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• 
Allsnucr. For any ring R let A(R) denote the multiplicative group of power series 
of the form I + a1t + · · · with coefficients in R. The Artin-Hasse exponential 
mappings are homomorphisms ~.00(k)- A( Wp,00(k)), which satisfy certain addi
tional properties. Somewhat reformulated, the Artin-Hasse exponentials turn out to 
be special cases of a functorial ring homomorphism E: Wp,oo( - ) -
Wp,oo( Wp,oo( - )), where ~·"" is the functor of infinite-length Witt vectors associa
ted to the prime p. In this paper we present ramified versions of both Wp,00(-) and 
E, with Wp,00(-) replaced by a functor w:. .. (- ), which is essentially the functor of 
q-typical curves in a (twisted) Lubin-Tate formal group law over A, where A is a 
discrete valuation ring that admits a Frobenius-like endomorphism a (we require 
a(a) = aq mod m for all a EA, where m is the maximal idea of A). These 
ramified-Witt-vector functors w:.00(-) do indeed have the property that, if k • 
A /m is perfect, A is complete, and I/ k is a finite extension of k, then w:,00(/) is 
the ring of integers of the unique unramified extension L/ K covering I/ k. 

l. Introduction. For each ring R (commutative with unit element 1) let A(R) be 
the abelian group of power series of the form 1 + r1t + r2t 2 + · · · . Let ~.00(R) 
be the ring of Witt vectors of infinite length associated to the prime p with 
coefficients in R. Then the "classical" Artin-Hasse exponential mapping is a map 
E: Uj,, 00 (k) ~ A(~.00(k)) defined for all perfect fields k as follows (cf. e.g. [l] and 
[13]). Let cl>(y) be the power series 

cl>(y) = II (l _ yn)l'(n)/n, 
(p,n)-1 

where µ.(n) is the Mobius function. Then cl>(y) has its coefficients in ZP' cf. e.g. (13] . 

• 
ecause k is perfect every element of »j,, 00(k) can be written in the form 
= ~~ 1 -r(c;)p;, with c; Ek, and T: k ~ ~.00(k) the unique system of multiplica

tive representatives. One now defines 
00 

E(b) == II cf>(T(c;)tf1
• 

Now let W(-) be the ring functor of big Witt vectors. Then W(-) and A(-) are 
isomorphic, the isomorphism being given by (a1, a2, ••• ) H> II;':. 1(1 - a;t;), cf. (2). 
Now there is a canonical quotient map W(-) ~ ~.00(-) and composing E with 
A( - ) ~ W( - ) and W( - ) ~ ~.00 ( - ) we find an Artin-Hasse exponential E: 

~.00(k)- ~.00(Wp,oo(k)). 
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1.1. THEOREM. There exists a unique junctorial homomorp~m of ring-oolued 

functors E: W (-)...,. W (W (-))such that for all n - 0, l, 2, ... , wp,,. 0 E p,oo p,oo p,oo 
• f", where f is the Frobenius endomorphism of W,,00( - ) and where wp,,.: 
W ( W ( - )) -+ W ( - ) is the ring .homomorphism which assigns to the sequence 

p,OtJ p,oo p,oo • ,._ 1 1 
(ho, b1, ... ) of Witt vectors the Witt vector bfi + pbf + · · · +p"- IY.:-1 + 
p"b,,. 

It should be noted that the classical definition of E given above works only for 
perfect fields of characteristic p > O. In this form Theorem l.l is probably due to 
Cartier, cf. [5]. 

Now let A be a complete discrete valuation ring with residue field of characteris
tic p, such that there exist a power q of p and an automorphism a of K, the quotietA 
field of A, such that a(a) = aq mod m for all a EA, where m is the maximal ideal"'' 
of A. It is the purpose of the present paper to define ramified Witt vector functors 
W{."""( -): Alg ... -+ AlgA, where AlgA is the category of A .. algebras, and a ramified 
Artin-Hasse exponential mapping E: w:.00(- )-+ w:.00(W:.00(-)). 

There is such a ramified-Witt-vector functor w:,00 associated to every twisted 
Lubin-Tate formal group law F(X, Y) over A. This last notion is defined as 
follows. Letf(X) = X + a2X 2 + · · · EK[[X]] and suppose that a; EA if q does 
not divide i and aq1 - w - 1a(a;) E A for all i for a certain fixed uniformizing 
element w. Then F(X, Y) = 1- 1(f(X) + f(Y)) E A([X, Y]], and the formal group 
laws thus obtained are what we call twisted Lubin-Tate group laws. The Witt-vec~ 
tor functors w:.00( - ) for varying F are isomorphic if the formal group laws are 
strictly isomorphic. Now every twisted Lubin-Tate formal group law is strictly 
isomorphic to one of the form G..,(X, Y) = g.; 1(g..,(X) + g..,(Y)) with g..,(X) - X 
+w-ixq+w- 1a(w)- 1x<+w- 1o(w)- 1a2(w)- 1xti+ · · · which permits us to 
concentrate on the case F(X, Y) = G..,(X, Y) for some w. The formulas are more 
pleasing in this case, especially because the only constants which then appear are 
~e a;(w)~ which is esthetically attractive, because w is an invariant of the stricJ. 
isomorphism class of F(X, Y). "' 

The functors w:.00 and the functor morphisms E are Witt-vector-like and 
Artin-Hasse-exponential-like in that 

(i) w:,""'(B) = {(b°' bi, ... )lb; E B} as a set-valued functor and the A-algebra 
structure can be defined via suitable Witt-like polynomials w:.,,(z0> ... , Z,,); cf. 
below for more details. 

(ii) There exist a o-semilinear A-algebra homomorphism f (Frobenius) and a 
a- 1-semilinear A-module homomorphism V (Verschiebung) with the expected 
properties, e.g. fV = w where w is the uniformizing element of .A associated to F, 
and f{b) =: bq mod wW:.00(B). 

(iii) If k, the residue field of .A, is perfect and I/ k is a finite field extension, then 
w:,00(/) = B, the ring of integers of the unique unramified extension L/ K which 
covers J/ k. 

(iv) The Artin-Hasse exponential E is characterized by wF o E - f" for all q,n 
n == 0, 1, 2,... . . 

I hope that these constructions will also be useful in a class-field theory setting. 
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Meanwhile they have been important in formal A-module theory. The results in 
question have been announced in two notes, [9] and [10), and I now propose to 
take half a page or so to try to explain these results to some extent. 

Let R be a Z<P>·algebra and let Car~(R) be the Cartier-Dieudonne ring. This is a 
ring "generated" by two symbols f, V over WP·°"(R) subject to '"the relations 
suggested by the notation used". For each formal group F(X, Y) over R let 
Cp(F; R) be its Cartp(R) module of p-typical curves. Finally let Wp, 00(-) be the 
formal completion of the functor ~ 00 ( - ). Then one has 

(a) the functor F~ Cp(F; R) is representable by W;., 00 [3]. 
(b) The functor F~ Cp(F; R) is an equivalence of categories between the 

category of formal groups over R and a certain (explicitly describable) subcategory 
..t Cartp(R) modules (3]. 
W (c) There exists a theory of "lifting" formal groups, in which the Artin-Hasse 

exponential E: ~.cc( - ) - Wp,oc( Wp. 00 ( - )) plays an important role. These results 
relate to the so-called "Tapis de Cartier" and relate to certain conjectures of 
Grothendieck concerning crystalline cohomology ([4] and [SD. 

Now let A be a complete discrete valuatio:p. ring with residue field k with q 
elements (for simplicity and/ or nontriviality of the theory). A formal A-module 
over B E AlgA is a formal group law F(X, Y) over B together with a ring 
homomorphism pF: A - EndB(F(X, Y)), such that pi;{ a) = aX mod( degree 2). 
Then there exist complete analogues of (a), (b), (c) above for the category of formal 
A-modules over B. Here the role of CP(F; R) is taken over by the q-typical curves 
C9(F; B), WP. 00,.(-) and W;., 00 are replaced by ramified-Witt-vector functors 
w;,00(-) and w;,00(-) associated to an untwisted, i.e. a = id, Lubin-Tate formal 
group law over A with associated uniformizing element 7T. Finally, the role of E in 
(c) is taken over by the ramified Hasse-Witt exponential w;,00(-) -+ 

w:.oo< w:.oo< - )). 
As we remarked in (i) above, it is perfectly possible to define and analyse 

w:,00(-) by starting with the polynomials w:,n(Z) and then proceeding along the 
.es of Witt's original paper. And, in fact, in the untwisted case, where k is a field 

of q-elements, this has been done, independently of this paper, and independently 
of each other by E. Ditters [7], V. Drinfel'd [8], J. Casey (unpublished) and, very 
possibly, several others. In this case the relevant polynomials are of course the 
polynomialsXf + wX(-' + · · · +'1Tn- 1x:_ 1 + w"X,.. 

Of course the twisted version is necessary if one wants to describe also all 
ramified discrete valuation rings with not necessarily finite residue fields. A second 
main reason for considering "twisted formal A-modules" is that there exist no 
nontrivial formal A-modules if the residue field of A is infinite. 

Let me add that, in my opinion, the formal group law approach to (ramified) 
Witt-vectors is technically and conceptually easier. Witness, e.g. the proof of 
Theorem 6.6 and the ease with which one defines Artin-Hasse exponentials in this 
setting (cf. §§6.l and 6.5 below). Also this approach removes some of the 
mystery and exclusive status of the particular Witt polynomials Xf + 
pXf"-• + · · · +p"X,. (unramified case), xt + 7Txr-• + · · · +'IT"Xn (untwisted 
ramified case), 
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Xf + o•-•(w)Xf-' + ,,n- 1(w)an- 2(w)Xf-1 + · · · +an- 1(w) • • · a(w)wXn 

(twisted ramified case). From the theoretical (if not the esthetic and/ or computa
tional) point of view all polynomials wq.n(X0, ••• , Xn) = an- 1(anXf + an_ 1X(-' 

+ · · · +aoXn) E A[X] are equally good, provided a0 = l, a2, a 3,. • • is a se
quence of elements of K such that a; - w- 1a(a1_ 1) EA for all i = 1, 2, ... (cf. in 
this co11:t1ection also (6)). 

2. The functional-equation-integrality lemma. 
2.1. The setting. Let A be a discrete valuation ring with maximal ideal m, residue 

field k of characteristic p > 0 and field of quotients K. Both characteristic zero and 
characteristic p > 0 are allowed for K. We use v to denote the normalized 
exponential valuation on K and w always denotes a uniform.izing element, i.e., 
v(w) = 1 and m = wA. We assume that there exist a power q of p and a 
automorphism a of K such that 

a(m) = m, aa = aq mod m for all a EA. (2.2) 

The ring A does not need to be complete. 
Further let B E AlgA, the category of A-algebras. We suppose that Bis A-torsion 

free (i.e. that the natural map B ~ B ®AK is injective) and we suppose that there 
exists an endomorphism T: B ®AK~ B ®AK such that 

T(b) = bq mod mB for all b E B. (2.3) 

Finally letf(X) be any power series over B ®AK of the form 

f(X) = b1X + b2X 2 + · · · , b; E B, b 1 a unit of B, (2.4) 

for which there exists a uniformizing element w EA such that 

f(X) - w - IT .J(Xq) E B( [ X]] (2.5) 

where T • means "apply T to the coefficients". In terms of the coefficients b1 of j(X) 
condition (2.5) means that 

b1 E B if q does not divide i, fr 
bq1 - w- 1T(b1) E B for all i = 1, 2, .... (2.6) 

2.7. FUNCTIONAL EQUATION LEMMA. ut A, B, a, T, K,p, q,f(X), w be as in 2.1 
above such that (2.2.)-(2.6) hold. Then we have 

(i) F(X, Y) = 1- 1(f(X) + f( Y)) has its coefficients in B and hence is a commuta
tive one-dimensional formal group law over B. (Here f- 1(X) is the "inverse function" 
power series of j(X); i.e. f- 1(f(X)) = X.) 

(ii) If g(X) E B[[X]], g(O) = 0 and h(X) = f(g(X)) then we have h(X) -
w -IT .h(Xq) E B[(X]]. 

(iii) If h(X) E B ®AK[[X]], h(O) = 0 and h(X) - w- 1,,. .h(Xq) E B[(X]], then 
f- 1(h(X)) E B[[X]]. 

(iv) If a(X) E B[(X]], /3(X) E B ®AK[[X]}, a(O) = /3(0) = 0 and r, m EN= 
{ l, 2, ... }, then a(X) = /3(X) mod(wrB, degree m) ~ f(a(X)) = f(/3(X)) 
mod(wrB, degree m). 
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PROOF. This lemma is a quite special case of the functional equation lemmas of 
[11, cf. §§2.2 and 10.2). There are also infinite-dimensional versions. Here is a quick 
proof. First notice that (2.6) implies (with induction) that 

bJ E w-'B if j is not divisible by q;+ 1• (2.8) 

We rtow first prove a more general form of (ii). Let g(Z) = g(Z1, ••• , Zm) E 
B[(Z1, ••• , Z,,,]], g(O) = 0. Then by the hypotheses of 2.1 we have 

g(Z1, .•• , zmr'" =T.g(Z(, ... , Z:!.)q'- 1
" mod(w'B). (2.9) 

Combining (2.8) and (2.9) and using (2.6) we see that mod(B[[XlJ) we have 
00 00 00 

h(Z) = J(g(Z)) = L b;g(Z); = L bqjg(Z)q; = w- 1 L T(b)g(Z)q; 
;-1 J-1 j-1 

00 

= w- 1 L T(b)T .g(Zq'/ = <.>- 1'T ,J( 'T .g(Zq)) = w- 1T .h(Zq). 
j-1 

This proves (ii). To prove (i) we write F(X, Y) = F1(X, Y) + F2(X, Y) + · · · , 
where F,,(X, Y) is homogeneous of degree n. We now prove by induction that 
F,,(X, Y) E B[X, YJ for all n = I, 2, .... The induction starts because F1(X, Y) 
= X + Y. Now assume that F1(X, Y), ... , Fm(X, Y) E B[X, YJ. We know that 
f(F(X, Y)) = b1Fm+i(X, Y) + f(g(X, Y)) mod(degree m + 2), where g(X, Y) = 
F1(X, Y) + · · · + F,,.(X, Y). Hence, using the more general form of (ii) proved 
just above, we find mod(B[[X, Y]J, degree m + 2): 

J(F(X, Y)) := b1F,,.+ 1(X, Y) + j(g(X, Y)) 

=b1F,,.+ 1(X, Y) + w- 1T,J{T.g(Xq, Yq)) 

=b1Fm+ 1(X, Y) + w- 1T,J(T.F(Xq, Yq)) 

= b1Fm+ 1(X, Y) + w- 1T.f(Xq) + w- 1'T.f(Yq) 

e = b1Fm+ 1(X, Y) + f(X) + j( Y) = b1Fm+ 1(X, Y) + j(F(X, Y)) 

where we have used the defining relationf(F(X, Y)) = f(X) + f(Y), which implies 
T .f(T .F(Xq, Yq)) = 'T .J(Xq) + T .f( Yq), and where we have also used the fact that 
F(X, Y) = g(X, Y) mod( degree m + l) => F(Xq, P) = g(Xq, P) mod( degree m 
+ 2). It follows that b1F,,.+ 1(X, Y) = 0 mod(B[[X, YJ], degree m + 2) and hence 
Fm+ 1(X, Y) E B[X, YJ because b1 is a unit. 

The proof of (iii) is completely analogous to the proof of (i) . 
. The implication=> of (iv) is easy to prove. If a(X) = /J(X) mod(w'B, degree m) 

and a(X) E B[[X]] then a(X)q'J = f3(X)q'J mod(w'+ 1B, degree m) which, combined 
with (2.8), proves that f(a(X)) =f(/3(X)) mod(w'B, degree m). To prove the in
verse implication *"' of (iv) we first do the special case 

j( f3(X)) = 0 mod(w'B, degree m) => /3(X) = 0 mod(w'B, degree m). 

Now /3(X) = 0 mod( degree 1), hence f(/3(X)) = b1 /3(X) + b2 /J(X)2 + · · · = 0 
mod(w'B, degree m), implies /J(X) = 0 mod(w'B, degree 2), if m > 2 (if m • I 
there is nothing to prove), because b1 is a unit. Now assume with induction that 
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fJ(X) = 0 mod(w'B, degree n) for some n < m. Then, because {J(X) = 
0 mod(degree l) we have {1(X); = 0 mod(wriB, degree(n + i - 1)) and 
hence b)~(X)i = 0 mod(w'B, degree n + 1) if j ;> 2. Hence f(/J(X)) = 
0 mod(w'B, degree m) then gives b1 {1(X) = 0 mod(w'B, degree n + 1), so that 
fJ(X) = 0 mod(w'B, degree n + 1) because b1 is a unit. This proves this special 
case of (iv). Now let l(a(X)) =/(/1(X)) mod(w'B, degree m). Write y(X) -
/( fi(X)) - f(a(X)) and 8(X) - l- 1(y(X)). Then c5(X) = 0 mod(w'B, degree m) by 
the special case just proved, and fi(X) = f- 1(f(a(X)) + f(8(X))) - F(a(X), 8(X)) 
= a(X) mod(w'B, degree m) because F(X, Y) has integral coefficients, F(X, 0) = 0 
and because a(X) is integral. This concludes the proof of the Functional Equation 
Lemma2.7. 

3. Twisted Lubin-Tate formal A-modules. ~~ 
3.l. Construction and definition. Let A, K, k,p, m, a, q be as in 2.1 above. We 

consider a power series l(X) = X + c2X 2 + · · · E K[[X]] such that there exists a 
uniformizing element w Em such that 

(3.2) 

There are many such power series. The simplest are obtained as follows. Choose a 
uniformizing element w of A. Define 

g..,(X} = X + w- 1xq + w- 1a(w)- 1Xq2 + w- 1a(w)- 1a2(w)- 1X<I + · · ·. (3.3) 

Given such a power series f(X), part (i) of the Functional Equation Lemma says 
hat 

F(X, Y} = l- 1(J(X) + f( Y)) (3.4) 

nas its coefficients in A, and hence is a one-dimensional formal group law over A. 
We shall call the formal group laws thus obtained twisted Lubin-Tate formal 
A-modules over A. The twisted Lubin-Tate formal A-module is called q-typical if 
the power series f(X) that it is obtained from is of the form 

(3.sf'' 

From now on all twisted Lubin-Tate formal A-modules will be assumed to be 
q-typical. This is hardly a restriction because of Lemma 3.6 below. 

3.6. LEMMA. Let f(X) = x + C2X 2 + ... E K[[X}] be such that (3.2) holds. Let 
](X) = I;! 0a;Xq' with a0 = l, a; = cq•· Then u(X) = j- 1(/(X)) E A[[X]] so that 
F(X, Y) and F(X, Y) are strictly isomorphic formal group laws ooer A. 

PROOF. It follows from the definition of j{X), that j(X) also satisfies (3.2). The 
integrality of u(X) now follows from part (iii) of the Functional Equation Lemma. 

3.7. REMARKS. Let k, the residue field of K, be finite with q elements, and let 
o =id. Then the twisted Lubin-Tate formal A-modules over A as defined above 
are precisely the Lubin-Tate formal group laws defined in [12], i.e. they are 
precisely the formal A-modules of A-height 1. If k is infinite there exist no 
nontrjvial formal A-modules (cf. [11, Corollary 2l.4.23D. This is a main reason for 
also considering twisted Lubin-Tate formal group laws. 
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3.8. REMARK. Letf(X) E K[[XJ] be such that (3.2) holds for a certain uniformiz
ing element w. Then w is uniquely determined by f(X), because a1 - "'- 1a(a1_ 1) E 

A ~ w = a,- 1a(a1_ 1) mod wu A as v(a1) == -i. Using parts (ii) and (iii) of the 
Functional Equation Lemma we see that w is in fact an invariant of the strict 
isomorphism class of F(X, Y). Inversely, given w we can construct g,.(X) as in (3.3) 
and then g;; 1(f(X)) == u(X) is integral so that F(X, Y) and G .. (X, Y) -
g;; 1(g.,(X) + g.,( Y)) are strictly isomorphic formal group laws. In case #k == q 
and a = id, w is in fact an invariant of the isomorphism class of F(X, Y). For some 
more results on isomorphisms and endomorphisms of twisted Lubin-Tate formal 
A-modules cf. [11], especially §§8.3, 20.1, 21.8, 24.5. 

4. Curves and q-typical curves. Let F(X, Y) be a q-typical twisted Lubin-Tate 
9rmal A-module obtained via (3.4) from a power series.f(X) = X + a1Xq + a2xtf 

+ .... 
4.1. Curves. Let AlgA be the category of A-algebras. Let B E AlgA. A curoe in F 

over B is simply a power series y(t) E B[[t]] such that y(O) = O. Two curves can be 
added by the formula y1(t) + F yit) = F(y1(t), y2(t)), giving us an abelian group 
C(F; B).Further, if q,: B 1 -+ B2 is in AlgA, then y(t)i--+4>.r(t) (="apply q, to the 
coefficients") defines a homomorphism of abelian groups C(F; B1)-+ C(F; B-z). 
This defines an abelian-group-valued functor C(F; - ): AlgA -+ Ab. There is a 
natural filtration on C(F; - ) defined by the filtration subgroups cn(F; B) = { y(t) 
E C(F; B)jy(t) = 0 mod(degree n)}. The groups C(F; B) are complete with re
spect to the topology defined by the filtration Cn(F; B), n = 1, 2, .... 

The functor C(F; -) is representable by the A-algebra A[S]-= A[S1, S2> ••• ]. 
The isomorphism Alg,c(A[S], B).:+ C(F; B) is given by 

i.e. by q, i--+ 'f». rs(t), where 'Ys(t) is the "universal curve" 

e 00 F 

Ys(t) = ~ S1t 1 E C{F; A( S]). 
i-1 

Here the superscript F means that we sum in the group C(F; B) just defined (to 
avoid possible confusion with ordinary sums). 

4.2. q-typification. Let 'Ys(t) E C(F; A[SD be the universal curve. Consider the 
power series 

00 

h(t) = J(ys(t)) = ~ x;(S)t;. 
;-1 

Let -r: K[S]-+ K[S] be the ring endomorphism defined by T(a) = a(a) for a E K 
and -r(S1) = S;q for i = 1, 2, .... Then the hypotheses of 2.1 are fulfilled and it 
follows from part (ii) of the Functional Equation Lemma that h(t) - w- 1,,. .h(tq) E 

A[S)([t]]. Now let h(t) = ~7°-oXq1(S)tq'. Then, obviously, also h(t) - w- 1.,,..h(tq) E 
A [ S )[[ t]] and by part (iii) of the Functional Equation Lemma it follows that 
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(4.3) 

is an element of A[S]([t]]. We now define a functorial group homomorphism eq: 
C(F; - ) -+ C(F; - ) by the formula 

eq y(t) = (cpy).(eq y5 (t)) (4.4) 

for y(t) E C(F; B), where cJ>.,: A(S)-+ B is the unique A-algebra homomorphism 
such that (<f>.,). y5 (t) = y(t). 

4.5. LEMMA. Let B be A-torsion free so that B-+ B ®AK is injective. Then we have 
for al/ y(t) E C(F; B), 

00 00 

f( y(t)) = ~ b;t1 ~ f( eq y(t)) - ~ bq1tq1 
1-1 j-0 

(4.~ 

and eqC(F; B) = {y(t) E C(F; B)if(y(t)) - "2.c/ql for certain cj E B ®AK}. 

PROOF. Immediate from (4.3) and (4.4). 

4.7. LEMMA. eq is a functoria/, idempotent, group endomorphism of C(F; -). 

PROOF. eq is functorial by definition. The facts that eqeq = eq and that eq is a 
group homomorphism are obvious from Lemma 4.5 in case B is A-torsion free. 
Functoriality then implies that these properties hold for all A-algebras B. 

4.8. The functor Cq(F; -) of q-typical curves. We now define the abelian-group
valued functor Cq(F; -) as 

(4.9) 

For each n E N u {O} let ct>(F; B) be the subgroup Cq(F; B) n Cq~(F; B). 
These groups define a filtration on Cq(F; B), and Cq(F; B) is complete with respect 
to the topology defined by this filtration. 

ThefunctorCq(F; -)isrepresentablebytheA-algebraA[T] = A[TO> T1, ... ]. 

Indeed, writingf(X) = "2.r:. 0a1Xq' we have .,. 

~ OOF) 00 oo ~'' 
f( y5 (t)) = ~ S1t; = ~ ~ aiS;"'ttli 

;-1 j-0 1-1 

and it follows that 

From this one easily obtains that the functor Cq(F; - ) is representable by A[ T]. 
The isomorphism AlgA(A(T], B)~ Cq(F; B) is given by 

oo F 
cp ~ ~ cp(T;)tq' = cJ>.( yr(t)), 

;-o 
where Yr(t) is the universal q-typical curve 

(4.10) 
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4. l l. REMARKS. The explicit formulas of 4.8 above depend on the fact that F was 
supposed to be q-typical. In general slightly more complicated formulae hold. For 
arbitrary formal groups q-typification (i.e. eq) is not defined (unless q = p). But a 
similar notion of q-typification exists for formal A-modules of any height and any 
dimension if # k = q. 

5. The A-algebra structure on Cq(F; - ). Frobenius and Verschiebung. 
5.l. From now on we assume thatf(X) = g.,(X) = X + w- 1xq + w- 1o(w)- 1Xq2 

+ · · · for a certain uniformizing element w. Otherwise we keep the notations and 
assumptions of §4. Thus we now have a;- I = wo(w) ... a;- 1(w), a0 = I. This 

restriction to "logarithms" f(X) of the form g.,(X) is not very serious, because 

every twisted Lubin-Tate formal A-module over A is strictly isomorphic to a 
• .,(X, Y), (cf. Remark 3.8), and one can use the strict isomorphism g:; 1(f(X)) to 

transport all the extra structure on Cq( F; - ) which we shall define in this section. 
The restriction j(X) = g,.,(X) does have the advantage of simplifying the defining 
formulas (5.4), (5.5), (5.8), . . . somewhat, and it makes them look rather more 
natural especially in view of the fact that w, the only ••constant" which appears, is 
an invariant of strict isomorphism classes of twisted Lubin-Tate formal A-modules 
(cf. Remark 3.8 above). 

In this section we shall define an A-algebra structure on the functor Cq(F; - ) 
and two endomorphisms fw and V q· These constructions all follow the same 
pattern, the same pattern as was used to define and analyse eq in §4 above. First 
one defines the desired operations for universal curves like y.J...t) which are defined 
over rings like A [ T], which, and this is the crucial point, admit an endomorphism 
r: K[T] ~ K[T], viz. r(a) = o(a), r(T;) = T;q, which extends a and which is sud 
that -r(x) = xq mod wA[ T]. In such a setting the Functional Equation Lemma 
assures us that our constructions do not take us out of C(F; - ) or Cq(F; - } 

Second, the definitions are extended via representability and functoriality, and 
thirdly, one derives a characterization which holds over A-torsion free rings, and 

A5ing this, one proves the various desired properties like associativity of products, 

,,..-semilinearity of fw, etc. 
5.2. Constructions. Let YrU) be the universal q-typical curve (4.10). We write 

00 

J(rr(t)) = 2: x;(T)tq'. {5.3) 
i=O 

Letf(X) = g"'(X) = L~oa;Xq', i.e. a;= w- 1a(w)- 1 ••• a 1- 1(w)- 1 and let a EA. 

We define 

(5.4) 

(5.5) 

The Functional Equation Lemma now assures us that (5.4) and (5.5) define 
elements of C(F; A[ T]), which then are in Cq(F; A[ T]) by Lemma 4.5. To illustrate 
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this we check the hypotheses necessary to apply (iii) of 2.7 in the case of f..,. Let r: 
K[T] ~ K[T] be as in 5.1 above. Then by part (ii) of the Functional Equation 
Lemma we know that 

x0 EA[ T], 
It follows by induction that 

and we also know that 

(5.6) 

(5.7) 

where vis the normalized exponential valuation on K. We thus have u0(w)x 1 = wx1 

E A[TJ and " 

u;(w)x;+i - w- 1r(ui-l(w)x;)= u;(w)c; + a;(w)w- 1r(x;) - w- 1r(u;- 1(w)x;) 

= a;(w)c; E A [ T]. 

Hence part (iii) of the Functional Equation Lemma says that f.., y.,.(t) E 
C(F; A[T]). 

To define the multiplication on Cq(F; - ) we need two independent universal 
q-typical curves. Let 'Yr(t) = 'LFT;tq', 8t(t) = -Z,Ff;tq' E C/F; A[T; T]). We define 

Yr(t) * Of(t) = 1- 1( ~ a;- 1X;Y;tq') 
1-0 

(5.8) 

where f(Yr(t)) = 2.x;tq', j(8f(t)) = 2:y;tq'. To prove that (5.8) defines something 
integral we proceed as usual. We have x0, y 0 E A[ T; T], X;+ 1 - w - 1T(x;) = c; E 

A[T; TJ.Y;+i - w- 1T(Y;) = d; E A[T; T], where r: K[T; T] ~ K[T; T] is defined 
by T(a) = a(a) for a E K, and r(T;) = T;q, r(f;) = Tl, i = 0, 1, 2, .... Then 
a0x 0 y 0 = x0 y 0 E A[T; f] and 

ft 
= wa(a,)- 1(c; + w- 1r(x;))(d; + w- 1r(y;)) - w- 1u(a;- 1)r(x;)r(y;). 

= wa(a;- 1)c;d; + a(aJ- 1(c;r(y;) + d;r(x;)) EA[ T; f] 
by (5.6) and (5.7). 

5.9. DEFINITION. Let y(t), o(t) be two q-typical curves in F over B E AlgA. Let <1>: 
A[T] ~ B be the unique A-algebra homomorphism such that <1>. yr(t) = y(t), and 
let 1/J: A[T; T] ~ B be the unique A-algebra homomorphism such that l[;. yr(t) = 
y(t), 1/J.8t(t) = o(t). Let a E A. We define 

{a}Fy(t) = <P.({a}FYr(t)), (5.10) 

!,., y(t) = <l>.(f., YT(t)), 

y(t) * o(t) = ifl.(yr(t) * 8r(t)). 

( 5.11) 

(5.12) 

5.13. Characterizations. Let B be an A-torsion free A-algebra; i.e. B ~ B ®AK is 
injective, then the definitions (5.10)-(5.12) are characterized by the implications 
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00 00 

f( y(t)) = L x1t 91 => f( {a} FY(t)) = L a 1(a)x1tq', 
;-o ;-o 

(5.14) 

00 00 

f( y(t)) = L x;t 9 ' => f(f.., y(t)) = L a 1(w)x1+ 1t 91, 

1-0 1-0 
(5.15) 

00 00 

/(y(t)) = L x;t 91, f(8(t)) = L Y;tq'=> 
1-0 ;-o 

00 

f(y(t) * 8(t)) = L a;- 1X;Y;t< (5.16) 

This follows immediately from (5.4), (5.5) (5.8) compared with (5.10)-(5.12), 
Mcause '1>. and I/;* are defined by applying q, and 1jl to coefficients, and because 
.t) f-+ f(y(t)) is injective, if B is A-torsion free. 

5.17. THEOREM. The operators {a} F defined by (5.10) define afunctorial A-module 
structure on Cq(F; - ). The multiplication • defined by (5.12) then makes Cq(F; -) 
an A-algebra-valued functor, with as unit element the q-typica/ curoe y0(t) =· t. The 
operator f.., is a a-semilinear A-algebra homomorphism, i.e. f., is a unit and multiplica
tion-preserving group endomorphism such that f..,{a}p = {a(a)}Ff.,. 

PROOF. In case B is A-torsion free the various identities in Cq(F; B) like 
({a}Fy(t)) * 8(1) = {a}p(y{t) • 8(t)), y(t) • (8(t) +F e(t)) = (y(t) • 8(t)) 
+ F (y(t) • e(t)), . . . are obvious from the characterizations (5.14)-(5.16). Th 
theorem then follows by functoriality. 

5.18. Verschiebung. We now define the Verschiebung operator V9 on Cq(F; · 
by the formula V q y( t) = y( t q). (It is obvious from Lemma 4.5 that this ta1< 
q-typical curves into q-typical curves.) In terms of the logarithm j(X) one has f 
curves y(t) over A-torsion free A-algebras B, 

00 00 

f(y(t)) = L x;tq' =>f(Vqy(t)) = L x;tq•••. (5 e ;-o i-0 

5.20. THEOREM. For q-typica/ curves y(t) in F over an A-algebra B, 

f..,Vqy(t) = {w}Fy(t), (5.~ 

f.., y(t) = y(t)*q mod{ w} ~q(F; B). (5.22 

PROOF. (5.21) is immediate from (5.14), (5.15) and (5.19) in the case of A-torsion 
free B and then follows in general by functoriality. The proof of (5.22) is a bit 
longer. It suffices to prove (5.22) for curves y(t) E Cq(F; A[ T]). In fact it suffices 
to prove (5.22) for y(t) = 'YT(t), the universal curve of (4.10). Let 

- - i( )-1 -q q y 1 -X;+i a w a1a; X;, (5.23) 

where the x;. i = 0, I, 2, ... , are determined by f(y(t)) = ~x1tq'. It then follows 
from (5.14)-(5.16) that indeed f.,y(t) - y(t)*q = {w}~(t), provided that we can 
show that 8(t) is integral, i.e. that 8(t) E Cq(F; A[TD. To see this it suffices to show 



58 MICHIEL HAZEWINKEL 

that y0 E A [ T] and Y; + 1 - w - 1T(Y;) E A [ T] because of part (iii) of the Functional 

Equation Lemma. Letc; = X;+i - w- 1r(x;) E A[T]. Then 

Yo= x 1 - a0(w)- 1xrj = c0 + w- 1r(x0 ) -w- 1x6 E A[T] 

because r(x0) = xrj mod wA[ T]. Further from X;+ 1 = C; + w- 1r(x;) we find 

a;::;.\x;+i = wa(w) ... a;(w)c; + a(w) ... a;(w)r(x;) = w;+ 1d; + r(a;- 1x;) 

for a certain d; E A [ T], and hence 

(5.24) 

for a certain e; E A [ T]. It follows that 

Y;+1 - w-1r(y;) = X;+2 - a;+1(w)-1a;+1a;-:;.).x/~1-1 - w-1-r(xi+I) 

+w - 1-r( a;(w)- 1 a;a;-qX;q) 

= C;+i - a;+ 1(w)- 1(a;+ia;-:;.)x;;. 1 - w- 1a(a;)-r(a;-qxn) 

= c;+i - a;+ 1(w)- 1a;+ 1(ai::;.)x;;. 1 - r(a;-qxn) E A[T] 

because a;+ 1 = w- 1a(a;) and because of (5.24). (Recall that o(a;+ 1) = -i - l by 
(5.7).) This concludes the proof of Theorem 5.20. 

6. Ramified Witt vectors and ramified Artin-Hasse exponentials. We keep the 
assumptions and notations of §5. 

6.1. A preliminary Artin-Hasse exponential. Let B be an A-algebra which is 
A-torsion free and which admits an endomorphism -r: B ®A K - B ®A K which 
restricts to a on A ®AK= Kc B ®AK and which is such that r(b) = b 9 

mod wB. We define a map D.B: B - Cq(F; B) as follows. 

(6.2) 

This is well defined by part (iii) of the Functional Equation Lemma. A quick check 
by means of (5.14)-(5.16) shows that /iB is a homomorphism of A-algebras s#" 
that, moreover, 

(6.3) 

(because a;(w)a;+ 1 = a;), and that. D.B is functorial in the sense that if (B', -r') is a 
second such A-algebra with endomorphism r' of B' ®AK and <f>: B - B' is an 
A-algebra homomorphism such that -r'<P = cJYr, then Cq(F; <j>) 0 D.9 = /::,.9, 0 qi. 

6.4. REMARK. Using (B, -r) instead of (A, a) we can view F(X, Y) as a twisted 
Lubin-Tate formal B-module over B, if we are willing to extend the definition a bit., 
because, of course, B need not be a discrete valuation ring, nor is B ®A K 
necessarily the quotient field of B. In fact B need not even be an integral domain. 
If we view F(X, Y) in this way then tJ.9 : B - Cq(F; B) is just the B-algebr;;1. 
structure map of Cq(F; B). 

6.5. Now let B be any A-algebra. Then Cq(F; B) is an A-algebra which admits ao 
endomorphism r, viz. r = f..,, which, as -rx = xq mod w by (5.22), satisfies the 
hypotheses of 6.1 above (because fw is o-semilinear). It is also immediate fronJ-
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(5.10) and (5.4), cf. also (5.14), that Cq(F; B) is always A-torsion free. Substituting 

Cq(F; B) for Bin 6._I we therefore find A-algebra homomorphisms EB: Cq(F; B) -i> 

Cq(F; Cq(F; B)) which are functorial in B because f"' is functorial, and because of 

the functoriality property of the tl.B mentioned in 6.1 above. This functorial 

A-algebra homomorphism is in fact the ramified Artin-Hasse exponential we are 

seeking and, as is shown by the next theorem, Cq(F; B) is the desired ramified
Witt-vector functor. 

6.6. THEOREM. Let A be complete with perfect residue field k. Let B be the ring of 

integers in a finite unramified extension L of K. Let I be the residue field of B. 
Consider the composed map 

• Then µ8 is an isomorphism of A-algebras. Moreover if T: B -i> B is the unique 

extension of a: A -1> A such that T(b) = bq mod B, then f.,µB = µBT, i.e. ,. and f.., 
correspond under ILB· 

PROOF. Let b E B. Consider tl.B(wrb). Then from (6.2) we see that 

f(tl.B(w'b)) = arTr(wr),.'(b)tq' mod(wB, degree qr+ 1). 

By part (iv) of the Functional Equation Lemma 2.7 it follows that 

fl.B(wrb) =:yrTr(b)tq' mod(wB, degree qr+I) 

where Yr = ar,. r( w r) is a unit of B. It follows that µB maps the filtration subgrou1 

wrB of B into the filtration subgroups cJr>(F; /)and that the induced maps 

l~wrB/wr+IB~c~r>(F; l)/C~r+l)(F; /).:;./ 

are given by x ~ YrX q' for x E /. (Here,.:;. w rB I w r+ 1B is induced by w'b ~ii wit 

b the image of b in I under the canonical projection B ~ I, an1 

9Jr>(F; !)/ c;+ 1(F; /)~ l is ind~ced b~ CJr>(F; /)-i> /, y(t! 1--+(coefficien~ of tq' ir 

y(t)).) Because l is perfect and Yr =I= 0, it follows that the induced maps µ.B are al 

isomorphisms. Hence µ8 is an isomorphism because B and Cq(F; /) are botl: 

complete in their filtration topologies. The map µB is an A-algebra homomorphism 

because tl.B is an A-algebra homomorphism and Cq(F; - ) is an A-algebra-valued 

functor. Finally the last statement of Theorem 6.6 follows because both ,. and 

P.i 1f.,µB extend a and T(b) = bq = µj,- 1f...,µ,B(b) mod wB. 

6.7. The maps sq,n and w:n· The last thing to do is to reformulate the definitions 

of C (F; B) and E8 in such a way that they more closely resemble the correspond

ing ~bjects in the unramified case, i.e. in the case of the ordinary Witt vectors. This 

is easily done, essentially because Cq(F; - ) is representable. 

Indeed, let, as a set-valued functor, w:.00: AlgA -l> Set be defined by 

w:00(B) = { (b0, b1, b2, .•• )Jb; E B}, 

w:.oo(<l>)(bo, bi, ... )= (<f>(bo), <1>(b1), ... ). (6.8) 
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We now identify the set-valued functors w:,00(-) and Cq(F; - ) by the functorial 
isomorphism 

00 

e8 (b0, b1, •• • ) = ~ F b;tq', 
;-o 

(6.9) 

and define w:,00(-) as an A-algebra-valued functor by transporting the A-algebra 
structure on Cq(F; B) via e8 for all B E Alg8 • We use f and V to denote the 
endomorphisms of w:,00(-) obtained by transporting f.., and Vq via e8 • Then one 
has immediately that 

(6.10) 

and in fact 

(6 .• 

(We have not. proved the analog of this for f..,; this is not difficult to do by using 
part (iv) of the Functional Equation Lemma and the additivity of f..,.) 

Next we discuss the analog of the Witt polynomials Xf + pXf"-' 
+ · · · +p"Xn. We define for the universal curve yr(t) E Cq(F; A[TD, 

sq.n(Yr(t)) = an- 1(coefficientof tq"inj(yr(t)}) (6.12) 

and, as usual, this is extended functorially for arbitrary curves y(t) over arbitrary 
A -algebras by 

(6.13) 

where q,: A[ T] ~ B is the unique A-algebra homomorphism such that c?. yr(t) = 
y(t). If B is A-torsion free one has, of course, the result that sq,n y(t) = an- 1 

(coefficient of tq" inf(y(t))). Using this one checks that 

sq,n(y(t) + F 8(t)) = sq,n(y(t)) + sq,n(8(t)), 

Sq,n(y(t) • 8(t)) = Sq,n(y(t))sq,n(8(t)), 

sq,n( {a }Fy(t)) = an(a)sq,n( y(t)), 

Sq,n(f..,y(t)} = Sq,n+l(y(t)), 

sq,n(Vqy(t)) = an- 1(w)sq,n-i(y(t)) if n > 1, 

sq,o(V q y( t)) = 0, 

sq,n(t) = 1 for all n. (6.14) 

Now suppose that we are in the situation of 6.1 above. Then, by the definition of 
1:::.8 , we have 

{6.15) 

Now define w:.n(B): w:.00(B) ~ B by w:.n = sq,n ° e8 • It is not difficult to calculate 
w:,n. Indeed 
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and it follows that w:,n is the functorial map w:.etJ(B)-+ JJ defined by the 
polynomials 

w:.n(Zcr · · · , Zn) = an-I(.± a1z:~ 1) 
1-0 

= Zf + on-1(w)Zf-' + an-1(w}on-2("'}Zf-2 + ... 

+ O'n- l(w) · · · a(w)wZn. (6.16) 

6.17. THEOREM. Let (A, o) be a pair consisting of a discrete valuation ring A of 
residue characteristic p > 0 and a Frobenius-like automorphism a: K-+ K such that 
(2.2) holds for some power q of p. Let w be any uniformizing element of A, and let 

a:.n(Z), n = 0, 1, ...• be the polynomials defined by (6.16). Then there exists a 
·~nique A-algebra-valued functor w:etJ: AlgA-+ AlgA such that 

(i) as a set-valued functor w:00(B) = {(her b1, b2, ••• )lb; E B} and 
w:.CQ(f/>)(bo, b 1, ••• ) = (q,(_b0), q,(_b1), .•• )for all q,: B-+ B' in AlgA, 

(ii) the polynomials w:.,.(z) induce junctorial on-semilinear A-algebra homomor
phisms w:,00 : w:.CQ(B)-+ B, (b0, b1, ••• ) 1-+ w{.,.(b°' ... , bn)· 

Moreover, the functor w:.00(-) has a o- 1-semilinear A-module functor endomor
phism V and a functorial o-semilinear A-algebra endomorphism f which satisfy and 
are characterized by 

(iii) w:.n ° V = on- I(w)w:.,._ 1 if n = l, 2, ... ; w:.0 ° V = 0, 

(iv) w:.n ° f = w:.n+ 1· 

These endomorphisms f and V have (among others) the properties 
(v) fV = w, 
(vi) lb:= bq mod wW:.etJ(B)for all b E w:.etJ(B), B E AlgA, 
(vii) V(b(fc)) = (Vb)cjor all b, c E w:.etJ(B), B E AlgA. 

Further there exists a unique functorial A-algebra homomorphism 

E: w:.etJ< - ) -+ w:.etJ< w:.etJ< - ) ) 

.ich satisfies and is characterized by 
(viii) w:n ° E = f" for all n = 0, l, 2, . . . . (Here w:.n: w:.etJ( w:.etJ(B))-+ 

w:.""'(B) is short for w:n,w:. .. <B>• i.e. it is the map which assigns to a sequence 
Cho, b1, ••• ) of elements of w:.""'(B) the element w:n(b0, b1, ••• ) E w:.""'(B).) The 
functor homomorphism E further satisfies 

(ix) w:.00(w:n) 0 E = l",where w:.00(w:,,): w:00(W:.""'(B))-+ w:.etJ(B) assigns to 
a sequence iJ>o, b1, ... ) of elements of w;,00(B) the sequence (w:.,.Cbo), w{,,,(b1), ... ) 
E w:.00(B). 

Finally if A is complete with perfect residue field k and I/ k is a finite separable 
extension, then w:,""'(l) is the ring of integers B of the unique unramified extension 
L / K covering the residue field extension I/ k and under this A-algebra isomorphism f 
corresponds to the unique extension of a to T: B-+ B which satisfies T(b) = bq 
mod wB. In particular w:,""'(k) =A with f corresponding to o. 

PROOF. Existence of w:,00 ( - ), V, f, E such that (i), (ii), (iii), (iv), (viii) hold 
follows from the constructions above. Uniqueness follows because (i), (ii), (iii), (iv), 
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(viii) determine the A-algebra structure on BNu{O}, V, f, E uniquely for A-torsion 
free A-algebras B, and then these structure elements are uniquely determined by 
(i)-(iv), (viii) for all A-algebras, by the functoriality requirement (because for every 
A-algebra B there exists an A-torsion free A-algebra B' together with a surjective 
A-algebra homomorphism B' __,, B). Of the remaining identities some have already 
been proved in the Cq(F; - )-setting ((v) and (vi)). They can all be proved by 
checking that they give the right answers whenever composed with the w:,n. This 
proves that they hold over A-torsion free algebras B, and then they hold in general 
by functoriality. So to prove (vii) we calculate 

w:,0(V(b(fc))) = 0, 

w:,nCV(b(fc))) = an- 1(w)w:.n-i(b(fc)) = on- 1(w)w:.n-i(b)w:.n-i(fc) 

= On-l(W)WF _ (b)wF (c) q,n I q,n 

and, on the other hand, 

w:,0((Vb)c) = w{.0(Vb)w:,0(c) = 0, w:,0(c) = 0, 

w:.n((Vb)c) = w:.n(Vb)w:.n(c) = on-l(w)w:.n-i(b)w:.n(c). 

This proves (vii). To prove (ix) we proceed similarly. 

WF o WF (wF) o E - wF o wF o E - wF o,,,. - wF - wF o f" q.m q,oo q,n - q,n q,m - q,n 1 - q,n+m - q,m • 

• 

(Here the first equality follows from the functoriality of the morphisms w:,m which 
says that for all q.: B' ~ B E AlgA we have w:,m 0 w:,""(cp) = cp o w:,m; now sub
stitute w:,n for cp.) 

6.18. REMARK. Vf = fV does not, of course, hold in general (also not in the case 
of the usual Witt vectors). It is, however, true in w:,""(B) if wB = 0, as easily 
follows from (6.11), which implies that f(b0, b1, ••• ) = (b6, br, ... ) if wB = 0. 
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