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Abstract 

This paper addresses itself to the question 

whether Mcr,co(IR), the space of equivalence 
m,n,p 

classes of completely reachable and observable 
linear dynamical systems under state space 
equivalence, can be compactified in a 
system theoretically meaningful way by adding 
e.g. lower dimensional systems. We obtain a 
partial compactification M OR) by adding 
lower dimensional systerns,m,n,pdifferential 
operators and mixtures of these two. This 
partial compactification is wellbehaved 
with respect to the limiting input-output 
behaviour of (degenerating) families of 
linear dynamical systems. The compactification 
is also maximal in the sense that if the 
input-output behaviours of a family of systems 
(Fz,Gz,Hz) have a (noninfinite) limit than 

that limit is the input-output behaviour of 
one of the points of M (JR) • m,n,p 

J, Introduction. 

Let x = Fx + Gu, y = Hx be a (constant) 
linear dynamical system of state space dimension 
n with m inputs and p outputs. Let L OR.) be 

. ~ n2+i!ln.~n~ the (affine) space (L (IR) - JR ) of all 
m,n,p er 

such systems and let · L OR.), resp. 
co co er m,n,p 

L (IR), resp. L ' (Ill) be the open and dense 
m,n,p m,n,p 

subspaces of L (IR.) consisting of the m,n,p 
completely reachable, resp. completely observable, 
resp. completely observable and completely 
reachable systems. Base change in state space 
induces an action of GL (IR), the group of nxn 
real invertible ma trice~ on L (IR), viz.: 

I I m,n,p 
(F,G,H) 3 ~ (SFS- ,SG,HS- ), SE GLOR), and two 
systems of L (IR) which are rel~ted in this 

m,n,p 
way by means of some S E GLn (IR) (we shall call 

them GL (IR.)-equivalent in that case) are 
indistiRguishable from the point of view of 
their input-outEut behaviour. Inversely if 
(F,G,H) and (F,G,H) are two systems of Lm,n,p(IR) 

with the same input-output behaviour and if, 
moreover, at least one of them is completely 

reachable (er) and completely observable (co) then 
(F,G,H) and (F,G,H) are GL (IR)-equivalent. This 

n 
makes the space Mco,cr(IR) = Lco,crOR.)/GL OR) of 

m~n,g m,n,p n 
GL OR) orbits in L r, 0 (1R) important in identifi-

n m,n,p 
cation of systems theory, essentially because the 
input-output data of a given black-box give zero 
information concerning a basis for state space. 
More precisely suppose we have given a black-box 
which is to be modelled by means of a linear 
dynamical system (lds). Then the input-·output 
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data give us a point of Mco,cr (IR.) and, as more 
m,n,p 

and more input-output data come in, (ideally) a 

sequence of points of Mco,crOR) representing 
m,n,p 

better and better lds approximations to the given 
black box. The same sort of thing happens when 
one is dealing with a slowly varying black box 
(or lds). If this sequence approaches a limit 
we have "identified" the black box. (In practice, 
of course, one also wants a concrete representation 
in terms of a triple of matrices; this is were 
the matter of continuous canonical forms comes in). 

Unfortunately the space Mco,cr (IR) is never compact, 
so that a sequence of poiWt~·P may fail to converge 
to anything whatever. There are "holes" in 
Mco,cr OR). 

m,n,p 
This paper addresses itself to the question 

of whether Mco,cr(IR) can be compactified in a 
m,n,p 

system theoretically meaningful way, 
To illustrate what kinds of holes there are 

in Meo ,er OR) we offer the following three 2-
m,n,p 

dimensional, one input-one output examples. 

I.I. Example. 

The result of starting in x 0 at time 
t = 0 with input function u(t) ig 

t t-T 
y(t) = J ze u(T)dT. We see (by taking e.g. 

0 

u(t) = J, 0 ..::_ t ..::_ n, u(t) = 0, t > n) that the 
family of systems (Fz,gz,hz)z does not have any 

reasonable limiting input-output behaviour as 
z ~ ~, so that this limiting input-output 



behaviour can hardly model any (physical} black 
box. 

1 . 2 . Examp 1 e . 

h = (z- 1 ,0) 
z 

In this case the result of input u(t), starting 
in x

0 
0 at time t = O, is 

y(t) 

t 
+ f z-let-T(t-T)u(T)dT 

0 

and we see that the limiting input-output 
behaviour of this family of systems as z 4 oo 
is the same as the input-output behaviour of 
the one dimensional system g = I, F =I, h =I. 
This example also illustrates that it may very 
well happen that the family of systems 
(Fz,gz,hz) may not converge to anything (not 

even a subsequence converges), while the 
associated family of input-output behaviours 
has a definite (finite) limit. (The same thing 
happens in example 1.3 below). Of course this 
kind of thing is only to be expected when one 
takes quotients for the action of a noncompact 
group. 

1.3. Example, 

F z 

In this case the limit 

(-z -z) 
0 -z 

t 
lim f h e(t-T)Fzg u(T)dt 

t 
lim f e-z(t-T) 

z-+«> o z z z400 o 

2 3 
(z -z (t-T))u(T)dT 

does exist for all reasonable input functions u(t) 
(E.g. u(t) continuously differentiable suffices). 
But this limit is not the input-output behaviour 
of any linear dynamical system. The limit is in 
fact the linear differential operator 

u(t)t-+ d~~t) 

Thus we see that the holes in Mcr,co(IR) 
m,n,p 

are of very different kinds. There is little one 
can do about filling in the kind of holes 
exemplified by example l .I, nor does this seem 
to be a serious matter from the point of view of 
identification theory. The other holes can be 
filled in and the result is a system theoretically 
meaningful partial compactification M OR) m,n,p 
which is also maximal in the sense that if a 
family (F G H ) has a finite limiting behaviour 
than thatziiffiitl'.ng input-output behaviou;!:: is the 
input-output behaviour of a "system" in Mm n p OR)• 
Cf, theorems 3 .. 4 and 3. 5 and remark ' ' 
5 ,. 2 for more detailed statements. 
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2. Differential operators of order < n-1 
as limits of systems in Lco,cr(IR) 

l ,n, I ' 

2.1. Definition, A differential operator of order 
_:::. n-1 is (for the purposes of this paper) an 

input-output map of the form 

(;1,2) y(t) Du(t) = a
0
u(t) + al 

du(t) •.. + ---+ dt 

+ a 
dn-I u( t) 

n-1 n-1 
dt 

where the a
0

, ••• , an-I are real constants, (The 

functions u(t) are always supposed to be 
sufficiently differentiable, say of class C

00
), 

2.3. Theorem. Let D be a differential operator 
of order 2_ n-1. Then there exists a family of 

linear dynamical systems (F ,g ,h) c Lclr,col(IR) 
z z z z ,n, 

such that (Fz,gz,hz) converges in input-output 

behaviour to D as z 4 ro, More precisely there 
. f . l (F ) c r, co exists a ami y ,g ,h c L

1 1
(1R) such that z z z z ,n, 

(2.4) Du(t) 

uniformly in t on every bounded t-interval in 
[ 0 ,oo), 

2.5. To prove theorem 2,3 we need to do some 
preliminary exercises concerning differentiation, 
partial integration and determinants. To start 
with, here is the determinant exercise. 

2.6. Lemma. Let k ElN U {O} U {-I}, n ElN. Let 
B(n,k~the nxn matrix with the binomial 

. ( ) (i+j+k) .. coefficient entries B n,k i,j i+k+I , i,J 
I, .. , , n. Then det(B(n,k)) = for all n,k. 

2.7. Lemma. 

t 
f zne-z(t-T)u(T)dT 
0 

+ (-l)n-lu(n-l)(t) + O(z-1) 

as z + "'', where_y(i)(t) is the i-th derivative 
of u(t) and O(z ) is the Landau 0-symbol. 

Proof, Partial integration. 

m (n) ) 2.8. Lemma. Let ~(T) = (t-T) u(t). Then~ (t =O 

for n~and ~(n)(t) = (-l)mn(n-1) ... (n-m+l)u(n-m) 
(t) if n ~ m. 

Proof, Induction with respect tom. 
Combining lemma 2,7 and lemma 2.8 we find 



t 
(2,9) J e-z(t-T)zn(t-T}mu(T}dT = (-l)mm! 

0 

n 
l: 

i=m+l 

2.JO. Proof of theorem 2.3. Let J < m < n. 
Consider the following family of n::'dimensional, 
I input, l output, systems 

g = z (!.) ', {l 
z 0 

hz = (O,.,. ,O,xm' ••• ,x1) 

where x
1

, ••• , xm are still to be determined 
real numbers. Now 

sF z = (-sz • 0) + ( 0 sz 
5

:) 

0 -sz 0 0 

and these two matrices connnute. It follows 
that 

sF 0 z -sz 
e = e 

0 

Hence 

so that 

sz 2 2 s z 
2: 

sz 

. ' . 

+ O(z-1) 

0 

n-1 n-1 s z 
(n-1) ! 

2 2 
s z 
~ 

sz 

Now, by lemma 2.6 we know that det((m+i-~- 1 ). ~)=l 
i i,.., 

I't follow& that we can choose x1 , ..• , \ii in 

such a way that 

where x is any pregiven real number, 
Now let D be any differeatial operator of 

order 4.n-1, say, D = a
0 

+a dt + ••. + 
dn-1 

+ a --1• For each i = 0, ••• , n-1, let 
n-1 dtn-

(F ~ (i) ,gz (i), hz (i)) z be a family of lds' s, as 
constructed above, such that 

Now let (Fz,gz,hz) be the n2-dimensional system 

which is the direct sum of the n n-dimensional 
systems (F z(i) ,gz(i) ,hz(i)), i.e., 

0 
z 

F ,. 
(:(1) Fz(2) ) r (1 I) ' gz = ~ z . . ' 

F z (n) gz (n) 

h (hz{l), ... ,hz(n)) z 

Then 

lim} h e(t-T)Fz~ u(T)dT = Du(t) 
z z 

z~ o 

- " -1,. T (s) = h (s-F ) g z z z z 

n 
Eh (i)(s-F (i))-lg (i) 

i=I z z z 

and because F (i) is the same matrix for all i, it 
follows that zthe degree of the denominator of 
T (s) is < n, By realization or decomposition 
tfieory, cf. [4] or [5) , it follows that there 
exists for every z an n-dimensional system 
(F ,g ,h ) such that 

260 

z z z 

giving us a family of n-dimensional systems 
(F ,g ,h ) which in input-output behaviour z z z 
converges to D. Finally because L co' crl (IR) is open 

l ,n, 
and dense in L1 1 (IR) we can find for every z a ,n, 
co and er system (Fz,gz,hz) such that 



where M is the maximum of the absolute values of 
the ent~ies of Fz plus l, and where Ez can be 

b . 'l T k' -zM:z. chosen ar itrar1 y._ a_ing e.g. Ez = e we see 
that the families (Fz,gz,hz) and (Fz,gz,hz) have 

the same limiting input-output behaviour. This 
concludes the proof of theorem 2.3. 

3. Limits of transfer functions. 

3.1. Let (F,g,h) be a co and er system of 
dimension n. Its transfer function is 

-I 
T(s) = h(s-F) g, which is a rational function of 
the fonn 

T (s) 

n-1 
bn_ 1s + ••• +b

1
s+b

0 

n n-1 
s +an-ls + ... +a 1 s+a

0 

such that numerator and denominator have no 
factors in common. The system 

(F,g,h) E Lc
1
'r,co

1
(1R) is uniquely determined ,n, 

up-to-GLn(IR)-equivalence by T(s), so that we can 

(and shall) identify Mc
1
r,col (IR) with the space 
,n, 

of all such rational functions T(s). There is an 
obvious compactification of this space of all 

. . . 2ntm) 1 . . rational functions, viz. lP ""' , rea pro1ect1ve 
space of dimension 2n, which consists of all 
ratios (x

0
:x1: ••• :x2n)' xi EJR, not all xi 

. co cr1m) equal to zero. The embedding \jJ : M
1 

' 
1

i.m ~ 
2 ,n, 

P n(IR) is given by 
ljJ(T(s)) = (b : ••• :b 

1
:a ... :a 

1
:1). The image 

o n- o n-
of ljJ is clearly open and dense. 

In this section we relate this compactification 

of Mco,crOR) to the considerations of section 2 
J ,n, J 

above and we construct the partial compactification 
M OR) mentioned in the introduction. 

l ,n, 1 2 
3.2. Let M

1 1 
OR) be the subspace of 1P n(IR) 

,n, 2n 
consisting of those points (x

0
: ... :x

2
n) EJP OR) 

for which at least one of the x , •.. , xi is 
- n . nd non-zero. To each x E M

1 1 
we associa e ,n, 

the (generalized) transfer function 

n-1 
xn_ 1s + ••. +x

1
s+x

0 

2n 
x2ns + .•• +xn+ls+xn 
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where k = 2n - m if m is the index of the last 
coordinate of x which is nonzero. We write 

k-1 r 
Dx(s) = c

0 
+ c 1s + .•• +ck-ls and Tx(s), the 

reduced transfer function of x, for Tx(s) - Dx(s), 

n n-1 3.3. Lemma. Let T (s) = (s +a 1Cz)s + .•• + 
--- z n-

-1 n-l 
a

1 
(z)s + a

0
(z)) (bn-I (z)s + ••• + b

1 
(z)s + b

0
(z)) 

be a family of transfer functions of systems in 

Lco,cr(IR), Then lim Tz(s) exists pointwise for 
I ,n, I z-+<x> 

infinitely many values of s if and only if 

(i) all limit points of the sequence (x ). , 
- 2b x = tjJ(T (s)), are in M

1 1
QR) cJP QR) 

z z ,n, 

(ii) if x,x' are two limit points of (xz)z then 

Tx(s) = Tx' (s), 

Moreover, if these conditions are fullfilled 
then lim Tz(s) = Tx(s), where x is any limit 

z-+<x> 
point of (x ) • (There always is one because 

2 z z 
lP n(IR) is compact). 

The proof is elementary. First suppose we 
have a (sub)sequence (xz,)z' which converges to 

an element x E 'M1 1(1R). Then, clearly, ,n, 
lim Tz' (s) 
z '-+«> 

Tx(s). Now suppose (xz,)z' is a 

subsequence which converges to an element 

x' E JP
2n(IR) "- M

1 1 
OR), then lim T , (s) = + 00 

.,n, z'~ z 
for all but finitely many values of s, where 
the sign depends on the parity of the index of 
the last coordinate of x' which is non-zero 
and the sign of s. Finally if (x ) has all its 
limit points in M

1 1 
(IR) and th~r~ are limit 

points x' ,x such ,n, that T (s) 1 T , (s) then x x 
lim T (s) cannot exist for infinitely many 

z z-+«> 
values of s because then we would have two 
unequal rational functions which are equal for 
infinitely many values of the argument. 

3.4. Theorem. Let x E M1 1(1R) and let (F,g,h) ,n, 
be any er (n-k)-dirnensional system with 
transferfunction equal to Tr(s), and det(s-F) 
n-k -I n-k-l x -1 

s + x x 
1

s + ••. + x x 2 , where 
~ m- m n 

m = 2n - k is the index of the last coordinate 
of x which is unequal to zero(so that degree 
(D (s)) < k-1). Then there exists a family of 

x -
systems (F ,g ,h) c Lc

1
o,cr

1
0R) such that 

z z z ,n, 



(ii) lim ••<Fz,gz,hz) = x ,_ 

wl'!er@ ~ : L~~~:~(IR) + M~:~~~OR) is the natural 

prnj@ction and ljJ is the embedding of 3.1 aliave. 

(iii) lim Tz(s) = Tx(s) 
z·+«i 

Proof, Let (F ,g , h ) be a family of k dimensional 
z z z 

my.stems in L
1 

k 1 OR) whose input-output behaviour 

' ' converges to the differential operator 

(Theorem 2.3), Then 

d 
Dx(dt) 

f' m ( i\: O) 
1 

g = (gz\ 
1 

h = (h ,h) 
z O F z g/ z z 

has the desired limiting input-output behaviour. 
As in the proof of theorem 2.3 we can change 
(F'z,gz,hz)z to a family of er and co systems 

with the same limit input-output behaviour, 
This proves (i}. To prove (iii) apply (i) 
with u(t) smooth gf bounded support, Then the 
integrals and Dx(dt}u(t) are all Laplace 

transformable and (iii) follows by the continuity 
of the Laplace transform, (Cf. [6], theorem 
8,3,3 and theorem 4.3.1). Finally (ii) follows 
from (iii) because the determinant requirement 
preYatl:it tJiie family ljJn(Fz•Bz'hz) from having 

lll!IJ other Ii.nit point x' ; x with T , (s) = T (s) x x . 
3.5. T'hevrem.. Let (F ,g ,h ) be a family of z z z z 
n-d'imendoma.l systems such that 

converges u:nifomnly in t on bounded t intervals 
for all smll'll't!L input function u(t) of bounded 
support, Then~ tthere exist a k E JN U {O} a 
differe~tial_o1}1urator D of degree< k-l

1

and an 
(n-k)-d1mensianal system (F,g,h) such that 

gu(T)dT 

Proof. Changing (Fz,gz,hz) slightly if necessary 

(as in the proof of theorem 2,3) we can assume 
that (F g h ) € L co, er OR) 

z' z' z 1,n, I for all z. Let u(t) 

~=taU~i~e~ ~ooth bounded support input function. 
s e its Laplace transform. Then 
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£ ~ h e(t-T)Fzg u(T)dT # T (s)U(s) 
z z z 

0 

and the continuity of the Laplace transform 
([6J; theorem 8.3.3) _::nd lennna 3,3 together imply 
that there is an x E M1 10R) such that 

,n, d 
lim T (s) = T (s). Take D = D (~dt) and let 

z x x 
z-+«> 
(F,g,h) be any (n-kf-dimensional system with 
transfer function T (s). Then the statement of the 
theorem follows x because the Laplace tranaf orm 
is injective and continuous. 

3. 6. Theorem 3. 4 says that every point of M 1 1 OH) ,n, 
is system theoretically meaning_ful while theorem 
3. 5 that the compactification M1 1 OR) of ,n, 
Mclo,crlOR) is in a certain sense maximal. ,n, 

4. Compatibility of the compactification M1 1 (IR) ,n, 
with various other (partial) cornpactification_!!_• 

4. I • Campatibili ty with M~0 n 1 OR) and M~r 1 (IR) • 
er ' ' er ,n, 

Let M1 1 OR) be the orbit space L1 1 
OR) I 

,n, ,n, 
GLnOR). This is a differentiable manifold 
· h' t 2n f h' h co er , isomorp ic o lR o w ic M ' OR) is an open 

1,n, I 
submanifold, Cf. [I]. We have the following 
situation 

Mco,crOR) ~ 
I ,n, I Mcr OR) = :m2n 

1,n, I 

Wh r th . d • f . . er 2n 
e e e i ent1 ication M1 OR) "'JR is given 

,n I · 
by associating to (a a b

1 

b ) E lR2n th 
1 '• • •, n' 1 '' •', n , •~ 

GLnOR)-orbit of the er system 

g (~) F =(: o )•h .. Ca 1, .. ,,an) 

I -bl-b2 "' 0 ~~n 
(This is a slightly different "canonical form" 
from the one used in [I J cf e 1 [ ) 
The transfer funr.tion of' thi~ c;g~~s~ei:oia S], 

T(s) = (sn+b I sn-1+ +b s+b )-1 (a n-1 
n- "· 2 I n8 +, .,+ 

a2s+a 1) and we see that the embedding 
Mco,cr OR) -

1,n, I ·+Ml n I OR) naturally extends to an 
er ' ' embedding M OR) + M OR) 

. . 1,n, I I ,n, I • 
Similarly one sees that the inclusion 

Mco,cr OR) -
I, n, I + Ml n I OR) extends uniquely to an 

co ' ' embedding M OR) + M OR) 
1,n, I l ,n, I • 



4.2. ~-· As it happens the images of 

Meo (IR) and Mcr 
1 

(IR) under these natural 
I ,n, I I ,n, 

embeddings are equal. Let this image be Y. Then 
. co er 

the points of Y ' M
1 

' 1 (IR) represent more than ,n, 
one GL (IR)-orbit in 1

1 1 
(IR) (but the n ,n, 

associated differential.operator isc5eE~). It is 
also not true that a point of Y 'M1 ' 1 (1R) ,n, 
corresponds uniquely to a GLk(IR)-orbit of a 
k-dimensional system.for some k < n. Thus, so 
to speak, the same lower dimensional system occurs 
more than once in the edge of Mc

1
o,cr

1
(1R) in Y, ,n, 

Similarly the "generalized systems" with transfer 

functions T (s) = D (s) + Tr(s), x E M
1 1 'Y, 

x x x ,n, 
D (s) ~ O, occur more than once in M

1 1
(1R) iff 

theoretically meaningful in a certain sense, Cf, 
also 4.5 below. 

Similar results hold, of course, for output 
systems (F,H) under the GL (IR)-action 

S -1 -I n 
(F,H) = (SFS ,HS ); i.e. when one forgets inputs, 

4. 5. On the fibres of f: M
1 1 

(!R) + K (IR) and ,n, l,n 
the interpretation of the points of 

K1 OR)' Keir (IR). Let y E K1 QR), y = (y
0

: ... :yn), ,n ,n ,n 
and let k be the index of the last coordinate of y 
which is nonzero, Then the fibre over y of ~ is 
equal to 

--1 -I -I 
cp (y) = {(xo: ... :xn-l:yk-lyo: ... :yk Yk-l:t:O: ... :O)} 

x ,n, 
(denominator degree of Tr(s)) + (degree D (s)) < n. x x 

c: M1 n 1 ORl 
' ' 

4.3. ~...?!J\etting inputs or outputs. In [2] and 
[3] we considered the orbit space structure of 
pairs of matrices (F,G) under the action 

(F,G)S = (SFS- 1,SG), S E GL (IR), Let Icr (IR) 
n m,n 

be the space of all completely reachable pairs 
of matrices (F,G) of sizes nxn, nxm respectively. 

In [2], [:3] we showed that the orbit space 

Ker (IR) = Icr (IR)/GL OR) is a quasi projective 
m,n m,n n 

submanifold of a Grassmann manifold Gn,(n+l)m(IR). 

This gives ~s a natural compactification 

K (IR) of Ker (IR), viz. the closure of Ker (IR) 
m,n m,n m,n 

in the compact manifold G ( 1) OR). n, n+ m 
Specializing now to the case m = 1 we have 

a diagram 

Meo, er (IR) c Ml n I (IR) l ,n, l ' ' 
~ cp 

,_ 
(4 .4) : cp 

~ 
Ker (IR) c K. i OR) I ,n ,n 

where the left-hand vertical map is induced by 
(F,g,h)l-l' (F,g), i.e. by forgetting outputs. 

A quick check shows that under the identification 
er 2n . M
1 1 (IR) "' :JR , used 1n 4. I above and the ,n, 

identification Kclr (IR) =]Rn c:ll'n(IR) " G +l (IR) ,n n,n 
(cf. [2], [3]) the map cp corresponds to the 
projection (a 1,. .. ,an,b 1,. .• ,bn)t-->- {b 1, ... ,bn)' 

restricted to Mc
1
o,crl (IR) c: Meir 

1 
(IR). Thu; we see ,n, ,n, 

that there exists a continuous (and algebraic) 

map ~: M1 1 (IR) + K. 1 (IR), viz. ,n, ,n 
(x0 : x 1: ... :x2n) -> (xn: ... :x2n)' which completes 

the diagram (4.4) commutatively. (I.e. ~ extends 
t!J). Moreover~ is surjective showing that the 

compactification K.
1 

(IR) of Ker (IR) is system 
,n I ,n 

and these points correspond to generalized systems 
with transfer functions of the form 

k-1 
ck-ls +,,,+c 1s+c

0 
D + .....,..k~--:-l~~~k--~l~~~--1~ 

5 +yk Yk-ls + .•. +yk yo 

where D is a differential operator of degree 
< n-k-1. It follows that all points 
- --1 
x E cp (y) c M1 1 (IR) for which D (s) = 0 can be ,n, x 
seen as GLkOR)-orbits of k-dimensional systems 

(F, g,h) for which the. "input system" (F, g) is 
uniquely determined up to GLk(IR)-equivalence. Thus 

the points of K
1 

(IR) ' Keir (!R) can be seen as 
,n ,n 

lower dimensional completely reachable pairs (F,g) 
and we have in fact a stratification 

lPn(lR) = 1Rn U llln-I U ... U 1R U {pt} 

K OR) = Ker OR) U Ker (IR) U ••• U 
l,n J,n l,n-1 
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Ker OR) U Ker (IR) 
I, I I ,o . 

where the single point space. Ker OR) is interpreted 
I ,o 

as the "zero input-system". 

5. Concluding remarks. 

5.1. There are several ways in which the elements 

of K1 (IR) 'Kc1 r (IR) can be directly interpreted ,n ,n 
as limits of er input-systems and also as lower 
dimensional er systems, Some care must be exercised 
when doing this, however. To illustrate one of the 
difficulties involved we here offer the reader the 
following example for re.f lection. Consider 
the two families of input-systems. 



B z 

As z + oo both families converge (as input-systems) , 
The first one to the non-er "input-system" 

l I I (0 ) , (0 2) and the second one to the er input-

systew (:), (b ~). This in spite of the fact that 

(F ,g ) and (F ,g ) are GL 2QR)-equivalent for all 
z z z z 

finite z. There is, however, a "canonical" subspace 

of :JR2 on which the two limit systems agree. This 
is a general phenomenon to which we intend to 
return in a subsequent paper, (Also for the 
more than one input case) , 

5.2. One cannot use realization theory directly 
to prove theorem 2.3. For ins!rnce the 
system of rational functions (s-z) z converges 
to -I as z + 00 , which is the Laplace transform 
of the operator u(t)t-+ i}t) = -u(t), The 
transfer function (s-z) z is realized by the 
one dimensional system g = 1, h = z, f = I. 

t 
But the limit lim J zet-1u(1)dT does not exist 

z+oo o 
for almost all u(t). On the other hand, the 
following is true. Let (Fz,gz,hz) be a family 

of systems with transfer functions Tz(s). 

Suppose that there exists a c E :IB. such that 
Tz(s) has no poles with real part~ c for all z, 

Then lim Tz(s) exists iff 
tz+oo 

Iim J h e(t-1)Fzg u(t)dT exists for all smooth 
z->00 o z z 

input functions with compact support. Half of this 
theorem was proved in 3.5 above. The other half 
is proved using a continuity property of the 
inverse Laplace transform (in the sense of 
distribution theory) when applied to a converging 
sequence of rational functions with the extra 
property just mentioned. 

5.3. The results of sections 2 and 3 above genera 
lize immediately to the case of more inputs and 
more outputs. The proofs remain practically the 
same. E.g. to prove the more dimensional 
analogue of theorem 2.3 one first obtains all 
differential operators of the form 

Ar[!__ , r < n, where A is an pxm matrix with at 
dtr 

most one entry ~ O. Then one takes a direct 
sum of nmp n-dimensional systems to realize 
every differential operatgE

1
of the form 

A0 + A1 ~t + .•• +An-I d n-l as a limit of an 
dt 

n2mp-dimensional system with F-matrices consisting 
of nmp identical diagonal blocks, Now apply 
again decomposition or realization and 
approximation as in 2.3. The arguments and results 
of section 3 above (and also of 5.2 above) 
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generalize in the same manner, The results of 
section 4 above do not generalize as easily. We 
intend to come back to this, to the problems 
indicated in 5,J above,and to questions similar 
to those treated in this paper for discrete 
systems over more general fields than lR(or E), 
in subsequent papers. 
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