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Abstract
This paper addresses itself to the question
whether M:tncgm), the space of equivalence
classes of completely reachable and observable
linear dynamical systems under state space
equivalence, can be compactified in a
system theoretically meaningful way by adding
e.g. lower dimensional system$. We obtain a
partial compactification M (R) by adding
lower dimensional systems, ° *Pajfferential
operators and mixtures of these two, This
partial compactification is wellbehaved
with respect to the limiting input—-output
behaviour of (degenerating) families of
linear dynamical systems, The compactification
is also maximal in the sense that if the
input-output behaviours of a family of systems
<Fz'Gz’Hz) have a (noninfinite) limit than

that limit is the input-output behaviour of

one of the points of M R) .
m,n,p

1. Introduction.

Let X = Fx + Gu, y = Hx be a (constant)
linear dynamical system of state space dimension
n with m inputs and p outputs, Let L (R) be

the (affine) space (Lm a ®) = R" mﬁghg) of all

t Rad ] Cr
n,n pOR). resp,

CIR) be the open and dense

auch systems and let
co,cr
m n PGR)’ resp. Lm a,

subspaces of L pOR) consisting of the
’ ’

completely reachable, resp. completely observable,
resp. completely observable and completely
reachable systems, Base change in state space
induces an action of GL_(R), the group of nxn
real invertible matrices on L ), viz,:

yL, P
,6,m)5 = (srs™),s6,u5"1), S € GL_(R), and two
systems of L

pGR) which are related in this
¥
way by means of some S € GLn(lR) (we shall call

them GL_(R)=~equivalent in that case) are
indistinguishable from the point of view of
their input-output behaviour. Inversely if

(F,G,H) and (F,G,H) are two systems of L R)
m,n,p

with the same input~output behaviour and if,
moreover, at least one of them is completely
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reachable (cr) and completely observable (co) then
(F,G,H) and (F,G,H) are GL_(R)~equivalent. This

makes the space Hco CrCR) ;onC;CR) /GL ®R) of
GL OR) orbits in Lér &
9

CIR) important in 1dent1f1-
cation of aystems theory, essentially because the
input~-output data of a given black-box give zero
information concerning a basis for state space.
More precisely suppose we have given a black-box
which is to be modelled by means of a linear
dynam:.cal system (1ds). Then the input—output
ST Ry and, as more

m,n,p
and more input-output data come in, (ideally) a
co,cr

data give us a point of M

sequence of points of Mo GR) representing

better and better 1ds apptoxlmatlons to the given
blagk box. The same sort of thing happens when

one is dealing with a slowly varying black box

(or 1ds), If this sequence approaches a limit

we have "identified" the black box. (In practice,
of course, one also wants a concrete representation
in terms of a triple of matrices; this is were

the matter of continuous canonical forms comes in),

Unfortunately the space MO ct(:IR) is never compact,
y

so that a sequence of poﬂt?’ may fail to converge
to anything whatever, There are "holes" in

CO cr ®).

m n,p
This paper addresses itself to the question

of whether MCO chlR) can be compactified in a

system theorencally meaningful way.

To illustrate what kinds of holes there are
n M;ox“c;CIR) we offer the following three 2-

1] ]
dimensional, one input-one output examples.

1.1, Example.

g, -(” v Fom (é ;) » By = (z,0)

The result of starting in x_= 0 at time
t = 0 with input function u(t) is

t -
y(t) = é 2e®"Tu(T)dT. We see (by taking e.g.

u(t) =1, 0 <t <n, u(t) =0, t > n) that the
family of systems (Fz,gz,hz)z does not have any

reasonable limiting input-output behaviour as
z + @, so that this limiting input-output
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behaviour can hardly model any (physical) black
box.

1.2, Example.
z 1 1 -1
SR AN F IS )

In this case the result of input u(t), starting
in X, - 0 at time t = 0, is

t t
y(t) = J hze<t_T)Fzgz u(t)dT = S et—Tu(r)dr +
[+) [o]
R t-T
+f 2z e (t-m)u(r)dT
[a]

and we see that the limiting input-output
behaviour of this family of systems as z + @
is the same as the input—output behaviour of
the one dimensional system g = |, F= 1, h = 1,
This example also illustrates that it may very
well happen that the family of systems
(Fz,gz,hz) may not converge to anything (not

even a subsequence converges), while the
agsociated family of input-output behaviours
has a definite (finite) limit. (The same thing
happens in example 1.3 below). Of course this
kind of thing is only to be expected when one
takes quotients for the action of a noncompact
group.

1.3. Example.

g, - (}) ’ Fz = (-8 ::) ’ hz‘(zz’o)

In this case the limit

t t
lim S hze(t T)Fzg u(t)dr = lim [ e z2(t-7)
z¥ o z ZH0 O

(zz-za(t-r))u(r)dr

does exist for all reasonable input functions u(t)
(E.g. u(t) continuously differentiable suffices).
But this limit is not the input~output behaviour
of any linear dynamical system, The limit is in
fact the linear differential operator

du(t)
u(t)rr v ramlt

Thus we see that the holes in MST'®O(R)
m,n,Pp

are of very different kinds, There is little one
can do about f£illing in the kind of holes
exemplified by example 1,1, nor does this seem
to be a serious matter from the point of view of
identification theory. The other holes can be
filled in and the result is a system theoretically
meaningful partial compactification ﬁm o pOR)

»

which is also maximal in the sense that if a
family (Fz,G ,Hz) has a finite limiting behaviour
than that 1iﬁit1ng input-output behaviour is the
input~output behaviour of a “system" in M_° _(R).
Cf, theorems 3.4 and 3.5 and remark "*™P
5.2 for more detailed statements.
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2. Differential operators of order < n-)
as limits of systems in _co,cr

z Lyn, 1 -

L R |

2.1, Definition. A differential operator of order
< n-1 is (for the purposes of this paper) an
input~output map of the form

(2.2) y(t) = Du(e) = a_u(c) + a, dggt) P
sa Ef:lg§£l
™ dtn

where the By 1005 8 are real constants. (The

n—1
functions u(t) are always supposed to be
sufficiently differentiable, say of class C ),

2.3, Theorem, Let D be a differential operator
of order < n-1., Then there exists a family of

) . cr,co
linear dynamical systems (Fz,gz,hz)z < L]’n’de)

such that (Fz,gz,hz) converges in input~output
behaviour to D as z + ©, More precisely there

Cr’COOR) such that

exists a family (Fz,gz,hz)z c Ll,n,l

t
(2.4) 1lim f hze(t_T)FZ

z¥ro o

gzu(r)dr = Du(t)

uniformly in t on every bounded t=-interval in
[0,%),

2,5, To prove theorem 2.3 we need to do some
preliminary exercises concerning differentiation,
partial integration and determinants. To start
with, here is the determinant exercise.

2,6, Lemma, Let k EN U {0} U {-1}, n eN. Let
B(n,k) be the nxn matrix with the binomial

‘s ; o odrirky L.
coefficient entries B(n’k)i,j (i+k+l)’ i,3
ly «vvy, n. Then det(B(n,k)) = 1 for all n,k,

2,7, Lemma,

t .
J zne-z(t-r)u(T)dT = zn_]u(t) - znnzu'(t) ..
o

" (-I)n—]u(n—l)(t) N O(Z_])
as z + @, where_ (1)(t) is the i-th derivative

of u(t) and 0(z ') is the Landau O~symbol.

Proof. Partial integration.

2.8, Lemma, Let ¢(1) = (t-T)mu(T). Then ¢(n)(t)-0

for n < m and ¢(n)(t) - (—l)mn(n-])...(n—m+1)u(n~m)
(t) if n > m,

Proof, Induction with respect to m,
Combining lemma 2.7 and lemma 2.8 we find



(2.9) f & 2T )Py (n)dt = (=1) %!

M3 O Nt

(-l)i+]z“—i(i;l )u(i"]"m) (t) + O(Z-])
i+

2.10, Proof of theorem 2,3, Let 1 <m < mn.
Consider the following family of n~dimensional,
1 input, ] output, systems

? -z 2z 0 ¢ 0
: 0 . + tu i
. . . 0
gz - om ’ Fz =l - . ] ¢ . R
z 0 “ v 0 =~z

hz = (0,...,0,xm,...,x])

vhere X,, ..., x_ are still to be determined
real numbers. Now

-8z 0 0 sz 0

§F = ' . + * . ’.
z . , 82
0 -8z 0 0

and these two matrices commute, It follows
that 22 n-1_n-1
87z 8 'z

27 TNt

1 82

Hence

m . ,
hze(t-’r)Fzgz I xizm+1(i!)-l(t—T)1e z(t-T)
im]

so that

t m m+i ;]

Pl winar = £ (D7 T DA
2 . . L4

[+} im} =i+l :

(DI AT ) 4o

m~1
= L
Lmo

m-f+t &, 0

z (L xi(m+i;£—l))u(m—£-l)(t) +
i=}

(-1

+ o(z_l)
m+i-&-l)_

Now, by lemma 2.6 we know that det(( 1,8
i 3

=1

It follows that we can choose Ky eees Xy in

260

such a way that

t
7 et g u(nyar = ™ () + 06T
[+]

where x is any pregiven real number.
Now let D be any differeptial operator of
order ‘,ﬁ::, say, D = a tagzt ...+
d s
_q —=,. For each i = 0, ..., n~], let
n-1 de 1
‘(F'z(i),gz(i),hz(i))z be a family of lds's, as

constructed above, such that

t . N
lim £ b (DeE™DF2E (hyurydr = a.u® (e
7% 0 z z 1

-~

Now let (Fz,gz,hz) be the n2—dimensional system

which is the direct sum of the n n-dimensional
systems (F, (i),g, (i),h (i)), i.e.,

Fz(l) 0 g

. F_(2) .

0 Fz(n)

n

ces o N

tf
N
12
]

gz(n)

h, = (hz(l),.-.,hz(n))

Then

t A
lim [ h e(t T)?zg u(T)dT = Du(t)
z z
Z0 o
The transfer function of (Fz,gz,hz) is

- A ~la n . S | .
T,(s) = h (s-F ) g = iE]hz(l)(s—Fz(l)) g, (1)

and because F_(i) is the same matrix for all i, it
follows that “the degree of the denominator of
T_(8) is < n. By realization or decomposition
theory, cf, [4] or [5] , it follows that there
exists for every z an n-dimensional system
(Fz,gz,hz) guch that

i e(t-T)FZE

(t~T)F,..
z z e 8

= h
z z
giving us a family of n-dimensional systems
(Fz,gz,hz) which in input-output behaviour
converges to D, Finally because L$°;c§OR) is open
2y
and dense in L] n ]GR) we can find for every z a
» s

co and cr system (Fz,gz,hz) such that



- e(t—T)Fzéz _ [t—TIMZ

I h e(t—T)F
z 4

zg,| < g, lt-Tle

where M_ is the maximum of the absolute values of
the entfies of F plus 1, and where €_ can be

chosen arbltrarlly. _Taking e.g. e, = e "Mz e see
that the families (Fz,g z) and Z(F 2'8; ,h ) have

the same limiting input-output behav1our. Thls
concludes the proof of theorem 2.3,

3, Limits of transfer functions.

3,1, Let (F,g,h) be a co and cr system of
dimension n. Its transfer functionm is

T(s) = h(s-F)_lg, which is a rationmal function of
the form

bn_lsn_|+...+b]s+b0

T(s) =

n=]
+a +.,,+a s+a
8 n 18 e 81 o

such that numerator and denominator have no
factors in common., The system
(F,g,h) € L?rnc?aR) is uniquely determined
’
up—to-GL (R)-equivalence by T(s), so that we can

(and shall) identify Mcr coCIR) with the space

of all such rational functlons T(s). There is an
obvious compactification of this space of all

rational functioms, viz. P2nGR), real projective
space of dimension 2n, which consists of all
ratios (xo:xlz...:xZn), x5 € R, not all x.

MCO,CTGR) N

equal to zero, The embedding ¥ : 1

P2nGR) is given by
Y(T(8)) = (bO:....bn 1

of P is clearly open and dense.

~a ves an-l

¢1). The image

In this section we relate this compactification
cr
of M?Dn lClR) to the considerations of section 2
above and we construct the partial compactification
Ml n 1GR) mentioned in the introduction.
| ik ]

3.2, Let M] n, GR) be the subspace of]PznGR)
consisting of those points (x BaaaiX, ) E'EZnGR)

for which at least one_of the x _, ..., x

non-zero. To each x € M] . we assoc1a%ed
3 ity

the (generalized) transfer function

X Sn-l+...+x 8+x
T n~-1 1 o
x(s) = 2n
X, 8 ...
2n

sS+X
o+l n

1!“'k—]¢..—¢his+h
Q.

b
+...%e 8¥C + n-k-
nwk,
8 [
e,

- Ck_lS
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where k = 2n - m if m is the index of the last
coordinate of x which is nonzero. We write

_ k~1 r
Dx(s) =c ot est oLt s and T (s), the

reduced transfer function of x, for Tx(s) - Dx(s).
3.3. Lemma, Let Tz(s) = (sn+an_l(z)sn_l+ vee +

a (2)s + a ()7 (b ()" '+ ...+ b (2)s + b (2))

be a family of transfer functions of systems in

LS°2°T(R), Then lim T_(s) exists pointwise for
1,n,l g 2

infinitely many values of s if and only if
(i) all limit points of the sequence (x ),

x, = W(T,(s)), are in Ml a, R) c]Pzn(lR)

(ii) if x,x' are two limit points of (xz)z then
Tx(s) = Tx,(s).
Moreover, if these conditions are fullfilled

then lim Tz(s) - Tx(s), where x is any limit
Z-¥00

p01nt of (x ) (There always is one because
P “R) is compact)

The proof is elementary. First suppose we
have a (sub)sequence (xz,)z, which converges to
an element x € E],n,IOR)' Then, clearly,

lim T (8) = T (8). Now suppose (x ,) ¢ 18 a
200

subsequence which converges to an element
x'€ EZHGR) <M GR), then 1im T ,(s) =+ ®

z-)m

1,

for all but finltely many values of s, where
the sign depends on the parity of the index of
the last coordinate of x' which is non-zero

and the sign of s. Finally if (x )_ has all its
limit lentS in X lOR) and théré are limit
points x',x such that T (s) # T . (s) then

lim Tz(s) cannot exist for 1nf1n1te1y many

ZH0

values of s because then we would have two
unequal rational functions which are equal for
infinitely many values of the argument.

3.4, Theorem. Let x € M, 1GR) and let (F,g,h)
iy

be any cr (n-k)~dimensional system with
transferfunctlon equal to Tr(s), and det(s~F) =
iy -k +x x sn*k—l
m m-l
m=2n - k is the index of the last coordinate
of x which is unequal to zero(so that degree

(D (8)) < k~1), Then there exists a family of
systems (F '8, ,h ) Lc° crGR) such that

l!n:

-1
ool * Xy Xous where



t
(1) lim S/ hze(t-T)Fzgzu(T)d‘t =

ZH% o

(t-T)F

( )u(t) + f he gu(t)dr

(ii) lim yw(F_,g ,h ) = x
250 2?82’ 2

where T @ L?oncrom) + MTO 2 CF
3

projection and ¢ is the embedd:mg of 3.1 above,

(R) is the natural

(iii) ii: T,(s) = Tx(s)

Proof. Let (f ,g ,E ) be a family of k dimensional
systems in Ll K, lGR) whose input-output behavmur
converges to the differential operator D (

(Theorem_Z .3). Then

(Fz 0) (gz
F = y B, ™ , h_= (h sh)
4 0 ¥ 2 g ¥4 Z

has the desired limiting input=-output behaviour,
As in the proof of theorem 2.3 we can change
(Fz,gz,hz)z to a family of cr and co systems

with the same limit input-output behaviour,
This proves (i). To prove (iii) apply (i)
with u(t) smooth af bounded support. Then the
integrals and D ( )u(t) are all Laplace

transformable and (111) follows by the continuity
of the Laplace transform. (Cf. [6], theorem
8.3.3 and theorem 4,3.1). Finally (ii) follows
from (iii) because the determinant requirement
prevents the family um(Fz,gz,hz) from having

any other limit point x' # x with Tx,(s) - Tx(s).
3.5. Theorem..Let (Fz,gz,hz)z be a family of

n-dimensional systems such that

t
Lin [ ne{" Pz y(nyar
P )
converges uniformly in t on bounded t intervals
for all smooth input functiom u(t) of bounded
gupport. Then there exist a k €N U {0}, a
differential operator D of degree < k-1 and an
(n~k)-dimensional system (F,g,h) such that

(t=T)F (t=T)F

t
lim S hze Zg u(t)dt = Du(t) + f he
z+0 o o

gu(T)dr

Proof. Changing (Fz,gz,hz) slightly if necessary
(as in the proof of theorem 2.3) we can assume

i Co,Cr
that (Fz,gz,hz) € Ll,n,lm) for all z. Let u(t)
be a given smooth bounded support input function.
Let U(s) be its Laplace transform. Then
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t (t=T)F
£/ he 2g u()dr = 1,(s)U(s)

and the continuity of the Laplace transform
([6], theorem 8.3.3) and lemma 3.3 together imply

that there is an x € ﬁl a, | ) such that

lim T (s) =T (s) Take D = D ( ) and let

2z

(F,g,h) be any (n-kz—-dlmenswnal system with
transfer function T (s). Then the statement of the
theorem follows because the Laplace transform
is injective and continuous.

3.6, Theorem 3,4 says that every point of ﬁl n ]CIR)
iy

is system theoretically meaninﬁful while theorem
3.5 that the compactification 1 lOR) of
E it ]

o,Ccr s . . .
M‘l: r,x lClR) is in a certain sense maximal,
bRt ]

4, Compatibility of the compactification ﬁ]

, ’]CIR)

with various other (partial) compactifications.

®).

4,1, Compatlblllty with M ,IOR) and Ml, n,1
Let M] o, lOR) be the orblt space Lct CR)/
GLnClR) This is a differentiable mamfold
of which Mco CTGR) is an open
submanifold. Cf. [1]. We have the following

situation

co,chR) c M] o IGR) _m2n

lnl

ril ,n,1 ®)

isomorphic to ]R2n

where the identification M 1CIR) 2
by associating to (a],...,a bl""’b ) E]R the

GLnGR)-orbit of the cr system

is given

0 1
0 .0
g = (‘) ’ F=|0 * |h"(8],...,an)
01
1 b]-b2 e -bn

(This is a slightly different "canonical form"
from the one used in [1], cf. e.g., also [5])
The transfer functionm of this cr system is

n n~1 ~1 n-1
T(s) = (874D ;8" '+...+bya+b)) (a_s

a,s+a ) and we see that the embedding

+oout

(]:onc Ry -+ l n, ]CIR) naturally extends to an
’
embedding MS ®) ~ M ®R).
1, 1,n,!
S:Lmllarly one sees that the inclusion
clzoncr(m) 1 a, @R ext:ends uniquely to an
]
embedding Mco QR) (R) .
y1 ,n,l



4,2, Caveat, As it happens the images of

CcO cr
Moy, @) and Moy

embeddings are equal. Let this image be Y, Then

(R) under these natural

Mco,
1,
one GL GR)-orblt in L] n, lGR) (but the

associated dlfferentxal operator is zer%)
also not true that a point of ¥ ~ M ' & GR)

corresponds uniquely to a GL GR)—orblt of a
k-dimensional system,for somé k < n. Thus, so

to speak, the same lower dlmen31onal system occurs
more than once in the edge of M CR) in Y.

Similarly the '"generalized systems" with tranafer
functions T (s) = D (s) + 17 (s), x € M ~ Y,

1 GR) iff
’

’
(denomlnatnr degree of ™ (s)) + (degree D (s)) < n,

the points of Y ~ lCIR) represent more than

It is

D (s) ¥ 0, oceur more than once in M

4.3, Forgetting inputs or outputs. In [2] and
[3] we considered the orbit space structure of
pairs of matrices (F,G) under the action

S ~-1 cr
(F,G)~ = (SFS ,8G), S € GLnGR). Let Im nGR)

y
be the space of all completely reachable pairs
of matrices (F,G) of sizes nxn, nxm respectively.

In [2], [3] we showed that the orbit space

cr cr
Km,naR) L
submanifold of a Grassmann manifold Gn,(n+1)m
This gives us a natural compactification

GR) of Kcr GR), viz, the closure of K
n,(n+1)m0R)

Specializing now to the case m = | we have
a diagram

nC]R)/GLnCIR) is a quasi projective
¥
@),

o ®)

in the compact manlfold G

CO cr v
Mg ® e M ®)
(4.4) 1 ¢ '3
cY _W
Kl,nGR) C— Kl,naR)

where the left-hand vertical map is induced by
(F,g,h)+=> (F,g), i.e. by forgetting outputs,

A quick check shows that under the identification

n GR) S , used in 4.1 above and the

’ ,

identification K GR) = PnGR) = Gn n+1CIR)
(ef. [2], 3D the map ¢ corresponds to the

projection (al,...,a b],...,bn)h+ (bl""’bn)’
co,cr cr Th us

l,n,loR) < Ml,n,laR)' b w? see

that there exists a continuous (and algebraic)

map ¢ M R) ~ K GR), viz,

(xn.....xzn), which completes

restricted to M

1,mn,l

(XO: X,.....x2n

the diagram (4.4) commutatively. (I.e. $ extends
$¢). Moreover ¢ is surjective showing that the

compactification R] n(lR) of K?rnGR) is system
’ ’ )

feey
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theoretically meaningful in a certain sense. Cf.
also 4.5 below.

Similar results hold, of course, for output
systems (F,H) under the GL GR)-actlon

(F, H) = (SFS ],H ); i.e, when one forgets inputs.
4.5, On the Fibres of §: M1 a l(lR)-*K ncm) and
the interpretation of the points of

L®) \K“ ®). Let y €K, ®R), y = (y ...ty ),

and let k be the index of the last coordinate of y
which is nonzero., Then the fibre over y of ¢ is
equal to

—-l = - - . -l . I3 —] . - 3 .
¢ (y) = {(xo.....xn_l.yk_lyo.....yk Yoy i1:0:...:0)}

Ml,n,laR)
and these points corregpond to generalized systems
with transfer functions of the form

k=
c 8 LR ol s+c°

k=1 1
k~1

D+
k -1 -1
s +yk Yi-18 +...+yk y
where D is a differential operator of degree
< n-k-1, It follows that all points

x € $_l(y) oM (R) for which D _(s) = 0 can be
l,n,l x
seen as GLkOR)-orbits of k~dimensional systems

(F,g,h) for which the "input system" (F,g) is
uniquely determined up to GLkGR)—equivalence. Thus

the points of K, (R) ~ K (R) can be seen as
i,n I,n

lower dimensional completely reachable pairs (F,g)
and we have in fact a gtratification

PPR) = R® URY! U.L.UR U {pt}

cm) u kF

K l,n-1

I,n

®) = @) U...U

GR) U K o ®)

where the single point space K GR) is interpreted

as the "zero input-system",
5, Concluding remarks.
5.1. There are several ways in which the elements

of K GR)

as 1lm1tS of cr input-systems and also as lower
dimensional cr systems, Some care must be exercised
when doing this, however. To illustrate one of the
difficulties involved we here offer the reader the
following example for reflection., Consider

the two families of input~systems,

nCIR) can be directly interpreted



As z + = both families converge (as input-systems).
The first one to the non-cr "imput-system"

(0 Y, (O 2) and the second one to the cr input-
systeu ( ), (0 2) This in spite of the fact that
(Fz,gz) and (Fz,gz) are GLZGR)—equlvalent for all
finite z. There is, however, a “canonical" subspace

of]R2 on which the two limit systems agree. This
is a general phenomenon to which we intend to
return in a subsequent paper. (Also for the
more than one input case),

5.2, One cannot use realization theory directly
to prove theorem 2,3, For 1nst?nce the
system of rational functions (s~z) 2z converges
to -1 as z + ®», which is the Laplace transform
of the operator u(t)r+ zft) = ~u(t)., The
transfer function (s-z) 'z is realized by the
one dimensional system g = 1, h = z, £ = 1,
t

But the limit lim / ze'~

z+% o
for almost all u(t). On the other hand, the
following is true. Let (Fz,gz,hz) be a family

T .
u{t)dt does mot exist

of systems with transfer functions T, (s).

Suppose that there exists a ¢ € R such that
Tz(s) has no poles with real part > ¢ for all =z.

Then lim T _(s) exists iff
z
R

lim S h e

23X 0

(t—T\Fzgzu(T)dT exists for all smooth

input functions with compact support. Half of this
theorem was proved in 3,5 above. The other half

is proved using a continuity property of the
inverse Laplace transform (in the sense of
distribution theory) when applied to a converging
sequence of rational functions with the extra
property just mentioned.

5.3. The results of sections 2 and 3 above genera
lize immediately to the case of more inputs and
more outputs., The proofs remain practically the
same, E,g. to prove the more dimensional
analogue of theorem 2.3 one first obtains all
differential operators of the form

r
A@
ac”
most ome entry # 0, Then one takes a direct
sum of nmp n-dimensional systems to realize
every differential opetatgg,of the form

, ¥ <n, where A is an pxm matrix with at

A, + A %E~+ eee A E;;:] as a limit of an
nzmp—dimensional system with F-matrices consisting
of nmp identical diagonal blocks., Now apply

again decomposition or realization and
approximation as in 2.3, The arguments and results
of section 3 above (and also of 5.2 above)
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generalize in the same manner. The results of
section 4 above do not generalize as easily. We
intend to come back to this, to the problems
indicated in 5.1 above,and to questions similar
to those treated in this paper for discrete
systems over more general fields thanm R{or L),
in subsequent papers.
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ON INVARIANTS AND CANONICAL FORMS FOR
LINEAR DYNAMICAL SYSTEMS

Michiel Hazewinkel .
Dept. Math., Econowetric Inst.,
Erasmus Univ. Rotterdam
Rotterdam, The Netherlands

The following text presents no more (nor less) than an outline and possibly
a .guide to.the principal results of [2-5] and some related material [6,7].

A constant, linear, dynamical system is a set of equations

. % = Fx + Gu xt+] = Fxt + Gut
{J) y = Hx v, = th
(continuous time) (discrete time)

with u ER™ input space or control space, x € R" = state space, y € ®P - output
space. Here F, G, H are real matrices of the appropriate sizes with constant
coefficients., The system is completely given by the triple of matrices (F,G,H).
We use Lm,n,paR) to denote the space of all triples of matrices of sizes nxn,
nxm, pxn respectively.

Of course the discrete‘time systems f{;.also make sense for matrices (F,G,H)
with coefficients in any field.

From the "black box" or "input-output" point of view the system L = (F,G,H)
assigns the output function

t

(2) y=f;u y(t) = / He

o

FED ey (rydr

to the input function u(t) if we start in x(0) at time t = 0. From this point
of view there is a redundancy about the description of the system by means of

a triple of matrices (F,G,H). Indeed let GLnGR) be the group of invertible real
nxn matrices and let GLnGR) act on Lm,n,pGR) according to

I s6,us7h

(3) (F,G,H)® = (sFS”
Then the input-output maps of & = (F,G,H) and of 5 = (F,G,H)B(both with
starting state x(0) = 0 at time t=0) are exactly the same for all § € GLnOR).
We thus have an (internal) group of symmetrics GLnGR) of "basis transformations
in state space”". (The action just described corresponds to the state space
transformation x' = Sx),
Several related questions now rise:
(i) What are the invariants for the action (3)? (Here an invariant is any
continuous function f: Lm ’pGR) + R such that f((F,G,H)S) = f((F,G,H))
for all § € GLnGR))-

0
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(ii) Does (3) describe all the redundancy in the descriptfon (F,G,H] of the
input~output map (2); can recover "(F,G,H)vupvto—GLnGeraction" from the
input-output data (2), How does one recognize that an input~output map
comes from a (finite dimensional) system (F,G,H)?

(Lii) Do there exist continuous canonical forms on suitable subspaces of L ’n’pGR)?
Here a continuous canonical form on a subspace L' « Lm (R) is a

continuous map ¢t L' = L' such that: (a) if c(F G,H) = (F G,H) then there

is an 5 € GL GR) such that (F G H) (F,G Hl and (b} <(F,G,H) = c(F,G,H)

if and only 1f there is an § € GL GR) such that (P G H) = (F,G H)

To answer these questions it is necessary to define two more concepts. The

system (F,G,H) is said to be completely reachable (cr) if the matrix

R(F,G) = (G FG ... FIG) consisting of all the columns of the matrices

FiG, i=20, ..., n, has rank n; the system (F.G,H) is said to be completely
observable if the matrix Q(F,H) defined by Q(F,H)T = (HY,FTH',...,(F )8}
has rank n. Here an upper "T" denotes "transposes'. These two Notions have
€T, COGR) be the open
subspace of L (R) consisting of all completely observable and completely

m’nip
reachable triples.

the meanings suggested by their names, cf. [6]. Let L

Theorem 1, Every invariant of GLnOR) acting on Lm a pGR) can be written
————————— 1 ’ -
as a continuous function in the entries of the 2n-matrices HG,HFG,...,Han ]G.

Let & = (A Al’AZ"") be a sequence of real pxm matrices., We say that A

is rea11zable lf there exists a triple (F,G,H) € L pCIR) (for some n) such
’
that A, = HF G for all i = 1,2,... . For each r,s em 1et9i (d,) be the block
Hankel matrix o
‘ AA  +vev A *
o1 r
Al ’
3{r,s(‘;‘) 1
A P A
s r+s

The answer to question (ii) is now given by
Theorem 2, (Ho, Kalman, Meadowes, Silverman, Tissi,Youla), The sequence ¢+
is realizable by a triple (F,G,H) € L pGR) iff there is an n, such that

n > n, = rank?{ -1, 0 _](ﬁ) = rankgl (d’) for all r,s > o -1. Moreover all

realizations of dlmenblon n are co and cr and they all are in the same GLHGR)
orbit.

It is now clear from theorem 2, that question (iii) is especially important
for the subspace Lcrncgom . Before anmswering it let us take time out to explain
why the word contlnuo;s in question (iii) is (sometimes) important. First, using
delta functions as inputs we see from (2) that knowing the input-output data of
a system amounts to knowing the sequence of matrices HG,HFG,HFZG,....Now

suppose we have an unknown black box to be modelled by a linear dynamical
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system (1), The algorithmic proof of theorem 2 gives us a way of calculating
(F,G,H) from HG, ..., Hfzn_]G. Because of measurement errors it would be highly

desirable to have a continuous algorithm calculating (F,G,H) from (HG,...,Hrzn—lG).
Kow the existence of such a continuous algorithm is easily seen to be equivalent

to the existence of a continuous canonical form. Cf. also [1] for some remarks in
a related case.

. . . cr,c
Theorem 3. There is a continuous canonical form on L°F*©°

m,n,paR) if and only if

m=1!orp=1,
The proof of this theorem goes via a detailed study of the orbit space

L2720 @) /6L, (R).

m n,p
Theorem 4. Lco crGR)/GL (R) = M0 chR) is a smooth noncompact differentiable
manifold (w1thout boundary) of dlmensxon mn + np. The natural projection 7: Lcr Om) +

m,n,p
-+ Mgonc;GR) is a locally-trivial principal GLnGR) bundle which is (globally) trivial
» iy

iff p=lorm=1,

From the identification of systems point of view (cf. also just above theorem 3)

it is interesting to see if M:oncgaﬁ) can be compactified in a system theoretically
meaningful way. n-1
Theorem 5. Let D= B + B s + ... + B -~ be the linear operator
e o 1 dt a=1 n-} dtn-l
u(t)r+ y(t) = B u(t)+ ... + B, NCal u(t), where By» +.+y B, are constant real

pxm matrices, Then every such operator D arises as a converging limit of input-output

maps of systems in Lcr coGR). Inversely if I g5 " 1,2, ... i8 a sequence of systems

in L°T? coGR) such thac 11m f u(t) = fu(t) unlformly on each bounded t interval,

™0, s+ Ly
then £ is the (direct) sum of an integral operator of $1ze pxm and) order < i-1 and
the input-output function of a co and cr system of state space dimension n-i.

This provides a partial, but apparently system theoretically maximal, compactification
er,co
of Mm o pGI)
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