of (iv). Now let f(a(X)) = £(B(X)) mod (w'B, degree m).



Write y(X) = C(R(X)) = F(a(X)) and §(X) = £ ' (Y(X)). Then SCX) ~ 0
mod(er, degree m) by the special case just proved, and

B(X) = f-](f(a(X)) + £(S(X)) = F(a(X), X)) = a(X) mod(er, degree m)
because F(X,Y) has integral coefficients, F(X,0) = 0 and because a(X) is

integral. This concludes the proof of the functional equation lemma 2.7.

3. TWISTED LUBIN-TATE FORMAL A-MODULES.

3.1. Construction and Definition. Let A,K,k,p,m,0,q be as in 2.1
above. We consider power series f(X) = X + c2X2 + ... € K[[X]] such

that there exists a uniformizing element w €m such that

(3.2) £X) - w it 2xY) € AL[X]]

There are many such power series. The simplest are obtained as follows:
choose a uniformizing element w of A. Define

-1 -1 -1 2 ‘—] -1 2 -1 3
(3.3) . gw(x) =X +w x4+ 0w T(Ww) x4+ o(w) "7 (w) xd o+ ...

Given such a power series f(X), part (i) of the functional equation

lemma says that
(3.4) F(X,Y) = £ (£(X) + £(Y))
has its coefficients in A, and hence is a one dimensional formal group

law over A. We shall call the formal group laws thus obtained twisted

Lubin-Tate formal A-modules over A. The twisted Lubin-Tate formal

A-module is called q-typical if the power series f(X), from which it is

obtained, is of the form

2

(3.5) £(X) = X + a,x3 + a2Xq F

1
From now on all twisted Lubin-Tate formal A-modules will be assumed

to be q-typical. This is hardly a restriction because of lemma 3.¢ below.

3.6. Lemma. Let f(X) = X + c2X2 + ... € K[[X]] be such that (3.2) holds.

~ 1 ﬂ_
Let £(X) = aixq with a_ =1, a, = c ;. Then u(X) = £ L) € AllX]]
o q

A
so that F(X,y) and F(X,¥) are strictly isomorphic formal group laws over A.

0~ 8

1



Proof. It follows from the definition of f(X),that f(X) also satisfies
(3.2). The integrality of «X) now follows from part (iii) of the

functional equation lemma.

and let T = id. Then the twisted Lubin-Tate formal A-modules over A

as defined above are precisely the Lubin-Tate formal group laws defined
in [12], i.e. they are precisely the formal A-modules of A-height 1.

If k is infinite there exist no nontrivial formal A-modules (cf [11],
corollary 21.4.23)., This is a main reason for considering also twisted

Lubin-Tate formal group laws.

3.8. Remark. Let f(X) € K[[X]] be such that (3.2) holds for a certain

uniformizing element w. Then w is uniquely determined by £(X), because

-1 S 2i . .
a; - w T(ai—l) EA=>w = a, T(ai_]) mod w A as v(ai) = =i, Using

parts (ii) and (iii) of the functional equation lemma we see that w is

in fact an invariant of the strict isomorphism class of F(X,Y). Inversely
given W we can construct gw(X) as in 3.3 and then g;](f(X)) = uX) is
integral so that F(X,Y) and Gw(X,Y) = g;](gw(X) + gw(Y)) are strictly
isomorphic formal group laws. In case k = q and T = id, w is in fact
an invariant of the isomorphism class of F(X,Y). For some more results
on isomorphisms and endomorphisms of twisted Lubin-Tate formal A-modules

cf [11], especially sections 8.3, 20.1, 21.8, 24.5.

4, CURVES AND q-TYPICAL CURVES.

Let F(X,Y) be a q-typical twisted Lubin-Tate formal A-module

obtained via (3.4) from a power series f(X) = X + aIXq + a2Xq +eo. @

4.1. Curves. Let éégA be the category of A-algebras. Let Bi€ éigA.
A curve in F over B is simply a power series Y(t) € B[[t]] such that

vY(0) = 0. Two curves can be added by the formula YJ(tl +_F Yz(t) =

F(Yl(t), Yz(t), giving us an abelian group C(F;B). Further, if

¢ B] -> B2 is in éigA, then y(t) ¢,v(t) (= "apply ¢ to the coefficients™)
defines a homomorphism of abelian groups C(F;B]) ~+ C(F;B,y). This

defines us an abelian group valued functor C(F;-): é;gA - Ab. There.is

a natural filtration on C(F;-) defined by the filtration subgroups

c®(F;B) = {y(t) € C(F;B)| y(t) = 0 mod(degree n)}. The groups C(F;B)

are comnlete with resnect to the tonoloev defined bv the filtration
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c™(F;B), n = 1,2,...
The functor C(F;-) 1is representable by the A-algebra A[S] = A[SI’SZ""L

0.
The isomorphism AlgA(A[S],B) 3 C(F;-) is given by ¢ I F¢(Si)t1, i.e.
i=1

by ¢ ¢*Ys(t), &here Ys(t) is the "universal curve"
o0

Ys(t) = i=]FSiti € C(F;AlS]).

4,2, gq-typification. Let Ys(t) € C(F;A[S]) be the universal curve. Consider
the power series.

(>

h(t) = £(vg(£)) = I x;(8)e"
L
i=1
Let T: K[S] - K[S] be the ring endomorphism defined by T(a) = o(a)
for a € K and T(Si) = Sg for i = 1,2,... . Then the hypotheses of 2.1
are fulfilled and it follows from part (ii) of the functional
equation lemma that h(t) - w_]T*h(tq) € A[SI[[t]]. Now let
qi
b'e i(S)t
o q

h(t)

I
I ™ 8

i
Then, obviously, also h(t) - w_]T*h(tq) € A[S][[t]] and by part (iii)

of the functional equation lemma it follows that
._] *® i
(4.3) € Yo (t) = £ (Ix .(s)td
q'S . 1
i=o q

is an element of A[S][[t]]. We now define a functorial group

homomorphism&a: C(F;~) -~ C(F;-) by the formula

(4.4) €qY(t) = (¢Y)*(€qu(t))

for y(t) € C(F;B), where ¢Y: A[S] +~ B is the unique A-algebra
homomorphism such that ¢Ygé(t) = v(t).

4.5. Lemma. Let B be A-torsion free so that B >~ B f, K is injective.

Then we have for all y(t) € C(F;B)

(4.6) F(r() = I b.t'd f(e y(t)) = I b .t
i=1 * d j=



12

h] .
and ¢ C(F3B) = {y(t) € c(F;B)|£(y(t)) = £ cjtq for certain c; € B @, K}

Proof . Immediate from (4.3) and (4.4).

4,7, Lemma. Eq is a functorial, idempotent, group endomorphism of

—— e e

Proof. eq is functorial by definition. The facts that quq = ¢ and

that Eq is a group homomorphism are obvious from Lemma 4.5 in case
B is A-torsion free. Functoriality then implies that these properties
hold for all A-algebras B.

abelian group valued functor Cq(F;—) as
4.9 C (F3;-) = € C(F;-
(4.9) q( ) q (F;-)

n
For each n €N U {0} 1let Cén)(F;BD be the subgroup Cq(F;B) n c4 (F;B).
These groups define a filtration on Cq(F;BL and Cq(F;B) is complete
with respect to the topology defined by this filtration.

The functor Cq(F;—) is representable by the A-algebra
AlT] = AlT ,T ,...].

P i
Indeed, writing f£(X) = ¥ ain we have
i=o

eoF . [>eY e} . j.
flyg(£)) = £( g s.t'y = y ya,sied?
. i . . i
1=] j=o0 1i=1
and it follows that

© p j
aqys(t) = 38 jtq
j=o q
From this one easily obtains that the functor Cq(F;—) is representable

by A[T]. The isomorphism AlgA(A[T],B) 4 Cq(F;B) is given by

oo 1
o I F¢(Ti)tq = ¢*(YT(t)), where YT(t) is the universal g-typical
i=o
curve
© o qi
(4.10) YT(t) = 3§ "T.t° g C (F3A[T])
i=o 4



that I' was supposed to be gq-typical. In general slightly more
complicated formulae hold. For arbitrary formal groups q-typification
(i.e. éq) is not defined (unless q=p). But a similar notion of
q-typification exists for formal A-modules of any height and any

dimension if ¥ k = q.

5. THE A-ALGEBRA STRUCTURE ON Cq(F;—), FROBENIUS

AND VERSCHIEBUNG.
-1 -1.q2
x + w olw) x4 o+,

for a certain uniformizing element w. Otherwise we keep the notations

5.1. From now on we assume that f(X) = gw(X) =X + w_l

. . -1 -
and assumptions of section 4. Thus we now have ai = wo(w) ...01 1(w),

o
very serious, because every twisted Lubin-Tate formal A-module over A

a =1, This restriction to "logarithms" f(X) of the form %D(X) is not

is strictly isomorphic to a Gy (X,Y), (cf. remark 3.8), and one can
use the strict isomorphism g;l(f(X)) to transport all the extra structure
on Cq(F;—) which we shall define in this section. The restriction
f(X) = gw(X) does have the advantage of simplifying the defining
formulas (5.4), (5.5), (5.8),... somewhat, and it makes
them look rather more natural especially in view of the fact that w,
the only "constant" which appears,is an invariant of strict isomorphism
classes of twisted Lubin-Tate formal A-modules; cf. remark 3.8 above.

In this section we shall define an A-algebra structure on the
functor C (F;-) and two endomorphisms gw and Xq' These constructions
all follow the same pattern, the same pattern as was used to define
and analyse Eq in section 4 above. First one defines the desired
operations for universal curves like YT(t) which are defined over rings
like A[T], which, and this is the crucial point, admit an endomorphism
T: K[T] » K[T] , viz. Tt(a) = o(a), T(Ti) = Tg, which extends ¢ and
which is such that T(x) = x% mod WA[T]. In such a setting the functional
equation lemma assures us that our constructions do not take us out of
C(F;-) or Cq(F;—). Second, the definitions are extended via representability
and functoriality, and thirdly, one derives a characterization which
holds over A-torsion free rings, and using this, one proves the various
desired properties like associativity of products, O-semilinearity of

£

£, etc...
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"

5.2, Counstructions. Let Y (t) be the universal g-typical curve (4,9),
Vl'

We write
@ i
(5.3.) £(yp(£)) = I xi(T)tq
i=o0
e i -1 -1 i-1, -1
Let £(X) = g (X) = I ain ; dceca; = w oW ... 00 (@) and let
1=0
a € A,
We define
-1, 2 i i
(5.4) {a}FYT(t) =f (Iog (a)xi(T)tq )
. i=0
-1, 2 i qi
(5.5) £ YT(t) = f (iz o (w)xiﬂ (e )

o
The functional equation lemma now assures us that (5.4) and (5.5) define
elements of C(F;A[T]), which then are in Cq(F;A[T])’by lemma 4.5. To
illustrate this we check the hypotheses necessary to apply (iii) of 2.7 in

the case of £w' Let T : K[T] - K[T] be as in 5.1 above. Then by part

(ii) of the functional equation lemma we know that

-1
x € AlT] , Xjp —W T(xi) =c; € AlT]

It follows by induction that

(5.6) x; € w-iA[T]

and we also know that

(5.7) V(a7 = vo@ ... o' @) =4

where v is the normalized exponential valuation on K, We thus have

Oo(w)x] = wx, € A[T] and Oi(w)x. - w-IT(ci_](w)xi) =

i+1
ot (wie; + oM@ T - w T @x;) = ot (w)e, € A[T]. Hence part
(iii) of the functional equation lemma says that ngT(t) € C(F;A[T]).

To define the multiplication on Cq(F;—) we need two independant
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universal g-typical curves. let
¥ ql ¥ qi
Yp(t) = 8 e, Sa(e) = % Tit € cq(p;A[T;T]).

We define

(5.8) Yp(E) * Sa(t) = £ ’(izo XA

i i
where f(YT(t)) =X xitq , f(ﬁT(t)) = I yitq . To prove that (5.8)
defines something integral we proceed as usual. We have x »¥, € AlT;T1,
-1 A -1 Py
Xig ~ W T(xi) =c; € A[T;T], Vi — W T(yi) = di € A[T;T], where

t: R[T;T] » K[T;D] is defined by t(a) = a for a € K,and T(Ti) = Tg,
T(Ti) = Tg, i = 0,1,2,.-..

— - —1
Then a Xy, = xoyo.e A[T;T] and a.

b'e - w_lr( —lx ) =
i+1%i+17i+1 a; ¥jv;4 =

-1 -1 -1 -1, -1
wc(ai) (ci+w T(xi))(di+w T(yi)) -w o(ai )T(xi)T(yi) =

-1 -1 A
mo(ai ded, + o(a;) (c;tly;) + d;T(x;)) € A[T3T] by (5.6) and (5.7).
5.9. Definitions. Let y(t), 6(t) be two q-typical curves in F over
B € Alg,..Let ¢: A[T] - B be the uhique A-algebra homomorphism such

that ¢*YT(t) = v(t), and let Y: A[T;%] + B be the unique A-algebra

homomorphism such that ¥ YT(t) = Y(t),w*GT(t) = §(t). Let a € A. We
define

(5.10) falpy(6) = ¢ ({alpyp(6))
(5.11) E,Y(E) = 0 (£ v ()
(5.12) Y(E)*8(t) = Py (Y (£)*8,(£))

5.13. Characterizations. Let B be an A-torsion free A-algebra; i.e

B~>B QA K is injective, then the definitions (5.10) - (5.12) are
characterized by the implications

qi © qi

st = fday(e)) = iio q (a)x;t

]
‘8
o

(5.14) £(y(t))

o . i

= 1 q
,_ = E(EY() = I atl)xg,t
1=0 1=0

]
™~ 8
w
t

(5.15) £y (t))
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00 1 o i
(5.16)  £(y(t)) = & xitq , £(8(8)) = £ y.td =
i=0 i=0 1
© -1 qi
F(y(e)*8(t)) = izo ai xiyit

This follows immediately from (5.4), (5.5), (5.8) compared with

(5.10) - (5.12), because ¢, and Y, are defined by applying ¢ and Y

to coefficients,and because y(t)r— f£(y(t)) is injective,if B is
A-torsion free,

5.17. Theorem, The operators {a}F defined by (5.10) define a

functorial A-module structure on C (F;-). The multiplication * defined

by (5.12) then makes Cq(F;-) an A-algebra valued functor,with as

unit element the q-typical curve Yo(t) = t. The operator £w is a
o-semilinear A~algebra homomorphism; i.e. £w is a unit and multiplication

preserving group endomorphism such that £w{a}F = {O(a)}Fgw.

Proof. In case B is A-torsion free the various identities in
Cq(F;B) like ﬁa}FY(t»*S(t) = {a}F(Y(t)*S(t)),
Y(£)*(8(t) to e(t)) = (y(£)*S8(t)) te (y(£)*e(t)),...

are obvious from the characterizations (5.14) - (5.16). The theorem

then follows by functoriality.

5.18. Verschiebung. We now define the Verschiebung operator Xq

on Cq(F;—) by the formula qu(t) = Y(tq). (1t is obvious from lemma
4.5 that this takes q-typical curves into gq-typical curves). In terms
of the logarithm f(X) one has for curves y(t) over A-torsion free
A-algebras B

o i

(5.19) F(Y(E)) = T xitq = £(V y(t)) =
i=o0 -4

o i+]
T x.td

. i

1=0

5.20. Theorem. For g-typical curves Y(t) in F over an A-algebra B
(5.21) £YY(8) = {wlpy(e)

= y(®)" mod {w}.C_(F;B
(5.22) £,y(8) = y(t) 7 mod {wjgC (F; )
Proof. (5.21) is immediate from (5.14), (5.15) and (5.19) in the case
of A-torsion free B and then follows in general by functoriality.

The proof of (5.22) is a bit longer. It suffices to prove (5.22) for
curves Y(t) € Cq(F;AEI]). In fact it suffices to prove (5.22)



for y(t) = YT(t), the universal curve of (4.9), Let

00 i .
- 1 q - LYl -q.q
(5.23) §(t) = £ (izoyit ), Vi = X4 g h»,aiai X7

: i
where the X, i=0,1,2,... are determined by £(y(t)) = X xitq .
It then follows from (5.14) - (5.16) that indeed

£wY(t) - Y(t)%q = {w}Fé(t), provided that we can show that &(t)
is integral, i.e. that &(t) € Cq(F;A[T]). To see this it suffices

to show that y_ € A[T] and Viel = w_lr(yi) € A[T] because of part

+1
(1ii) of the functional equation lemma. Let C, =X TW ]T(xi) € AlTl.
Then

- _ 0 -1_q - -1 _ -1 q
Vo= %X, -0 (w xg=c o tw T(Xo) W x € AlT]

because T(x ) = x3 mod wA[T]. Further from x. = c. + w-]T(x.) we find
o fo} i+l i 1

-1 i i _
a5 ,1%541 = Wwo(W) ... C (w)ci + 0(W) «.. O (w)T(xi) =
wl+1d. + T(aT]x.)
1 1 1

for a certain di € A[T], and hence

-q .q _ -q.9q i+2
aie1%ie; = T(a; X + 0 ey

for a certain e; € A[T]. It follows that

Ve T T =y 0 @ ey el - wTry,) +

+ w_lr(oi(w)—laia;qx})

=iy - 0 @ ey, a0t x0T o) D)

= ey -0 @, G - t@ D) € arT)
because ai.q = w-]o(ai) and because of (5.2?).(Reca11 that
v(a.. ,) = -1 =1 by (5.7)). This concludes the proof of theorem 5.20.

i+1



6. RAMIFIED WITT VECTORS AND RAMIFIED ARTIN-HASSE
EXPONENTIALS.

We keep the assumptions and notations of section 5 above.

6.1. A preliminary Artin-Hasse exponential. Let B be an A-algebra

which is A-torsion free and which admits an endomorphism

T : B QA K-> B QA K which restricts to 0 on A QA K=KcB ﬁA K and

which is such that T(b) = b9 mod wB. We define a map

AB: B~ Cq(F;B) as follows
I i
(6.2) By(®) = £ (2 Tl(b)aitq )

1=0

This is well defined by part (iii) of the functional equation lemma.
A quick check by means of (5.14) ~ (5.16) shows that AB is a

homomorphism of A-algebras such that moreover
(6.3) AoT=£f ol

(because ol(m)ai+] = ai), and that AB is functorial in the sense
that if (B}T') is a second such A-algebra with endomorphism T' of
B' QA K and ¢: B > B' is an A algebra homomorphism such that

T'¢ = ¢T, then Cq(F;¢) o AB = AB‘ o ¢.

6.4. Remark. Using (B,T) instead of (A,0) we can view F(X,Y) as
a twisted Lubin-Tate formal B-module over B, if we are willing to
extend the definition a bit, because, of course, B need not be a

discrete valuation ring, nor is B R, K necessarily the quotient field

A
of B. In fact B need not even be an integral domain., If we view
F(X,Y) in this way then AB: B ~» Cq(F;B) is just the B-algebra structure

map of Cq(F;B).

6.5. Now let B be any A-algebra. Then Cq(F;B) is an A-algebra which
admits an endomorphism T, viz. T = £w’ which, as Tx = x4 mod w by

(5.22), satisfies the hypotheses of 6.1 above (because £w is
O-semilinear). It is also immediate from (5.10) and (5.4), cf. also (5.14)
that Cq(F;B) is always A-torsion free. Substituting Cq(F;B) for B in

6.1 we therefore find A~algebra homomorphisms

E .

R’ Cq(F;B) -> Cq(F;Cq(F;B))
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which are functorial in B because £w is functorial,and because of

the functoriality property of the AB‘mentioned in 6.1 above. This
functorial A-algebra homomorphism is in fact the ramified Artin-Hasse
exponential we are seeking and,as is shown by the next theorem,

Cq(F;B) is the desired ramified Witt wvector functor.

Let B be the ring of integers of a finite separable extension L of K.

Let £ be the residue field of B. Consider the composed map

by

U : B —=— Cq(F;B) - cq(F;z)

B
ThenuB is an isomorphism of A-algebras. Moreover if tv: B + B is the
unique extension of o: A -+ A such that T(b) = b? mod B, then

£wuB = M7, i.e. T and £w correspond under Hp.
Proof. Let b € B, Consider AB(wrb). Then from (6.2) we see that

. r
£, @) = a 1" WHTT ()t mod(uB, degree <

By part (iv) of the functional equation lemma 2.7 it follows that

x
AB(wrb) = yr‘rr(b)tq mod (WB, degree qr+])

where ¥, = arTr(wr) is a unit of B, It follows that UB maps the
filtration subgroups w'B of B into the filtration subgroups
Cér)(F;l) and that the induced maps

5
B
¢ YuTrpttly — C((lr)(F;SL)/CC(er)(F,R) )

are given by xf*-yrxqr, for x € L. (Here 2 3 er/wr+lB is induced by
w'b > b with b the image of b in % under the canonical projection
B> %, and Cér)(F;Q)/CE+1(¥;Z) 3 %2 is induced by Cér)(F;Q) > 2,
Y(t)r— (coefficient of t? in v(t))). Because L is perfect and

§r # 0, it follows that the induced maps ﬁB are all isomorphisms.
Hence g is an isomorphism because B and Cq(F;Q) are both complete

in their filtration topologies.
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The map Uy is an A-algebra homomorphism because AB is an A-algebra
homomorphism and Cq(F;—) is an A-algebra valued functor. Finally
the last statement of theorem 6.6 follows because both T and

u;1£wuB extend 0 and T(b) = b4 (b) mod wB.

-1
s} £muB
6.7. The maps s and w_ .

“““““ - 4¢,n === q,n

the definitions of Cq(F;B) and EB in such a way that they more closely

.The last thing to do is to reformulate

ressemble the corresponding objects in the unramified case, i.e.
in the case of the ordinary Witt-vectors. This is easily domne,
essentially because Cq(F;-) is representable,

Indeed, let,as a set valued functor,Wﬁ ot élgA + Set be defined
s SE=
by

(6.8) W (®)

b

{(bo’bl,bZ’..-)‘bi € B}, wﬁ,m(¢)(b0,bl’...) =

1]

6 (), 6(b)),..0)

We now identify the set-~valued functors Wﬁ »(~) and Cq(F;—) by the
b

functorial isomorphism
0.
(6.9) eB(bo,bl,...) = i b.t*,

and define wﬁ o(~) as an A-algebra valued functor by transporting the
b

A-algebra structure on Cq(F;B) via e, for all B € éégB' We use £ and ¥

B
to denote the endomorphism of Wi «(~) obtained by transporting £w and Zq
9

via ege Then one has immediately

(6.10) X(bo,bl,...) = (O’bo’bl"'°)
and in fact

- o= 4
(6.11) g(bo,b],...) = (bo,bl,...) = bi = bi mod WB

(We have not proved the analogon of this for £w; this is not difficult
to do by using part (iv) of the functional equation lemma and the

additivity of £w)'

Next we discuss the analogue of the Witt—polynomials
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n -1

n
XZ + pX? + ...t an

YT(t) € Cq(F;A[T])

0 We define for the universal curve

n
(6.12) Sq,n(YT(t)) = agl(coefficient of t% in f(YT(t)))

and, as usual, this is extended functorially for arbitrary curves

Y(t) over arbitrary A-algebras by

(6.13) sq.af(£) = 6(s_ (Yo (m)

where ¢: A[T] >~ B is the unique A-algebra homomorphism such that

¢*YT(t) = y(t). If B is A-torsion free one has of course that
n

Z -1 q .
sq’nY(t) =a (coeff, of t* in f(y(t)).

Using this one checks that

Sq n(Y(t) *p S(t)) = sq,n(Y(t)) * sy

£l

A0, s (Y(1)*8(6)) =

’ ’

s ’n(Y(t))sq

. A0, s (alpy(e)) = o™ (a)s

n(Y(t)),

H ’

(6.14) Squn(E,Y () = g L (V(E)s s (T v(e)) =

-1 .
o= (Q»Sq’n_](Y(t)) if > 1, Sq,o(XqY(t)) = Q

- £
Sq,n(t) 1 for all n.

Now suppose that we are in the situation of 6.1 above. Then,

by the definition of AB’we have
n
(6.15) sq,n(AB(b)) =1 (b)

. F F y . e
Now define Wq,n(B)' Wi,w(B) -+ B by Wq,n = Sq,n o eq- It is not difficult

to calculate wF 0 Indeed
b

o0 ¥ i © © . i+J co r qi qr
(o)) = £C2 Tttty = T Damit? = T (IaT Ot
T i=o j=0 i=o0 J * r=o i=o *
j=o 1=o0

B) > B defined by

F .
and it follows that wq n is the functorial map Wi
’

H
the polynomials
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i

" 2y = a7t asd Ly
cor ool a s a,’

Ya,n o n-i
T i=o '
n n—1 n-2
(6.16) = Z(o1 + " 1(m)zcl1 + gf J(w)_c:n 2(m)z‘zl + 4ea
n=1

+ 0 T (W) ... O(m)wzn

6.17. Theorem. Let (A,0) be a pair consisting of a discrete valuation
ring A of residue characteristic p > 0 and a Frobenius—like automorphism
0 : K > K such that (2.2) holds for some power q of p. Let w be any

uniformizing element of A, and let wi n(Z), n =0, 1,...be the
3

polynomials defined by (6.15). Then there exists a unique A-algebra

valued functor Wi,“: é;gA - é;gA such that

(1) as a set—valued functor WE,M(B) = {(bo’b]’bZ"")lbi € B} and
wﬁ,w(‘b)(bo’bl"") = ($(b_), ¢(b),...) for all ¢: B > B' in Alg,

(ii) the polynomials WF (Z) induce functorial o' -semilinear A-algebra
. F F
homomorphisms wq : wﬁ’m(B) -+ B, (bo,b],...)k+ W °°(bo,...,bn).

o)
> 3

Moreover, the functor WE () has O—l—semilinear A-module
b

functor endomorphism V and a functorial o-semilinear A-algebra

endomorphism f which satisfy and are characterized by

.. F _ n-l F . _ . F _
(1idi) Wq,n o¥=o0 (w)wq’n_1 if n=1,2,...3 wq,o 0¥ =0
. F _F
(iv) Wq,n of = wq,n+l

These endomorphisms £ and

<t

have (among others) the properties

@ f-u

no*

(vi) f£b = 9 nod mWﬁ o(B) for all b € Wﬁ (B, BE élgA
- b ’ T

(vii) V(b(fe)) = (¥b)e for all b,

o

€ \Afl’w(}s), B € Alg,

Further there exists a unique functorial A-algebra homomorphism

Bi W () > W, (W§’m(~))

q,%®

which satisfies and is characterized by

F

w o E = fn for all n = 0,1,2,...
q,n =

(viii)
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R v . v o
le s B > W S S Or L WCo

(llere wq’n Wq’m( q,w( )) q,w(B) is short for wq,n,wg _(®)’ i.a. it

L

is the map which assigns to a sequence (QO,QI,...) of elements of

N

WP (B) the element wb
q’m q,’

E further satisfies

n(go,gl,...) € q’m(B)). The functor homomorphism

. F n
(ix) Wy oy ) o B = £,
F
where Wi,m(wq’n): Wﬁ,m(W§,m(B)) -> Wi’w(B) assigns to a sequence
(b ,b ) of elements of WF (B) the sequence (wF (b)) wF (b.) )
=p0%=]1%""" q,® g,n=0"’"q,n'=1"2°"""
F
EW (B
q,*® )

Finally if A is complete with perfect residue field k and %/k is a
finite separable extension, then Wi,m(ﬁl is the ring of integers B of
the unique unramified extension L/K covering the residue field extension
2/k and under this A~algebra isomorphism £ corresponds to the
unique extension of ¢ to T: B » B which satisfies T(b) = b? mod wB.

In particular Wﬁ (k) = A with £ corresponding to o.
3

Proof.Existence of W (=), ¥, £, E such that (i), (ii), (iii), (iv)

(viii) hold follows from the constructions above. Uniqueness follows
because (i), (ii), (iii), (iv), (viii) determine the A-algebra structure
on gNU{O}, vV, £, E uniquely for A-torsion free A-algebras B, and then
these structure elements are uniquely determined by (i) — (iv), (viii)
for all A-algebras, by the functoriality requirement (because for every
A-algebra B there exists an A-torsion free A-algebra B together with a
surjective A-algebra homomorphism B' - B, Of the remaining identities
some have already been proved in the Cq(F;-)-setting ((v) and (vi).

They can all be proved by checking that they give the right answers

whenever composed with the wF 0° This proves that they hold over

3
A-torsion free algebras B, and then they hold in general by

functoriality. So to prove (vii) we calculate
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]
o

Wy o (W R(EDD)

<t

o

ARG CTEND " b)) = oM @y o (Ee)

SO VAN (S PN

and, on the other hand

It

Wi o((gg)g) WF (Vb)wF (¢) = o wr (¢) =0

4,0 ==" q,0 = g,0 ="
F F F n-1 F
wq,n((gg)g) = wq’n(g__b)wq’n(g) o T(ww, (g)wq’n(g)
This proves (vii). To prove (ix) we proceed similarly
wF o} WF (WF ) oE = wF o wF o E = WF o §m
q,m q,® q,n q,n q,m d,n =
F F n

W =W
q,ntm q,m

(Here the first equality follows from the functoriality of the morphisms

wi mwhich says that for all ¢: B' +~ B € é;gA we have

’

F .
Wq,m o Wi’w(¢) =¢o wz’m; now substitute wF’n for ¢).
6.18. Remark. V£ = £V does of course not hold in general (also not in

the case of the usual Witt vectors). It is however, true in Wﬁ »(B) if
H

wB = 0,as easily follows from (6.11), which implies that f(bo’bl"") =

= (63,b,...) if wB = 0.
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