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Abstract
This paper addresses itself to the question
whether M;rl’lc;ClR), the space of equivalence
L Rl

classes of completely reachable and observable
linear dynamical systems under state space
equivalence, can be compactified in a

system theoretically meaningful way by adding
e.g. lower dimensional systems, We obtain a
partial compactification Mm n (R} by adding
lower dimensional systems, ’ 'Pdifferential
operators and mixtures of these two. This
partial compactification is wellbehaved

with respect to the limiting input-cutput
behaviour of (degenerating) families of

linear dynamical systems., The compactification
is also maximal in the sense that if the
input-output behaviours of a family of systems

(Fz’Gz’Hz) have a (noninfinite) limit than
that limit is the input-output behaviour of
one of the points of ¥ R).

my“s?

1, Introduction.

Let X = Fx + Gu, vy = Hx be a (constant)
linear dynamical system of state space dimension

n with m inputs and p outputs., Letsz v (R) be

the (affine) space (I_.m a p(]R) =D +uh I,IB) of all
3ty cr

such systems and let L m,n,paR)’ resp.

co co,cr
L resp. L ? be the open and dense
n,m,p T > TESPe Ty 0 W) P

subspaces of Lm (R) consisting of the

LRt

completely reachable, resp. completely observable,
resp. completely observable and completely
reachable systems, Base change in state space
induces an action of GL _(R), the group of nxn

real invertible matrice$ on L ®), viz.:
m,n,p

®,c,m° = (srs7!,s6,557"y, S € GL_(R), and two

systems of Lm {R) which are relited in this
1

E)
way by means of some § € GLnClR) (we shall call

them GL (R)~equivalent in that case) are
indistinguishable from the point of view of
their input-output behaviour. Inversely if

(F,G,H) and (F,G,H) are two systems of L ®)
: m,n,p

with the same input-output hehaviour and if,
moreover, at least one of them is completely
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reachable (cr) and completely observable (co) then
(F,G,H) and (F,G,H) are GLnaR)-equivalent. This

makes the space M:‘o;crm) = Lco’cr(lR)/GLnClR) of

. dr)to m,10,p s .
GL_(R) orbits in L ! " (R) important in identifi~
n m’“)p

cation of systems theory, essentially because the

input-output data of a given black-box give zero

information concerning a basis for state space.

More precisely suppose we have given a black-box

which is to be modelled by means of a linear

dynamical system (1lds). Then the input-output

data give us a point of MEO;C;GR) and, as more

]

and more input—output data come in, (ideally) a

sequence of points of Me0sex
m,n,p

better and better 1ds approximations to the given

black box. The same sort of thing happens when

one is dealing with a slowly varying black box

(or 1ds). If this sequence approaches a limit

we have "identified" the black box. (In practice,

of course, one also wants a concrete representation

in terms of a triple of matrices; this is were

the matter of continucus canonical forms comes in).

co,er

(R) representing

Unfortunately the space 'Mm o (R) is never compact,
so that a sequence of points’p may fail to converge
to anything whatever., There are "holes" in
co,cr
M2 .
msn,'PaR)

This paper addresses itself to the question

of whether M2 @) can be compactified in a
m,n,p

system theoretically meaningful way,
To illustrate what kinds of holes there are
in MEOsCY
m,n,Pp .
dimensional, one imput~ome cutput examples.

t.1. Example.

(R) we offer the following three 2-

1 1o
&, ‘(1) » Py = (0 1) » By = (2,0

The result of starting in x_ = 0 at time
t = 0 with input function u(t) is

i -
y(t) = é zet Tu('r)dT. We see (by taking e.g.

ut) = 1, 0 <t <n, ut) = 0, £t > n) that the
family of systems (Fz’gz’hz)z does not have any

reasonable limiting input-output behaviour as
z + ®, so that this limiting input-output



behaviour can hardly model any (physical) black
box.

1.2, Example.

- {2} {1 -
B, = (1} o Fpo= (0 ]) v B, = (2 ',0)

In this case the result of imput u(t), starting
in x, = 0 at tlme t =0, is

t _ t
y(e) = £ el ag wnyan = o Tu(ryar +
(s} 0

t

v f 27 e T ey u Ty dr

o

and we see that the limiting input-— output
behaviour of this family of systems as z + o
is the same as the imput-output behaviour of
the one dimensional system g =1, F=1, h=1,
This example alsc illustrates that it may very
well happen that the family of systems
(Fz,gz,hz) may not converge to anything (not

even a subsequence converges), while the
associated family of input~output behaviours
has a definite (finite) limit. (The same thing
happens in example 1.3 below). Of course this
kind of thing is only to be expected when one
takes quotients for the action of a noncompact
group,

3. Example,

_ 1 _ [~z -z 2
gZ - (]) ’ FZ = ( 0 _Z) ’ hz“(z ,0)

In this case the limit

t
lim f h e(tuT)Fzgzu(T)dT = 1lim s & 2(t7D

z*® o 2% o

(2223 (e=1))u(T)dT

does exist for all reasonable input functions u(t)
(BE.g. u(t) continuously differentiable suffices).
But thig 1limit is not the input—output behaviour
of any linear dynamical system, The limit is in
fact the linear differential operator

. du(t)
ule)= =g -

Thus we see that the holes in MCT’S°@)

w,n,p
are of very different kinds. There is little ome
can do about f£illing in the kind of holes
exemplified by example 1.1, nor does this seem
to be a serious matter from the point of view of
identification theory. The other holes can be
filled in and the result is a system_ theoretically
meaningful partial compactification Mm, (R)

which is also maximal in the sense that 1f a
family (F_,G_,H ) has a finite limiting behaviour
than that®1ificfng input-output behaviour is the
input—output behavicur of a "system" in Mo pGR).
Cf. theorems 3.4 and 3.5 and remark

562 for more detailed statements.
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2. Differential operators of order < -l
as limits of systems in co cr

.

2,). Definition. A dlfferentlal operator of order
2 n~1 is (for the purposes of this paper) an
input-output map of the form

du(t)
2.2 t D =
(2.2)  y(t) = Du(t) a u(t) + a gt e ¥
n-1]
ta E———%ésl
n gt
where the By seey 8, are real constants. (The

functions u(t) are always supposed to be
sufficiently differentiable, say of class C ).

2.3, Theorem. Let D be a differential operator
of order < n-1. Then there exists a family of
13 d . er,co
inear dynamical systems (Fz,gz,hz)z c L]’n’]GR)
such that (Fz,gz,hz) converges in input-output

behaviour to D as z + ®, More precisely there

cr,co

exists a family (Fz,gz,hz)Z c L l(]R) such that

(2.4) lim [ h eltDTz Lu(0)dT = Du(t)

z27 0

uniformly in t on every bounded t-interval in
[O’m) .

2.5. To prove theorem 2,3 we need to do some
preliminary exercises concerning differentiation,
partial integration and determinants, To start
with, here is the determinant exercise,

2.6, Lemma. Let k €W U {0} U {~1}, n €N. Let
B(n,k) be the nxn matrix with the binomial
i+tj+ky ..
i+k+1)’ 1,1 =
1 for all n,k,

coefficient entries B(n, k)l i (
1, ««»s 0. Then det(B(n,k)) =
2.7. Lemma.
t

h Zne~z(t—w)

u(T)dT = zn-lu(t) - 2" -2 u'(t) + ... +

+ 0" o™
as z + =, where_ (1)(t) is the i-th derivative
of u(t) and 0(z ') is the Landau O-symbol.
Proof, Partial integratiom.

= (t=0)"u(r). Then 6 ™ (£)=0

2.8, Lemma. Let ¢(T)
— (n~m)

for n € m and ¢(n)(t) = (-1)mn(n—]).

() if n > m.

Proof. Induction with respect to m.
Combining lemma 2,7 and lemma 2.8 we find

. (n~m+1)u



z(t T) n(

(2.9) t~1) u(T)d'r = (= 1) m!

M3 O aer

(_])i+lzn~i(i;l)u(i—l-m)(t) . 0(z_])
i=m+]

2,10, Proof of theorem 2.3, Let J <m < n,
Consider the following family of n-dlmensmnal
1 input, 1 output, systems

9 ~% z Q - 0
: o, oo i
. > 0
= = ¢ - * .
gZ Om [} FZ ! ., . z ]
z 0 +ss 0 -z

LGPPSR )

where x_, ..., x_ are still to be determined
real numbers. Now

-8z 0 0 sz 0
gF = ) . + ' N "
z
. , 8z
0 -sz 0 0

and these two matrices commute. It follows
that

22 n—-1 n~1
) 5% 57z E z
an T (n-1)!
sF _ sz 0 1 sz ’ ' :
e (=3 , . 2 2
. 8"z
s . .t . 7Y
. ‘ *
sz
0 L] 3 0 ]
Hence

m 3 i - -
e(t—v:)Fzg - I x zm“(i!)“](t-T)le 2(t~T)

=1 1
so that
N m - m+i .
hze(t T)Fzgzu(T)dT = L UHTx T (=DTED
o i=1 j=isl

I D 4 v o™

m—1 o g
= 1 (D™ {41 Q,( Z (m+1il 1))“(111 l)(t) +
=0 i=1
oz h
Now, by lemma 2.6 we know that det((m+l_'z‘-l)i’g,)=1
i

It follews that we can choose s cnes Ky in

such a way that

t
s hzé(t;—'t)F

zgunar = ™ (e) + 06z

where x is any pregiven real number,
Now let D be any differegtlal operator of

order {n-1, say, D = R Y
t
dn—l
ta T For each i = 0,
dt

(F‘z(i),gz(i),hz(i))z be a family of 1ds's, as

constructed above, such that

ey D—1, let

1lim f h (1)e(t F (l)g (i)ult)dt = a. u(1>(t)
z10 o

-~

Now let (Fz,gz,hz) be the nz—dimensional system

which is the direct sum of the n n~dimensional
systems (F_(i),g (i),h (i), i.e.,

e, () 0 8, ()
P = FZ(Z{ , gz I ,
0 F_(n) g,(n)

= (b, (1), b, ()

Then

t A
li_mfhze
z+% 0o

(t~T)§Z§zu(T)dT = Du(t)

~

The transfer function of (Fz,gz,hz) is

T, (s) = hz(s—%z)‘lgz - I L, (=F_ (1)) lgz(i)

i=1

and because Fz(i) is the same matrix for all i, it
follows that “the degree of the denominator of

T _(s) is < n, By realization or decomposition
tﬁeory, cf, [4) oxr [5], it follows that there
e:_glsgs for every z an n-dimensional system
(Fz,gz,hz) such that

= (t-DF,= o (en)F,,
h e g, = hZ e Zgz

giving us a family of n-dimensional systems

(Fz,gz,hz) which in input-output behaviour

converges to D, Finally because L?Ot’lc;:a&) is open
3 3

and dense in Lo 1CIR) we can find for every z a
3 3

co and cr system (Fz,gz,hz) such that
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where k = 2n -~ m if m is the index of the last
coordipate of x which is nonzero. We write
IE e(t—T)Fzé _ hze(t-"{')F

- k-1 r
, . zgzl < EZ[t—T[elt T]Mz D(s) =c +es+ .+ (8 and T (s), the

1 k-1
reduced transfer function of x, for Tx(s) - Dx(s).
where M  is the maximum of the absolute walues of

n n-1
the entries of Fz plus 1, and where € can be 3.3. Lemma. Let Tz(s) = (s +an~](z)s a0t
chosen arbitrarily. Taking e.g. £ = e 2% we see -1

hat the Families (F h d %(F 2 (2)s *+ a,(2))
that the families 22850 z) an ( z,gz,hz) have

n~1
(bn_l(Z)S +oaae bl(z)s + bo(z))
the same limiting input-output behaviour. This be a family of transfer functions of systems in

concludes the proof of theorem 2.3, L?O;chR). Then lim Tz(s) exists pointwise for
t] 3 z_’_m
3. Limits of transfer functions.

infinitely many values of s if and only if
3:]' Let (¥,g,h) be a co and cr system of (i) all limit points of the sequence (x o
dimension n. Its transfer function is

= U(T,(s)), are in Ml,n’]cm) cp? (R)

T(s) = h(s—F)_]g, which is a rational function of

the form (ii) if x,x' are two limit points of (xz)Z then
n-1
T (s) = T_,(s).
(s = bn_]s +...+bls+b0 x( ) %! )
s+ sn—]+,.,+a s+a Moreover, if these conditions are fullfi%led
n-1 1 o then lim Tz(s) = Tx(s), where x is any limit
Z-Ho

such that numerator and denominator have no
factors in common. The system

(F,g.h) € Lgr co
up—to-GL GR) equ1valence by T(s), so that we can
(and shall) identify MCr co

lent of (x ) (There always is one because

B? GR) is compact)

GR) is uniquely determined .
The proof is elementary, First suppose we

have a (sub)sequence (xz,)z. which converges to

QR) with the space an element x € ﬁ ]GR). Then, clearly,

of all such rational fuuctlons T(s). There is an

A -oTl : , 11m T .(s) = T (s) Now suppose (%_,) , is a
obvious compactification of this space of all z 2z

2 —)00

rational functions, viz, EznGR), real projective

space of dimension 2n, which consists of all 2n —

ratios (xole:...:xzn), X, € R, not all X, x'€ PTR) ~ M, n, GR)’ then 11m T ,(s) =F®
Y

. co,cr z'
equal to zero. The embedding Y : M R) -

subsequence which converges to an element

1,m,]1 for all but finitely many values of s, where
PznGR) is given by the sign depends on the parity of the index of
P(T(s)) = (b _:...:b [fage.-ta 1:1). The image the last coordinate of x' which is noun-zero
0 n— n-

and the sign of 8. Finally if (x )Z has all its
limit points in Ml o lCIR) and there are limit
In this section we relate this compactification points x',x such °7°" that T,(s) # T 1 (s) then
of MCO crOR) to the considerations of section 2 1im Tz(s) cannot exist for infinitely many
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values of s because then we would have two
unequal rational functions which are equal for

of § is clearly open and dense.

above and we construct the partial compactification
M ]GR) meationed in the introduction.
!

3. z Let M GR) be the subspace of‘m GR) infinitely many values of the argument,
,1,
consisting of those points (x TeaaiX, ) E'E DaR) 3.4, Theorem, Let x € Ml,n, (R) and let (F,g,h)
for which at least one of the x_, ..., %X, 1is be any er (n—k)~d1men31onal system with
- ! v A transferfunction equal to T (s), and det(s~F) =
non—-zero, To each x € M1 a,] Ve associa ed . 2 kql 1’
b 4 n— n-k~
the (generalized) transfer function s R oo+ ¥ X, . where
m = 2n - k is the index of the last coordinate
n-} of x which is unequal to zevro (so that degree
T (s) = p-18 e dx ER (D (s)) < k~1), Then there exists a family of
co, cr
X x2n52n+..,+xn+]s+xn systems (F '8, ,h )y © L1 al (R) such that
; n-k-1
_ k~1 bn-kﬁ15 te..dh gth
= CpqS +...+cls+co+ o]

-k,
& Fauart "+
22,
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t
(L~T)F =
Lim ! h@e(t ) ZgzU(T)dT
2% @

{1

t
d ) h (t~1)F
o= Dx(a—{)u(t) + £ e

gu(t)dT
(i) bim yn(F ,8,,h) = X

Lo

, 1COCT oy | €O CF is the matural
where 7 Ll,n,lm) l,n,IGR)

projection and y is the embedding of 3.1 above,

{iii) lim T (s) = Tx(S)
zH

rroocf. Let (ﬁz,éz,'ﬁz) be a family of k dimensional
systems in L ]OR) whose input-output behaviour
g

. d
converges to the differential operator Dx(-a—t-

{Theorem 2.3). Then
0

N PRI
A 0 F z g Z

has the desired limiting input-output behaviour.
As in the proof of theorem 2.3 we can change
(!“’z,gz,hz)z to a family of cr and co systems

with the same limit input-output behaviour,
This proves (i). To prove (iii) apply (i)
with u(t) smooth af bounded support, Then the
integrals and Dx(?t—)u(t) are all Laplace

transformable and (iii) follows by the contimuity
of the Laplace transform, (Cf, [6], theorem
8,3,3 and theorem 4.3.1), Finally (ii) follows
from (iii) because the determinant requirement
prevents the family qm(Fz,gz,hz) from having

amy other limit point x' # x with Tx,(s) = Tx(s),
3.5. Theorem. Let (Fz,gz,hz)Z be a family of

nm-dimensiomal systems such that
t

Iim [ ke

zwm g °

(t-T)FZgzu(T)dT

converges uniformly in t on bounded t intervals
for all smwoth. input function u(t) of bounded
support, Them there exist a k €N U {0}, a
differential gpevator D of degree < k-1 and an
(n-k)~dimensional system (F,g,h) such that

t
lim [ h tz(t"T)F
¥ o

t
2g u(T)dT = Du(t) + f he(t™DF
o]

gu(T)dr

i.’romf. Changing (Fz,gz,hz) slightly if necessary
{as in the proof of theorem 2,3) we can assume

- co,cr
Zhu\t (Fz’gz’hz) € L"I’I’IC[R) for all z, Let u(t)
e

& given smooth bounded support im i
n put function,
Let U(s) be its Laplace transform. Then
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£ Jt' hze(t—T)Fzgzu(T)dT = TZ(S)U(S)

Q

and the continuity of the Laplace transform
([6], theorem 8,3.3) and lemma 3.3 together imply

that there is an x € Ml 1C[R) such that

Lt ]
1im T _(s) = Tx(s). Take D = Dx(—g—E) and let
22 .
(F,g,h) be any (n—kz_—dimensional gsystem with
transfer function T (s). Then the statement of the
theorem follows because the Laplace transform
is injective and continuous.

| gr)
is system theoretically meaningful while theorem
3.5 that the compactification I lC[R) of

Py

M?o’c;‘GR) is in a certain sense maximal,
y 0y

3.6. Theorem 3.4 says that every point of ﬁl .,

4, Compatibility of the compactification ﬂl n IC!R)
3y

with various other (partial) compactifications.

4.1. Compatibility with Me° (R) and MEF (R) .
I,n,l! —— o, |

L
Let M°F  (R) be the orbit space 15T m)/
l,n,l ]’n,l

GLnGR). This is a differentiable manifold
co,cr

1,n,l

submanifold, Cf, [1]. We have the following

situation

MCOsCT ®) € ¥eT

1,n,l1 l,n,]

-

Ml,n,l

isomorphic to ]Rzr1 of which M @) is an open

®) = m2n

®)

where the identification M°* ]CIR) =]R2n is given

l,n,
by associating to (al,...,an,bl,...,bn) € 1R2“ the

GLn(IR)—orbit of the cr system

0 0 !
: .. 0
8=|gl » F={0 * 'hn(al,.”,a)
) 01 n
—b]--b2 ver .bn

(This is a slightly different "canonical form"
from the ome used in [1], cf, e.g,, also [5]},
The transfer function of this cr system ig

= (0 n-1 - -
(s) = (s"+b__,s +"'+b25+b1)l(ansn Lo

a2s+a]) and we see that the embedding
MCO’CrGR) > ﬁ
Iom, 1 l,n,lGR) naturally extends to an

embedding MS* M
E M n B N @),

Bimilarly one sees that the inclusion

Co,CcYr hyd
M- i
]’n’ICIR) + Ml’n,]CIR) extends uniquely to an

embedding M°° M
1 H,IGR) > Ml,n,laR)‘

’



4.2. Caveat. As it happens the images of
co cr
M l,n,lGR) and Ml,n,l
embeddings are equal. Let this image be Y. Then
the points of ¥ ~ MTO chR) represent more than
!
one GL GR)—orblt in L] n, 1CIR) (but the

assoc1ated dlfferentlal operator 1scgero)
also not true that a point of Y ~ M GR)

(R) under these natural

It is

correspounds unlguelz to a GL GR)-orblt of a
k~dimensional system.for some€ k < n. Thus, so
to speak, the same lower dlmen31onal system occurs

more than once in the edge of M GR) in¥,
Similarly the "generalized systems w1th transfer
functions T (s) = D (s) + 1F (s), x € Ml 0,1 ~Y,

D (s) # 0, occur more than once in M

GR) iff
(denomlnator degree of T (s)) + (degree D (s)) < n,

4.3, Forgetting inputs or outputs. In [2] and
[3] we considered the orbit space structure of
pairs of matrices (F,G) under the action

S _ -1 cr
(F,G)” = (SFS ,8G), § € GLnGR). Let Im’nGR)

be the space of all completely reachable pairs
of matrices (¥,G) of sizes nxn, nxm respectively,

In [2],
cr er
Km,naR) =1 m,
submanifold of a Grassmanp manifold G

[3] we showed that the orbit space
2@®)/GL_R) is a quasi projective
n,(n+1)mGR)'
This gives us a natural compactification

nC(R) of K GR), viz. the closure of K GR)
in the compact manlfold Gn,(n+1)maR)'

Specializing now to the case m = 1 we have
a diagram

M, C— X ,n,laR)

1
(6.4 K '3
cY "w
Kl,naR) e Kl,naR)

CO cY OR)

where the left-hand vertical map is induced by
(F,g,h)+ (F,g), i.e. by forgetting outputs.

A quick check shows that under the identification
R) = , used in 4.1 above and the
QR) - R C]P ®) ~Gn n+]

(ef. [2], 3D the map ¢ corresponds to the
projection (a,,.44058 ,b 5.00,b )+ (b, ,...,b ),
| c 1 or D 1 n
restricted to M o’chR) oM (R). Thus we see
1,n,1 1,m,]
that there exists a continuous (and algebraic)

®) + El,nClR), viz,

) > (Xn:"':XZn)’ which completes

I n,l
1dent1f1catlon K

®)

map ¢: M],n,]
CORIE TERTTS: I c
the diagram (4.4) commutatively. (I.e. ¢ extends
$). Moreover ¢ is surjective showing that the

nGR) of K

compactification K GR) is system
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theoretically meaningful in a certain sense., Cf,
also 4.5 below,

Similar results hold, of course, for output
systems (F,H) under the GL GR)—actlon

(F, H) = (SFS~ ,HS ), i,e. when one forgets inputs,
4.5, On the fibres of ¢ : M] 1CIR) - K] n ®) and
3 ’ R
the interpretation of the points of
cr
K1 nCIR) ~ K],nGR)' Let y € Kl,naR)’ y = (yo....:yn),

and let k be the index of the last coordinate of y
which is nonzero, Then the fibre over y of ¢ is
equal to

__1 = . . - ‘-‘ . . -] . . » 3
¢ (y) = {(xo.....xn_l.yk_lyo.....yk Vo il:02...20)1
M],n,IGR)

and these points correspond to generalized systems
with transfer functions of the form

c sk_]+ +o, s+
k-1 ovate s¥e

T = T
8 yk Yk_,]S e yk yo
where D is a differential operator of degree
< n-k-1. It follows that all points
=-1 :
x€¢ () e M]’n’IGR) for vhich D_(s) =

seen as GLkGR)—orbits of k~dimensional systems

0 can be

(F,g,h) for which the "input system" (F,g) is
uniquely determined up to GL GR)—equivalence. Thus
the points of K GR) nGR) can be geen as

’

lower dlmenslonal completely reachable pairs (F,g)
and we have in fact a gtratification

PPR) =R UR™ U...UR U {pt}

K, _®) =

I,n

GR) u kST R UL

1,n-1
cr er
ORI

where the single point space K GR) is interpreted

as the '"zero input-system",
5. Concluding remarks.
5.1. There are several ways in which the elements

of X, nGR) ~ KTr“GR) can be directly interpreted
2 b

as limits of ¢r input-systems and also as lower
dimensional cr systems, Some care must be exercised
when doing this, however., To illustrate one of the
difficulties involved we here offer the reader the
following example for reflection, Consider

the two families of input-systems.



1 11 - 1
g = F = H g:()
B, (z-l)' z (0 2) PR FY
-1
= 1 =z
Fz - (0 2 )

As z + @ both families converge (as input-systems),
The first one to the non~cr “input-system"

(é ), (é ;) and the second one to the cr input-
systeu (]), (é g). This in spite of the fact that
(Fz,gz) and (Fz,gz) are GL20R)—equivalent for all
finite z. There is, however, a "canonical" subspace

ofI]R2 on which the two limit systems agree. This
is a general phenomenon to which we intend to
return in a subsequent paper, (Also for the
more than one input case),

5.2. One cannot use realization theory directly
to prove theorem 2,3. For insg?nce the
system of rational functions (s-z) z converges
to -1 as z + =, which is the Laplace transform
of the operator u(t)H th) = -u(t). The
transfer function (s-z) 2z is realized by the

one dimensional system g = 1, h =12z, f = 1,
£ ot
But the limit lim J/ ze  u(T)dT does not exist
2% g

for almost all u(t). On the other hand, the
following is true. Let (Fz,gz,hz) be a family

of systems with transfer functions Tz(s).

Suppose that there exists a ¢ € R such that
Tz(s) has no poles with real part > ¢ for all z,

Then lim T _(s) exists iff
£5 ’
Iim / hze(t-T‘Fz

g u(T)dT exists for all smooth
Z00 O z

input functions with compact support. Half of this
theorem was proved in 3.5 above, The other half

is proved using a continuity property of the
inverse Laplace transform (in the sense of
distribution theory) when applied to a converging
sequence of rational functions with the extra
property just mentioned.

5.3. The results of sections 2 and 3 above genera
lize immediately to the case of more inputs and
more outputs, The proofs remain practically the
same. E.g. to prove the more dimensional

analogue of theorem 2,3 one first obtains all
differential operators of the form

r

A§

at’
most one entry # O, Then one takes a direct
sum of nmp n-dimensional systems to realize
every differential operatgzlof the form

d
AO+A1-&:-+ Ve +An_

, ¥ < n, vhere A is an pxm matrix with at

| Tho) as a limit of an

dt
nmp-dimensional system with F-matrices consisting
of nmp identical diagonal blocks., Wow apply
again decomposition or realization and
approximation as in 2.3. The arguments and results
of section 3 above (and also of 5.2 above)
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generalize in the same manner, The results of
section 4 above do not generalize as easily. We
intend to come back to this, to the problems
indicated in 5.1 above,and to questions similar
to those treated in this paper for discrete
systems over more general fields than R(or &),
in subsequent papers.
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