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REPRESENTATIONS OF QUIVERS AND MODULI 

OF LINEAR DYNAMICAL SYSTEMS 

Michiel Hazewinkel 

Econometric Inst. Erasmus University 

Rotterdam, The Netherlands 

1. PREFACE 

This note is the written version of the part which 

is not covered by [15] and [16] (cf. also [12], [13], 

[14], and [3] of the talks I gave at the Ames conference 

in June/July 1976. The main purpose of this part of the 

talks was to acquaint engineers and applied mathematicians 

with the fact that some of the problems they have been 

studying in (algebraic) system theory and identification 

theory are identical (or at least very similar to) a cer

tain set of problems studied by algebraists belonging 

to representation theory or linear algebra (de.pending on 

one's taste and judgement) viz. the theory of representa

tions of "quivers." Inversely it may be of interest to 

the algebraists that the two quivers for which results 

have been obtained in algebraic system theory are both of 

Wild type. 
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2. QUIVERS AM?: THEIR REPRESENTATIONS 

2.1, Definition 

A quiver is a finite connected directed graph. 

i.e. a quiver Q consists of a finite set PQ of points and 

a finite set AQ of arrows between points of PQ. Loops 

are allowed and also multiple arrows between the same 

points. 

2.2 Some examples of quivers are 

n .~. 
(J 

~ 

• .__;ii ·~. --ll>. ·~· 
(a) (b) (c) (d) 

Q 
Q • • .--.::. /' '::.. ~ ·-· ·~· --"' • +---. 

(e) (f) (g) (h) 

2.3 Definitions 

A reEresentation v over a field K of a quiver Q 

assigns to each P E PQ a vector space V(P) and to each 

arrow a E AQ a vector space homomorphism V(a) :V(s (a)) + 

V(r(a)) where a is an arrow from s(a)EPQ to r(a)EPQ. The 

zero representation assigns to each PEPQ the zero vector 

space. Given two representations v1 .and v2 their direct 
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sum v1 e v2 assigns to each PE:PQ the vector space V1(P) e 

V 2(P) and to each arrow aE:AQ the direct· sum homomorphism 

V1(a) e v2(a). A representation V is called indecomEos-

able if it cannot be written as a direct sum V = v1 e v2 

with v1 and v2 both unequal to the zero representation. 

Given a representation V a subrepresentation W consists 

of subspaces W(P) c V(P) for all PE:PQ such that 

V(a)(W)(s(a)) c W{r(a)) for all aE:AQ. A representation 

V is called irreducible if it has no other subrepresenta

tions than itself and the zero representation. Finally 

two representations V, W are said to be isomorphic if 

there are isomorphisms ~(P) : V(P) + W(P) for every P£PQ 

such that the following diagram commutes for all a£~. 

V(a) 
V(s(a)) ---- V(r(a)) 

j ~(s{a)) j ~(r(a); 
W(a) 

W(s(a)) W(r(a)) 

2.4 The general problem is now: given a quiver, 

describe all isomorphism classes of (indecomposable) 

representations. 

In the case of the quiver 2.2(a) above this is 

the familiar linear algebra problem of classifying 

square matrices up to similarity. The indecomposable 
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representations are precisely those which have one Jordan 

block. 
• In the case of example 2.2(b) a representation con~ 

sists of two matrices (A,B), and a second representation 

(C,D) is isomorphic to (A,B) if there are invertible 

matrices S, T such that C = SAT, D = SBT. Writing 

A+ sB and C + sD for (A,B) and (C,D), where s is an in

determinate we see that the study of isomorphism classes 

of representations of the quiver 2.2(b) is the same as the 

study of pencils of matrices in the sense of Kronecker, 

who also solved this problem. 

Similarly quiver 2.2(g) concerns the study of two 

dimensional pencils A + sB + tC. (These turn up when one 

studies control systems with delays.) 

To conclude this section let us remark that quiver 

2.2(c) is the study of pairs of matrices under simultane

ous similarity a problem which has been around for some 

150 years (and is still unsolved). 

2.5 A special quiver from system theory 

. 
A linear dynamical system x = Fx + Gu,y = Hx 

or xt+I = Fxt + Gut• yt = Hxt (discrete case) gives rise 

to a triple of matrices (F,G,H) with coefficients in!• 

C in the contimaous case or in any field (or ring for 

that matter) in the discrete case. Base change in all 
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three of the spaces involved (input space, state space, 

output space) changes the triple (F,G,H) into (T2FTz1 • 
-1 -1 T2GT1 ,T3HT2 ) where the Ti, i ~ 1,2,3, are invert-

ible matrices of the appropriate sizes. 

In other words the study of linear dynamical sys

tems under base change in input space, state space and 

output space is the same as the study of the representa

tions up to isomorphism of the quiver 

•---?. ~· 

which is the quiver Z.Z(c). If one neglects outputs one 

obtains instead the quiver Z.Z(f). 

For a description of some of the results obtained 

recently for these quivers cf. section 4 below. 

3. GABRIELS THEOREM AND ITS RELATIVES 

One of the really beautiful results in the theory 

of representations of quivers (and also the result which 

started the business) is Gabriel's theorem which describes 

all quivers which have--up to isomorphism--only finitely 

many indecomposables representations. First a definition. 
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3.1 Definitions 

A quiver Q is of finite type if there exist up to 

isomorphism only finitely many indecomposable representa

tions; the quiver Q is tame if there are infinitely many 

isomorphism classes of indecomposable representations 

but these classes can be parametrized by a finite set of 

integers together with an irreducible polynomial (over 

the field k one happens to work over); the quiver Q is 

wild if given a finite dimensional k-algebra E there are 

infinitely many pair-wise non-isomorphic representations 

of Q with endomorphism algebra isomorphic to E. 

These classes of quivers are clearly exclusive. 

They are also, as it turns out, exhaustive. 

3.Z Gabriel's theorem 

The quivers of finite type are those whose underM 

lying undirected graph is of one of th~ following type~ 

A : - n>l n 
l 2 n 

D : ~>.--. -- n>4 
n n 

E6: • I 
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• • I • • 

• • I • • 

It is not an accident that the graphs above are Dynkin 

diagrams. For deatils cf. [7] and [1] and also [4] for 

where and how the other Dynkin diagrams fit. 

3.3 Nazarova [18] has similarly described all 

quivers which are tame. These have as underlying undir

ected graphs one of the following extended Dynkin dia-

grams. 

,.. 
A - n >O n 0 l n 

,.. 

~>- <:+l Dn n>4 

E6: • 

I • • 

• I • 
E7: 

Eg: • I 
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3.4 All other quivers are wild. So that in parti

cular the quivers of algebraic system theory 2.2(c) and 

2.2(f) are wild. Also wild are the quivers Z.Z(g) and 

2.2(e). The quivers 2.2(a), 2.2(b), 2.2(d) and 2.2(h) 

are all tame. 

3.5 The quadratic form of a quiver 

Let Q be a quiver. We attach to Q a quadratic form 

in as many variables XP as there are elements in PQ. The 

quadratic form is 

K ( ••• , Xp, ••• ) 

Thus e.g. if Q is of type A4 we find a form 

It now turns out that a quiver is respectively of finite 

type, tame or wild if this quadratic form KQ is respec

tively positive definite, positive semidefinite, indefin

ite. 

4. ON THE QUIVER~ OF (ALGEBRAIC) LINEAR SYSTEM THEORY 

We now return to the quiver 2.Z(c) of linear system 

theory. Cf. also 2.5 above. The quiver in question is 



285 

(2 
(QL) • - • --+• 

1 2 3 

4.1 A representation of this quiver with dim 

V(l) = m, dim V(2) = n, dim V(3) = P is a linear dynami

cal system with m .inputs, p outputs and state space dimen-

sion n. Let L n p(k) be the space of all representations 
m, ' 

over the field k with these dimensions. The group G(k) • 

GLm(k) x GLn(k) x GLP(k) acts on Lm,m,p(k) as ((T1 ,T2,T3), 
+ -1 -1 (F,G,H)) (T2FT2 ,T2GT2 ,T3HT2 ) and the isomorphism 

classes of representations correspond bijectively to the 

elements of the quotient set L n p(k)/G(k). 
m, ' 

Now most of the results which have been obtained 

recently are not about L (k)/G(k) but the equally m,n,p 
interesting related quotient Lm,n,p(k)/GLn(k) where GLn(k) 

is the subgroup 1 x GLn(k) x l of G(k). This corresponds 

to a finer notion of isomorphism (more isomorphism 

classes); viz. two representations V, W of (QL) are iso

morphic in the fine sense if there is an isomorphism 

w : V + W such that w(l) = id, w(3) • id. For later pur

poses we define the corresponding notions: a fine sub

representation of a representation V of {QL) is a sub-

representation W such that W{l) • V(l) and V(3) • W(3) 
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and we say that V is finely irreducible if the only fine 

subrepresentation of V is V itself. 

4.2 Complete reachability 

Recall that a triple (F,G,H) £ L p(k) is com-m,n, 

pletely reachable if and only if the space spanned by the 

columns of the matrices G,FG, ••• FnG is all of kn= state 

space. Thus we see that a representation V (F,G,H) of 

(QL) is completely reachable if and only if it is finely 

irreducible. 

4.3 Some results on Lcr (k)/GL (k) 
m,n,p · n 

Let Lcr (k) be the subspace of all completely 
m,n,p 

reachable triples (F,G,H). First suppose that k is an 

algebraically closed field. Then one has: 

4.3.1 Lcrn p(k)/GL (k) is a connected nonsingular 
m, • n 

algebraic variety over k of dimension np + mn. 

Let us write Mcr (k) for this variety. 
m,n,p . 

4.3.2 Mcr (k) = An+np ff· k f l,n,p =k a 1ne space over o 

dimension n + np. 

4.3.3 If m > 2 then Mcr (k) is cohomologically m,n,p 
nontrivial. 

(For these and many related results cf. [12], [13], [14], 

[15], [16] and [3].) 
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In the special case k = R one has that Mcr (R) = m,n,p -
is a smooth noncompact differentiable manifold diffeomor-

h · to Rn +np ·1· f m = 1 d h 1 · 11 · p J.c an co omo ogica y nontrivial 

if m > 2. 

In terms of representations of the quiver (QL) 

4.3.1 says c.q. that every fine class of finely irreduc

ible representations of dimensions (m,n,p) can be continu

ously deformed into any other fine class. In particular 

there are mn + np "moduli" for these classes of repre

sentations, which, of course, is not unexpected given that 

(QL) is of wild type. 
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MODULI AND CANONICAL FORMS FOR LINEAR DYN.Af.fICAL 

SYSTEMS, III: THE ALGEBRAIC-GEOMETRIC CASE 

Michiel Hazewinkel 

Erasmus University 

Rotterdam, The Netherlands 

1, INTRODUCTION 

In this paper we treat the algebraic-geometric ver

sion of the topological theory developed in [3]. That 

is we study linear dynamical systems over an algebrai-

cally closed field k 

(1.1) 

where F,G,H are matrices with coefficients in k of the 

appropriate sizes. A change of basis in state space 

changes the triple of matrices (F,G,H) into (TFT-1 ,TG, 

HT- 1) and as in [3] we are interested in such questions 

as the following. 

Does the set of orbits under this action have a 

(natural) structure of an algebraic variety? Do there 

exist continuous canonical forms? Similar questions for 

291 
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the case of two matrices were studied and answered in (l], 

cf. also [2] • 
• Essentially the answers are as in [3]. This paper 

used a moderate amount of algebraic geometry (nothing 

much beyond definitions). Appendices 1, 2 and 3 of [1] 

provide sufficient background information for this paper. 

(Related results, usually couched in more sophisticated 

algebraic-geometric language can be found in [7].) All 

schemes in this paper will be reduced and of finite type 

over k, and we shall identify them with their associated 

algebraic varieties of closed points. We use Ar to denote 

affine space of dimension r over k, and we give the space 

of all triples of matrices (F,G,H) of dimension n x n, 

n x m, p x n respectively, the algebraic variety struc

ture of An(n+m+p). Let L p denote this algebraic m,n, 
variety. 

Then the assignment 

(T,(F,G,H)) + (TFT- 1 ,TG,HT-l) T (F,G,H) (1. 2) 

defines an action of the algebraic group GLn of invert

ible n x n matrices with coefficients in k on L 
m,n,p 

Cf. (I] Appendix 2. We can now define what a continuous 

algebraic canonical form on a subvariety L' c Lm,n,p would 

be. 
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1.3. Definition 

A continuous algebraic canonical form on L' is an 

algebraic morphism c: L' n L' such that 

for every (F,G,H) E L' there is a T E GLn such 

that (F,G,H)T = c(F,G,H) (1.3.1) 

c(F,G,H) = c(F,G,H) iff there is a T E GLn such 
T that (F,G,H) (F,G,H) (1. 3. 2) 

Again, as in [3], we have that continuous algebraic 

canonical forms on all of L cannot exist for trivial m,n,p 
reasons. ("Jump phenomena"). The conditions "completely 

reachable," "completely observable," "rank of G maximal 

and rank of H maximal and completely reachable and com-

pletely observable" all define open subvarieties of L m,n,p 
which we shall denote with Lmcrn p' Lmco p' LP , , ,n, m,n,p 
respectively. In addition, we consider the condition 

"Fis diagonalizable (i.e. sem1simple) with distinct 

eigenvalues all different from zero" which defines a 

(non-open) subvariety Lµ p of L p" Combining dif-m,n, m,n, 
ferent attributes we have the following list of (possibly 

interesting) subvarieties of L n p· m, • 

1.4. List of subvarieties 

1cr 
m,n,p' 

1 co , 1cr,co 
m,n,p m,n,p 

Lcr n Leo Lµ 
m,n,p m,n,p' m,n,p 
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Lcr,co,µ 
m,n,p 

n Lcr,co LP • Lp,µ 
,n,p m,n,p' m,n,p m,n,p 

LP n Lµ 
m,n,p m,n,p 

All these subvarieties of Lm,n,p are GLn-invariant. 

now have the following theorem. 

1.5. Theorem 

We 

The following table gives necessary and sufficient 

conditions for the existence of continuous algebraic 

canonical forms on various subvarieties of L m,n,p 

necessary and suff1c1ent con- l 
variety L' dition for the existence of an I 

algebraic continuous canonical 
form 

-·~·-·-· 

(i) L' = 1cr 
m,n,p m=l 

(ii) L' = 1co p=l m,n,p 

(iii) L' = 1cr,co 
m,n,p m=l or p=l 

(iv) L' = 1cr,co,µ 
m,n,p m=l or p=l 

(v) L' = LP ffi" l m,n,p or p=l or m=n or p=n 

I (vi) L' = Lp,µ 
m,n,p m=l or p=l or m=n or p=n 

_____ J 

This theorem is "identical" with theorem 1. 7 of [3]. The 

proof is similar in spirit but different in details. 

There is of course also a corollary similar to corol

lary 1.8 of [3]. We shall see that the "orbit space" 
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Lcr /GL has the structure of a quasi-projective alge-m,n,p n 
braic variety and its open subvariety Lcr,co/GL is in · m,n,p n 
fact a quasi-affine algebraic variety. Let Mcr denote m,n,p 
this algebraic variety. Then we shall also see that 

Mcr is a fine moduli variety for a suitable definition m,n,p 
of (algebraic) families of linear dynamical systems. 

As we said the field k we work over is supposed to 

be algebraically ciosed. This is mainly a matter of con-

venience: the varieties Lcr,co Lcr L Mcr,co 
m,n,p' m,n,p m:n,p' -lll.n;~' 

Mcr MP 
'm,n,p• m,n,p 

··-----·--. -~ -----
a:re an de:O.-Iied over any field k; in fact 

they are even defined over ~- This also explains our 
. c;.r---··-··-····-· 

notatH'J!.--M (lR), etc. of [3]: the underlying sets of ___ .--··--·-· m, n , p 

these real manifolds are simply the real points of the 

variety Mcr , etc. However, some care must be taken m,n,p 
in interpreting the results of e.g. part (iii) of thec~em 

1.5 in this context. 

Consider e.g. the following situation: let k be a 

finite field; let Lcr,co(k) be the set of all k rational m,n,p 
points of Lcr,co, i.e. the set of all completely reachable m,n,p 
and completely controllable triples of matrices with 

coefficients ink; let GLn(k) be the group of n x n 
. er co matrices with coefficients in k acting on Lm ~ p(k) in , . . 

the abvious way. Then part (iii) of theorem 1.5 does not 

say that there is no map Lcr,co(k) ~ Lcr,co(k) (locally) m,n,p m,n,p 
given by polynomials such that the analogues of (1.3.1) 
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and (l.3.2) hold. E.g. such a map always exists when k 

is F 2, the field of two elements. But part (iii) of 

theorem i.s does say that the map Lcr,co(K) + Lcr,co(K) m,n,p m,n,p 

defined by the same polynomials, does not satisfy the 

analogues of (1.3.1) and (1.3.2). Here K is the ~lge-

braic closure of k. 

A large part of the proofs and constructions of [3) 

can be carried through unchanged in the algebraic geo

metric case. In these cases we shall as a rule simply 

refer to the appropriate section of [3]. 

The contents of the paper are: 

1. Introduction and Statement of some of the Results 

2. The Quotient Variety Mcr • m,n,p 

3. 

2.1. Nice Selections 

2.2. The Local Quotients U /GL 
a n 

2.3. The Quotient Variety Mcr 
m,n,p 

2.4. Some Realization Theory 

2.5. Equations for Mcr,co. 
m,n,p 

2.6. The Algebraic Principal Fibre Bundle ~= 

2.7. 

The 

3.1. 

1cr ~ Mcr 
m,n,p m,n,p 

The Codimension of (Mcr \Mcr,co) in 
m,n,p m,n,p 

Mcr • 
m,n,p 

Fine Moduli Variety Mcr 
m,n,p 

Families of Linear Dynamical Systems 

3.2. The Universal Family Lu over Mcr 
m,n,p 
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4. Existence and Nonexistence of Algebraic Continu

ous Canonical Forms 

4.1. Triviality of Eu and Existence of Continu

ous Algebraic Canonical Forms 

4.2. Duality 

4.3. Example of a Nontrivial Algebraic Line 

Bundle 

4.4. 

4.5. 

4.6. 

Examples 

An embedding X + Mcr m,n,p 
Nonexistence of Continuous Algebraic Canon-

ical Forms 

4.7. On relations between Various Local Canoni-

cal Forms 

2. THE QUOTIENT VARIETY M~:n,p 

2.1. Nice Selections 

Let (F,G,H) £ Lm n p· The matrices R(F,G) and Q(F,H) 
• • 

are defined as in [3], 2.2. The conditions "R(F,G) has 

rank n" i.e. "complete observability" define open subvari-

ties of L which we denote by Lcr , Leo ~espec-m,n,p m,n,p m,n,p 
tively. 

In addition we put L~:~~~ = L~:n,p Leo which m,n,p 
is also an open subvariety of Lm,n,p' As in [3], 2.3 we 
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let J denote the set of column indices of R(F,G). Nice 
n,• 

selections a(froa Jn,m) and the successor indices s(a,j), 

j • l; ••• ,a of the nice selection a are defined as in [3], 

2.3. We again have (c.f. [l] 2.4.l for a proof). 

2.1.1. ~ 

er h . If (F,G,H) E Lm,n,p' then t ere is a nice selection 

such that det(R(F,G)a ; O. 

2.2. The Local Quotients Ua/GLn. 

Let a be a nice selection. One defines the subvarie
cr ties of L 11 n p , . 

ua •'{(F,G,H) EL n·pldet(R(F,G) ) ; 0} m, , a (2.2.1) 

(2.2.2) 

The map •a of [3], 2.4.S now defines an isomorphism of 

algebraic varieties 

•a: .f!nm+np ~ W 

We define a morphism t : U + GL xW 
a a n a 

2. 2. S. Le111111a 

(2.2.3) 

R(F,G)~l 

(2.2.4) 

ta is a GLn-invariant isomorphism of algebraic 
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varieties (where GLn acts on GLn x Wa by left multiplica

tion on the left hand factor.) 

2.2.6. Corollary 

The (categorial) quotients U /GL exist (as algea n 
braic varieties) and are isomorphic to the affine space 
Anm+np. 

This follows from 2.5.5 and the isomorphism~ • a 
For the notion of categorical quotient cf. [l] A.2. 7. 

As a matter of fact Ua/GLn is also a geometric quotient 

in the sense of [6]; we shall not need this fact. 

2. 3. The Quotient Variety Mcr m,n,p 

We are now going to define a quotient prevariety 
Mcr 
m,n,p by gluing the local quotients Ua/GLn together in 

suitable way. For each nice selection a let V = Amn+np 
a 

and for each second nice selection S let V aB be the open 

subvariety Va 8 We define <l>as : Vas ~ 

v8a by the formula (identical of (3], (2.5.4)). 

T $a 6(x) = y ...... (Fa(x),Ga(x),Ha(x)) = (F 6(y),G8(y),H8 (y)) 

(2.3.1) 

where we have written ~a(x) = (Fa(x),Ga(x),Ha(x)) Ewa 

and similarly for ljl 8(y). These <Pas are well defined and 

define isomorphisms of algebraic varieties Vas ~Vea• 
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which moreover 5atisfy the cocycle condition ~By~aB = ~ay 

whenever the left hand side is defined. This means that 

by gluing together the various Va by means of the ~as we 

obtain a certain prevariety which we shall denote Mcr • rn,n,p 
To prove that Mcr is an (abstract) variety we have to m,n,p 
prove that it is separated. This can either be done by 

using the algebraic geometric version of [3], 2.5.7 or by 

means an embedding argument. To carry this embedding argu

ment through we first observe. 

2. 3. 2. Lemma 

The natural projections rra: U + V combine to define a a 
an algebraic morphism rr:Lcr p + Mcr and rr is a cate-m,n, m,n_,p' 
gorical quotient in the category of prevarieties for the 

action of GLn on Lcr defined by (1.2). m,n,p 

Proof. It is obvious that rr: Lcr m,n,p 
-+ Mcr 

m,n,p kills 

the action of GL • Now let $:Lcr + X be n n,n,p any morphism 

which kills the action of GL • Let U - U n U n a8 - a 8 • Then 

we know that U0 -+ V0 and UaB + v08 are categorical quo

tients by 2.2.6. Let ~ be the restriction of $ to U • a a 
By the categorical quotient property of U -+ V there are 

Cl Cl 

unique morphisms x : V + X such that $ = x rr • Because 
Cl Cl Cl Cl Cl 

U08 + Vas are categorical quotients we also know that 

x8~a 8 (x) = x._(x) for x ~ VaB' where $aB is as in (2.3.1). 

It follows that the Xa combine to define a morphism 
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x: Mc:r ..,. X such that ;.i "' xn , The morphism x is unique m,n,p 

because on each Va it must equal x . 0:. 

same proof was used fo!" r • 3,2 14. 

··m n,,p 

h(F,G,H) "' 

This defines a morphism h: 

kills the action of GLn. 

Restricting to 

obtain an induced morphism 

Es sent 

Q(P,H)R(F~G) 

, which certainly 

? 
~pm 

Let Lcr be the algebraic variety of all pairs of matrices m.n 
(F .G} of sizes n x n and n '.'( m. In [1] we constructed a 

morphism g ~ L ci· ..... 8 '· 1 .., which ki 1 Js the act ion of m,n n,t,1+ ;m 
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GLn on Lcr where G ) is the Grassmann variety 
m,n,• n,(n+l m 

of n-planes in (n+l)m space; g assigns to (F,G) the point 

of Gn(n+l)m corresponding to the rank n matrix R(F,G) of 

· size nx(n+l)m. We proved that the quotient variety M m,n 

= Lcr /GL exists and that g induces an embedding 
m,n n 

g: f.\a,n + Gn,(n+l)m· Cf. [l] Theorem 3.2.13 and proposi-

tion 3.2.14. Now let g': L~:n,p + Gn,(n+l)m be the com

posed morphism (F,G,H) + (F,G) .... g(F,G). This morphism 

kills the action of GL and hence induces a morphism 
n 

~: Mcr .... G 
m,n,p n,(n+l)m (2.3.S) 

From the remarks made above we know that if (F,G,H), 

(F' G' H') (F' G' H') £ Lcr are such that g'(F G H) 
' • ' ' m,n ,p ' ' 

= g'(F,G,H) then there is a T £ GL such that (F,G)T = 
n 

(F' 'G) • 

2.3.4 An embedding Mcr .... G ( l) x Ar 
m,n,p n, n+ m . = 

The morphisms h,g of (2.3.4) and (2.3.5) together 

define a morphism 

(2.3.6) 

We claim that i is injective. Indeed if (F,G,H), (F,G,H) 

£ L~:n,p are such that h(F,G,H) = h(F,G,H) and g' (F,G,H) 

g'(F,G,H), then we know that there is a T £ GL such 
n 

that (F,G)T = (F,G) i.e. TR(F,G) = R(F,G), and then because 

h(F,GH) = h(F,~,H) we have in particular HR(F,G) = HR(F,~) 
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R(F,G) has rank n. This concludes the proof that i is 

injective. 

2.3. S. Corollary 

303 

The prevariety Mcr is separated, i.e. Mcr is rn,n,p m,n,p 
a variety. 

2.3. 6. Corollary 

L er + Mcr is a quotient for the action of GLn m,n,p m,n,p 
Lcr . h on m in t e category of algebraic varieties. In ,n,p 

fact Mcr is also a geometric quotient in the sense of m,n,p 

[6], but we shall not need this. 

2.3.7 •. 

Let vco ip-l(W n Lcr,co) and yco = vco n v • Then a a a m,n,p aB a aB 

the <Pas: VaB .... v 8a induce isomorphisms<!>~~: V~~ ... y~~-
. Gluing together the v~0 by means of the <!>~~ we obtain an 

open subvariety Mcr ,co of Mcr which is the image of m,n,p m,n,p 
Lcr,co under n:Lcr + Mcr • It follows that the m,n,p m,n,p m,n,p 
· . co er co er co induced morphism n : L ' + M ' is also a ea te-m,n,p m,n,p 
gorical quotient. 

2.3.8. 

Similarly, using VP a 
,,, - l (W n L P ) 
"'a a rn,n,p • 
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yl1P .... - 1 (W n LSJ ) vl.lP • ,,,-l (W 11 Lµ,p ) and the 
a Ya a •,n,p ' a ~a a m,n,p 

corresponding v-a we obtain categorical quotients Lmp n a,., , ,p 
+ MP , Lµ + Mµ , Lp,µ Mp,µ where the 

a,n,p m,n,p m,n,p m,n,p m,n,p 
M"" are subvarieties of Mcr • m,n,p m,n,p 

2.4. Some Realization Theory 

The morphism n of (2.3.4) above induces a morphism 
"" h: Mcr,co + Ar. It is the purpose of this and the follow-· -111,n,p - . ,... 
ing subsection to show that h is injective and to derive 

equations for the subvariety h(Mcr,co) c ~r. To do this m,n,p 
we use some (partial) realization theory an embodied by 

proposition 2.4.3,below. First a definition 

2.4.1. Definition 

Let A0 ,A1 , ••• be a sequence of p x m matrices. Then 

hq,r(A) denotes the block Hankel matrix 
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indices of A, and ar is a subset of the row indices of 

A, then we define 

A 
ac 

A 
ar 

matrix obtained from 

index is not in a c 
matrix obtained from 

index is not in a· 
r 

A by removing all columns whose 

A by removing all rows whose 

matrix obtained from A by removing all rows and 

columns whose indices are not in ar, ac respec

tively. 

2.4.3. Proposition 

Let A0 ,A1 , ••• ,Azn-l be a sequence of Zn matrices 

with coefficients in k, all of size p x m, and suppose 

that 

= n. 

rank(h 1 1 (A)) = rank(h 1 (A)) = rank(h 1 (A) n- ,n- n,n- n- ,n 

Then there exists an (F,G,H) € Lcr,co such that m,n,p 

HFiG =A. for i = 0,1, ••• ,Zn-l. 
]. 

Moreover, if (F,G,H) € L~r~cpo is a second triple such , . 
that -irr HF u =Ai for i = O,l, ••• ,2n-l then there is a 

T € GLn such that (F,G,H) T 
(F ,G,H) • 

Proof. Existence of a triple (F,G,H) £ L such m,n,p 

that 

i"' o, ..• ,2n-l (2.4.4) 

holds is assured by the realizability criterion 11.32 of 
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Chapter 10 of [4]. We define 

n-1 
~(F,G) = (G,FG ••• F G), 

Q(F,H)' .. (H'F'H' ••• (F')n-lH') (2.4.S) 

Then it follows from (2.4.3) that Q(F,H)R(F,H) 

hn-l,n-l(A). Now we have rank (R(F,G)). .::_ n, 

rank(Q(F,H)) < n and rank(hn-l,n-l(A)) = n. It follows 

that rank(R(F,G)) = rank(Q(F,H)) = n, so that (F,G,H) 

£ 1cr,co. 
m,n,p 

such that 

Not let (F,~,H) be a second triple in 

HFiG =Ai' i = O,l, ••• ,2n-l 

Then as above we find Q(F,H)R(F,G) hn-1,n-l(A). 

L m,n,p 

(2. 4.6) 

Now 

because ~(F,G) has rank n there is a subset ac of size n 

of the column indices of R(F,G) such that R(F,G)a is 
c 

invertible; further because Q(F,H) has rank n there is a 

subset ar of size n of the row indices of Q(F,H) such 

that Q(F,H) is invertible. We have 
r 

= 
(2.4.7) 

so that it follows that all five n x n matrices occurring 

in (2.4.7) are invertible. 

Now let 
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(Fl,Gl,Hl) 
T (F,G,H) , where T = Q(F,H)a (2.4.8) 

T 

(F1,G1,H1) ---T where 'f = Q(F,H)ar = (F,G,H) , (2.4.9) 

Then we have of course 

0, ••• , 2n- l (2.4.10) 

which means 

hn-1 .. n (A) 

(2.4.11) 

and moreover because 

we have 

(2.4.12) 

Now combine (2,4.12) and (2.4.11) to obtain that R(F1 ,G1) 

= R(F1 ,G1) which be corollary 2.4.2 of [l] means that 

F1 = F1 and G1 = G1 . and because R(F ,G) = R(F ,G) has 

rank n, it follows from (2.4.11) that also H1 = H1• We 

therefore have (F,G,H)T = (F1 ,G1 ,H1) = (F1 ,G1 ,H1) = 

(F,G,H) 1 , which proves the second statement of the 

proposition. 

2. 4. 4. Corollary 

,.. 
The morphism h: Mcr,co + ~r of (2.3.4) above is m,n,p 

injective. 
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2.5. Equations for Mcrn,cpo 
m, • 

MICHIEL HAZEWINKEL 

,.. 
By means of the injective morphism h we can now con-

' 
Sider Mcr,co as a subvariety of ar, r ·111,n,p (n+l) 2pm, where 

we write x E ar as an (n+l)n x {n+l)m matrix. We now 

consider the following sets of polynomials in the coordi
r nates of a . 

Pa(x): these polynomials are such that Pa(x) = 0 

for all a if and only if' the matrix x is of block 

Hankel type (cf. 2.4.1) with the blocks of size 

p x m. (2.5.1) 

Qb(x): here Qb(x) runs through all determinants 

of (n+l) x (n+l) submatrices of x. (2.5.2) 

Rc(x): here Rc(x) runs through all determinants 

of n x n submatrices of the submatrix x' of x 

which is obtained by removing the last p rows 

and the last m columns. 

2. 5. 4. Lemma 

L CF G H) Lcr, co _ r 
et • ' E m n p' x - h(F,G,H) £a . Then we . ' 

have Pa(x) = 0 for all a, Qb(x) = O for all b and there 

is a c such that Rc(x) f O. 

Proof. Obvious because h(F,G,H) Q(F,H)R(F,G). 
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2.5.5. Proposition 

h(Mcr,co) f::..r is the subvariety consisting of those m,n,p 

x e: h. r such that Pa (x) 0 for all a, Qb (x) .. 0 for all 

b and such that these is a c such that Rc(x) 1 O. 

Proof. Because of lemma 2.5.4 we only have to show 

that if x e: As satisfies Pa(x) = 0 all a, Qb(x) = 0 all 

b and Rc(x) 1 0 for some c, then x is in h(Mcr,co). m,n,p 
Wr1te x as a block Hankel matrix 

Al Az 

x .. 
Az 

. . . 
An 

This can be done because Pa(x) = 0 for all a. Cf. 2.5.1. 

Then the matrices A1 , ••• ,A2n-l satisfy the conditions of 

proposition 2.4.3 so that there is a triple (F,G,H) E 

Lcr,co such that HFiG .. A. for i = 0,1,2, ••• ,zn-l. To 
m,n,p i 

show that h(F,G,H) = x it therefore only remains to show 

that HF 2nG = Azn· This follows from lemma 2.5.6 below. 

2.5.6 Lemma 

Let E,E' be two partitioned matrices 
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E= [~] E' 

and suppose that rank(E) rank(E') rank(A). Then 

D = D' • 

Proof. Let d be an element of D and d' the corre-

sponding element of D'. Let A' be an n x n submatrix of 

A such that det(A') r 0 where n = rank(A). Suppose A' = 

E , then· also A' = E' • Let f3 = a u {i} where 
ar,ac o.r,ac r r 

i is the index of the row in E containing d (and of the 

row in E' containing d') and f3c =a u {j} where j is the 
C· 

index of the column in E containing d (and of the column 

in E' containing d'). Then we have det (E 8 f3 ) = 0 "' 
r' c 

det(EB B ). All elements of E and E' except 
Sr, Sc f\,Sc r' c 

possibly the one in the right hand lower corner are equal 

and det(A') ~ O. It follows that d = d'. (By expanding 

the determinants along the last row e.g.). 

2.S.7. Corollary (of proposition 2.5.S.) 

Mcr,co is a quasiaffine variety. 
m,n,p 

z.s.s. 

Using similar arguments as above combined with those 

used in [l] to find equations for the variety M (cf. m,n 
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[l] section 3.2), it is not difficult to find equations 

for the variety M~:n,p (as a subvariety of 
r' r or as a subvariety of~ x a • where r' = 

G x Ar 
n,(n+l)m -

((n+l)m) -l). 
n 

Mcr is a quasiprojective variety but not a quasi m,n,p 
affine variety if m > 1. This last statement is seen as 

follows. The embedding Lcr + Lcr given by (FG) + m,n,p m,n,p 
(F,G,O) where 0 is zero catrix of appropriate size, 

induces an embedding M + Mcr • Now according to [l] m,n rn,n,p 
section 3.3-there is an embedding ~l + M • Combining m,n 
these we find an embedding P1 + Mcr which shows that - m,n,p 
Mcr is not quasi affine. (Cf. also the proof of m,n,p 
theorem 3.4.6 in [l]). 

2.6 The Algebraic Principal Fiber Bundle 

~: Lcr + Mcr • As in [3] we can now show that m,n,p m,n,p 
1cr 
m,n,p + Mcr is an algebraic principal GLn fibre bundle m,n,p 

over the variety Mcr , and we could use an analysis m,n,p 
of the nontriviality or triviality of this bundle to 

prove nonexistence and existence of algebraic continuous 

canonical forms. This can be done almost exactly as in 

[3] section 3 except that one has to construct a different 

example because the example of [3], section 3.2 is essen

tially nonalgebraic. Cf. also section 4.1 below for 

further comments. In this paper, however, we shall first 



d:l.>cuss the fine moduli va·,· ,~:~;r prop'.''.·t:;.1;Vi o·Z Mn· . and m.,n,p 

·~en us3 these to i4vest5g~~~ the exis~ence ~i continuous 

T".he ::~vo 

valent bn~au~e the unde=-

be the defhled by the 

~quations det(Q(F,H))S) • 0 f0r all suh~ets of size n of 

:he row indices of Q(F 1 

K m,n,p 

i.. e. 

(2.7.1) 

We want to find out someth'..,ig about the codimension of the 

closed subvariety Km n p 0f Mcr The result is: • , "m,n,p" 

2,7,2. ~reposition 

The codimension of KnL,n,~:> 

it is > p if p ~ 2. 

is l if p l and 

To prove proposition 2. 7,2 we use the following corn-
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2.7.3 Lemma 

Let X = {a1 , ••• ,an} be a finite set of n elements. 

Let X0 be a subset of X and cr:X0 + X an injective map with 

the following property 

If Y cX0 then cr(Y) (f. Y unless Y = X0 = X. (2.7.2) 

Then there exists a cyclic permutation ~:X + X of order n 
'\, 

such that cr(a) = cr(a) for all a E X0 • 

Proof. If X0 = X then condition (2.7.4) says that 

a is already a cyclic permutation of order n. We can 

therefore assume that X0 1 X. We are going to show that 

there is b E X \ X0 and an injective map cr1 : x1 + x with 

x = x 1 0 
u {b} and cr1 (a) = cr (a) for a E x 

0 
such that 

(2.7.4) holds with X0 replaced by x1 • By induction (with 

respect to the number of elements in X \ X0 ) this proves 

the lemma. Because X0 1 X there is an a1 E X which is not 

in the image of cr. If a 1 £ X0 let a 2 = cr(a1), if a 1 i X0 

cr(a 2), if a 2 t X0 stop; continu-

ing in this way we find a sequence of elements a1 ,a2t•••• 

ar• r > 1 such that 

cr(a. 1) for i 
l. -

l, ••• ,r-1, 

Note that the a 1 , ••• ,ar are all different from one another 
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ar-l E Y, ar-Z E Y, ••• ,a1 E Y c x1 , which is a con

tradiction because there is no c E X such that 

o(c) = a 1 because a1 t Imo 1 = Imo U {b1 }. This con

cludes the proof of the lemma. 

2.7.6. 

Now consider x E Amn; consider (Fa(x),Ga(x), where 

a is a nice selection, a c J • We recall how F (x) m,n. a 

and G (x) are defined (cf. l section 2.3). Let J = 
Cl 

a U {s(a,l), ••• ,s(a,~)} as an ordered subset of J n· 
m, 

Let x1 be the column vector eonsisting of the first n 

coordinates of x, x 2 the column vector consisting of the 

second n coordinates, etc. We now define n + m column 

vectors yi, i = 1,2, ••• ,m+n of length n as follows 

if the i-th element of J is the 1-th element 

of a 

if the i-th element of J is s(a,j) (2.7.3) 

where e 1 is the t-th standard basis vector. 

The matrices G (x) and F (x) are now defined by 
a a 

G (x) . "' yJ. , j = 1 , ••• , m; 
a J 

F (x). 
Cl J Ym+j' j = l, ••• ,n 

(2.7.4) 

It readily follows from this that F (x) is a matrix of 
Cl 
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because o is injective and a1 i Imo. There now are two 

possibilities 

(i) There-is nob IX\ Imo different from a 1• 

In this case Imo has n-1 elements and hence so has 

X0 • Therefore X \ X0 ='{ar}. Let Y = X \' {a1 , ••• ,ar} 

and suppose Y r ~. Then we have Y c X0 because X \ X0 

{ar}. We also have o(Y) c Y because ot{a1 , ••• ar}n X0 ) 

C{a1 , •.• ,ar}. 

Therefore, because is injective, we would have 

o(Y) = Y contradicting (2.7.2). Therefore Y = ~ and X 

{a1 , ••• ,ar} in this case (i.e. r = n). We now take b = 

a1 and define o1 (b) = a1 • Then x1 = X0 U {ar} = X and 

o1 : X ~ X is clearly the desired cyclic permutation. 

(ii) There is a b1 £ X Im which is different from a1 • 

In this case we take b = a and 
r 

define o1 (b) = bl. 

The map o1 is injective because bl i Imo. Now sup-

pose Y C x1 is such that o1 (Y) = Y. Note that in 

this case X \ Imo has at least two elements, hence 

so has X - X0 , so that x1 1 X. There are two possi

bilities. 

= a r i Y. In this case Y = o1 (Y) 

Y c X which contradicts (2.7.4). 
0 

o(Y) and 

ar £ Y. Then because o1 (Y) = Y we must have 
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the following type: the j-th column of Fa(x) is either 

a standard b· is vector eJI. with 1 > j, or Fa (x) j = x:i 

for some i; ··eov~·· i". F (x:) 3. e 0 , F (x). " e with 
a l "'l a J 2 Jl.2 

< Applying lemma 2.7.3 we thus see 

that by specifying the xi, i = l, ••• ,m to be suitable 

standard basis vectors one obtains 

2.7.9 Lemma 

For every nice selection a, there is an x e: ~n such 

that Fa(x) is a cyclic permutation of order n of the stan

dard basis vectors. 

2.7.10. 

Let a be a nice selection. Now consider K n V m,n,p a 

= V \ Vco where a is a nice selection. This closed sub-
a a 

variety of Ua is defined by the equations det(Q(Fa(x), 

Ha(x)) 8) = 0 for all subsets 8 of size n of the row 

indices of Q(Fa(x),Ha(x)). We number the rows of 

Q(Fa(x),Ha(x)) as follows 

(' ,1),. ,,(O,p); (l,p), ••• ,(1,p); ••• 

(n, ...••• ,(n,p)) 

Take s1 ='{(0,1),(l,l), .•• ,(n-1,1)}. Write x e: V 
a 

A1an x Apn C ) d . th . C ) _ _ as x = y,z an write z as e matrix zij , 
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i = 1 •••• ,p, j = 1 •••• ,n. We write Fa{x) = Fa(y), 

H (x) = z. Now consider the equation a 

det{Q(F (x),H (x)) 0 ) 
a a "'I 

0 
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(2.7.5) 

Now specify the y such that Fa(x) is a cyclic permutation 

matrix of order n and suppose that the first row vector 

of Fa(x) under this specification is the 1-th standard 

basis vector. Now take zij = 0 for j r t. Then (2.7.5) 

becomes 

(2.7.6) 

If p = 1, equation ( 2. 7 ;11) defines K n V {because m,n,p a 
if rank Q(F,G) = n then there is a nice "selection" B 
from the row indices of Q(F,H) such that det(Q(F,H) 8) r 0 

by the transposed version of lemma 2.1.1). Equation 

(2.7.12) which is obtained from {2.7.11) by a suitable 

specification of some of the variables shows that (2. 7.5) 

is nontrivial, so that the codimension of Km,n,p n Va in 

Va is one for each nice selection a proving that the 

codimension of K n 1 in -Mcr P is one. Now suppose m, , m,n, 
that p > 1. And consider the selections 

Si =·{(O,i),(1,i)_. •• ,(n·l,i)} i = 1, ••• ,p 

Specifying they and z as·before (NB the specification 

to be used depends on a!), the equations 
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0 i = l, ••• ,p (2.7.7) 

specify to 

n + zit = 0 i = l, ••• ,p (2.7.8) 

The equations (2.7.14) are independent, hence so are the 

equations (2.7.13) proving that the codimension of K m,n,p 
n Va in Va is ~ p. This holds for all nice selections a 

so that the codimension of K p in Mcr is always ~ p. m,n, m,n,p 
We have now proved assertion 2.7.2. 

2.7.12. Remark 

To prove 2. 7. 2 all one reaily n..ced!L.is the ~xb lence 

of a triple (F,G,H) E Wa for each a such that F' is a 

cyclic matrix. This can be seen as follows: U is a non-

empty open subvariety of L • Let L' = '{(F,G,H) E m,n,p 
L n plF' is cyclic} this also defined a nonempty open m, ' 
subvariety of L • m,n,p Because L is irreducible m,n,p 
L' n ua 'f ~- Let (F,G,H) E L' 

(F,G,H)T where T = R(F,G)·l. . a 
is cyclic. 

n U and let (F,G,H) = 

Then (F,G,H) e W and F' a 

3. THE FINE MODULI VARIETY Mcr m,n,p 

We now-proceed to study families of linear dynamical 

systems. Some motivafi.on as to why one would like to "-.., 



319 

study families is given in section 1.8 of [3]. Moreover, 

in this paper we shall use families to i?vestigate whether 

there exist continuous canonical forms or not. This is 

not necessary; one can also use the principal algebraic 

GLn bundle L~rn p + M~rn p· Cf. also 2.6 above. This 
, J ' ' 

part of the theory in the algebraic geometric case is 

practically completely analogous to the corresponding 

part of the topological case which was treated in sec-

tion 4 of [3]. 

3.1. Families of Linear Dynamical Systems 

3.1.l. Definition 

A family of linear dynamical systems over a variety 

S of dimensions (n,m,p) consists of 

(i) an algebraic n-dimensional vectorbundle .p:E + S 

(ii) an algebraic vectorbundle endomorphism F:E + E 

(iii) an algebraic vectorbundle homomorphism G:SxAm + E 

(iv) an algebraic vectorbundle homomorphism H:E + SxAP. 

Let s e: s. then F,G,H induce homomorphisms Fs:Es + Es, 

GS: sxam + E Hs :Es sxAP. E 
-1 is the fibre s' + = P (s) ~ , s 

over s. (Cf. Appendix 3 of [ 1 ]) • Choosing a basis 

e1 (s), ••• ,e0 (s) of E5 and taking the obvious bases in 

sx~m and sx.AP we calculate the matrices of Fs,G5 ,H5 

relative these bases. Let the result be 
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(F(s,e),G(s,e),H(s,e). This triple depends on e1 (s) •••• , 

e (s) only to the extent that a different choice of n 

e1 (s), ••. ,en(s) gives a triple in the same orbit (under 

GL) as (F(s,e),G(s,e),H(s,e)). n 

The family E is said to be completely reachable if 
er (F(s,e),G(s,e)H(s,e)) ~ Lm n p for all s. (This is well , , 

er defined because Lm,n,p is GLn invariant). 

3.1.2. The Canonical Morphism Associated to Completely 
Reachable FamLly 

Now let E be a completely reachable family. Then 

Fs,Gs,Hs define a unique orbit 

point in Mcr which we shall m,n,p 

in Lcr and thus a uniqut m,n,p 
denote fE(s). Thus we hav1 

er 
a map f~ : S + M p· 

4 m,n, Using the local triviality of the 

bundle E one shows by means of the algebraic analogues of 

the constructions in 4.1.2 - 4ol.8 of (3) that fE is a 

morphism in the category of varieties. 

3.1.3 

In the topological case we associated a continuous 

map fE : X + Mrn,n,pOR) to every family E, and used 

this map to define complete reachability of families. 

This cannot be done in the algebraic geometric case 

because the variety M does not exist. m,n,p 



The Universal Family Eu over M • m,n,p 

Let a be a nice selection. 

Ea+ Va the obvious projection. 

Let Ea = V x An p : a ~ ' a 
We define families E a 

of linear dynaminal systems with underlying bundles E 
a 

by the formulas 

Fa(x,v) = (x,Fa(x)v), Ga(x,u) = (x,Ga(x)u), 

321 

Ha(x,v) = (x,Ha(x)v) (3.2.1) 

2.4.5 

Now let E 0 = V B x An and define the ap a - isomorphisms 

.... EBa by formula (4.3.6) of [3]. Then glueing 

together the E by means of the 4> B we obtain an algebraic a a 
vectorbundle Eu. The F ,G ,H are compatible with the a a a 

~aB in the sense of (4.3.9) - (4.3.11) of [3] and thus 

define homomorphisms Fu: EU .... u u Mcr x am .... Eu, E ,g : m,n,p 
Hu: EU .... Mcr 

m,n,p 
x Ap - . This defines the family Eu. The 

family ru is completely reachable (because this is true 

for the families E ), and the associated map f : Mcr + a Eu m,n,p 
M~:n,p is the identity map (because the triple (Fa(x), 

Ga(x),Ha(x)) maps to x E Va c Mm,n,p under~: L~:n,p + 

Mcr ) 
m,n,p • 

3, 3. The Fine Moduli Varietr Mcr m,n,p 
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3.3.l 

Two.families r, fare isomorphic if there is an 

algebraic vectorbundle isomorphism ~:E + E such that 

F~ = ~F, ~G = G, H = H4>. For each s e: .§£hk' the cate-

gory of algebraic varieties over k, let ~,n,p(S) be the 

set of isomorphism classes of completely reachable fami-

lies of linear dynamical systems over S. By means of 

the pullback construction we turn·~ (S) into a func-m,n,p 

tor ~ :Schopp + ~· 
m,n,p -=-k 

3.3.2. Theorem 

The variety Mcr is a fine moduli variety for m,n,p 

t p or, in other words, the functor ~ is repre-
m,n, m,n,p 

sentable by Mcr • More precisely, the assignment 
m,n,p 

r + f~ induces a functorial isqrnorphism ~ (S) + 
,, m,n,p 

.§£.hk(S,Mcr ); the inverse isomorphism assigns the iso
m,n,p 

morphism class of f!ru to f: S + Mcr ~ 
m,n,p 

Proof. Identical with the proof of the correspond-

ing theorem 4.5.2 of [3]. 

4. EXISTENCE AND NONEXISTENCE OF ALGEBRAIC CONTINUOUS 
CANONICAL FORMS 

In [l] we used the fact that M admits an embedding 
m,n 

t 1 + M if m ~ 2 to show that there is no algebraic 
m,n 
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continuous form for completely reachable pairs of matrices. 

This cannot be used to prove e.g. part (iii) of theorem 

1.5 because as we have seen Mcr,co is a quasi-affine alge
m,n,p 

braic variety. Further the example we used in [3] to 

prove nonexistence of continuous canonical forms for real 

linear dynamical systems if m > 2 and p ~ 2 is essentially 

nonalgebraic. There is, however, a three (instead of one) 

dimensional version of it which is algebraic and that is 

the example we shall use in this paper. We proceed via 

moduli varieties as in [Z]. 

4.1. Triviality of Eu and Existence of Continuous Alge
braic Canonical Forms 

4.1.1. Theorem 

Let L c L~:n,p be a GLn-invariant subvariety of 

Lcr ind let M = v(L). Then there exists a continuous 
m,n,p 

algebraic canonical form on L if and only if the algebraic 

vector bundle EulM is trivial. 

Proof. Let ~ 1 be the subfunctor of ~ p m,n,p m,n, 

defined by considering only isomorphism classes of fami-

lies I over S such that fr maps S into M = v(L). It fol

lows directly from theorem 3.3.2 that I + fI then defines 

a functorial isomorphism ~L p(S) ~ Schk(S,M) and that m,n, 
' u the inverse iso~orphism is given by f + f"(I !Ml where 

Iu!M =· (Eu!M,Fu!M,Gu!M,Hu!M) is the restriction of Iu to 
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M. Now suppose that there exists a continuous algebraic 

canonical form c: L + L. Because c kills the action of 

GLn there' is a unique morphism c: M + L such that c = C'lf. 

For each x EM we write c(x) = (Fc(x),Gc(x),Hc(x)). Note 

that we. id, by condition (1.3.1) of the definition of 

canonical form. 

We now define a family re over Mas follows: 

tc • (Cc,Fc,Gc,Hc) with Ec = M x An, Fc(x,v) = (x,Fc(x)v), 

c c G (x,u) = (x,Gc(x)u), H (x,v) = (x,Hc(x)v). Because nc 

id and c(x) = (Fc(x),Gc(x),Hc(x)) we have that f c: M ~ M 
r 

is the identity morphism, cf. 3.1.2. But, according to 

theorem 3.3.2, or rather the relative version discussed 

in the beginning of this proof, we have that (F )?(EujM) 
I:c 

is isomorphic to re. which in particular means that 

(f )!(EulM) =Ee = M x An· but f = id, hence EulM is 
Ic - • re 

trivial. 

Inversely suppose that Eu IM is trivial. Then we can 

find n algebraic sections e1 , ••• ,en: M ~ EulM such that 

e1(x), ••• ,en(x) is a basis for E~ for all x £ M. Let 

F(x,e),G(x,e),H(x,e) be the matrices of F : Eu + Eu G x x x' x 
{x} x Am+ Eu, H : Eu + xxAP 

x x x relative the obvious bases 

in x x am and x x aP and the basis'{e1 (x), ••• ,en(x)} 
u of Ex. We now define a morphism c: L + L as follows 

c(F,G,H) = (F(x,e),G(x,e),H(x,e)) where x = n(F,G,H) 
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One easily checks that this is a continuous algebraic 

canonical form. 

4.1.2. The Local Canonical Froms cla" 

Let a be a nice selection. The bundle Eu!Ua is triv

ial (by the definition of :Eu cf. 3.2) hence by theorem 

4.1.l there exist continuous algebraic canonical forms 

on Ua. Such canonical forms are well known. An example 

is the canonical form c;a defined by 

T -1 (F,G,H) ,T = R(F,G)a (4.1.3) 

4,1.3 Corollary 

If m = 1 there is a continuous algebraic canonical 
er 

fonn on Lm n p• , " 

Proof. If m = 1 there is only one nice selection a, 

and hence Lcrn m, ,p 

4.~. Duality 

ua by lemma 2.1.1. 

The assignment o: (F,G,H) + (F' ,H' ,G') defines an 

isomorphism of algebraic varieties L + L • If m,n,p p,n,m 
L c L is GL -invariant then so is o(L) c L • (but m,n,p n p,n,m 
~is not GLn·invariant). As in [3], 3.1.6 one now easily 

shows that there is a continuous canonical form on o(L). 
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4.2.1. Corollary 

There is an algebraic continuous canonical form on 

L er if P = 1. 
m,n,p 

4.3. Example of a Nontrivial Algebraic Line Bundle 

Let u1 = a1 x CA2\(0,0)), u2 = A1 x (~2 \(O,O)). We 

give u1 coordinates (t,y1 ,y 2) and u 2 coordinates (s,x1 ,x2). 

Let u12 ='{(t,y1 ,y 2) e: u1 t -f O}, u21 ='l(s,x1 ,x 2)_e:U 2 !s r 
O}. We define an isomorphism $: u12 U21 by (t,y1 ,y2) + 

-1 (t ,y1 ,t,y2t). Let X be the prevariety obtained by glue-

ing u1 and u2 together by means of $. In fact X is a 

variety viz. the quasi-affine subvariety of A4 

{(z1 ,z 2 ,z 3,z 4)} given by z1 z4 = z2z3 and (z1 -f O or z2 1 O 

or Z3 r 0 or Z4 r 0). The embeddings of ul and Uz is this 

subvariety are given by (t,y1 ,y 2) 4 (y1t,y 2t,y 2), 

this respects the identification <j> give.n above. 

We now define an algebraic line bundle V over x by 

glueing u1 x Ai and u 2 x ~.1 together by means of the iso-

morphism 

-1 ty, x 2 = ty 2 , v = t u (4.3.1) 

Now suppose that this line bundle is trivial. Then 
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there must be everywhere nonzero sections ul + ul x a1• 

(t,Y1·Yz) + ((t,Y1·Yz)• gl(t,y1.Y2)); Uz + Uz x ~1, 
(s,x1 ,x2 ) + ((s,x1 ,x 2), g 2 (s,x1 ,x2)) compatible with the 

identification '¥. Now g1 and g 2 are morphisms ~l x 

c~2 x (O,O)) + a1· Because A1 x ( ) is of codimension 2 

a1 x az = ~3 this means that gl and &z extend to morphisms 

on all of A3 - . i.e. &1 and g 2 are polynomials. Putting 

everything together we therefore have that C is a trivial 

line bundle iff there are polynomials g1 (t,y1 ,y2), 

g2(s,x1 ,x 2) such that g 1 (t,y1 ,y2) f O if y1 f o or Yz f O 

and &z(s,x1 ,x 2) f 0 if Xl f 0 or Xz r 0 and such that 

moreover 

(4.3.2) 

for all points (t,y1 ,y2) such that t f 0 and y1 r 0 or 

Yz f O. One easily checks that the only polynomials 

g1 (t,y1 ,y2) such that g1 (t,y1 ,y 2) r 0 for all (t,y1 ,y2) 

for which y1 f 0 or Yz f 0 are constants. Similarly 

g 2 (s,x1 ,x2) is a constant. But then (4.3.2) is a contra

diction. So we have proved 

4.3.2 Lemma 

The line bundle V defined by 4.3.1 is nontri~ial. 

4.4. Examples 

Let p ~ 2 and m > Z. We write down a number of G,F 
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and H matrices as follows 

If n • 1, m ~ 2 0) 

(4.4.1) 

0 • 0 

0 • • • 0 

B 

(4.4. 2) 

where a is a nonzero element of k different from 1, and 

where B is an (n-2) x (m-2) matrix with coefficients in 

k such that the columns of B and the column vector 

(1, ••• ,1)' together span an m-1 dimensional subspace of 

kn-z. Such a B exists because 2 < m < n. 

t s 

1 1 

If n > 2 = m Gn, 2(t,s) 
a 1 

(4.4. 3) . . . 
a 1 



If m > n > z Gn,m(t,s) • 

If m = n > Z Gn n(t,s) "" 
• 

al 0 

0 a2 

F = 
n 

0 

t s 0 0 

1 1 1 0 ... 0 

0 0 0 . . . 
0 

0 0 o ••• 0 1 

~ 

t s 0 • • • • 0 

1 1 
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0 0 

0 0 ...._,,_. 
m-n-1 

(4.4.4) . 

a 1 

. J·-2 
0 • • • • 0 a 1 
~ 

n-2 (4.4.S) 

0 

(4.4.6) 

0 

0 

where a1 , ••• ,an are n different elements of k which are 

all different from zero 
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4.5 
er An Embedding X ~ M-

- "'m, n, p 

(4.4. 7) 

Let u1, U2 be as in 4.3 above. We define for all 

n,m,p with m > 2 and p ~ 2 

a n,m,p 

We now note that if ts = 1, x1 

where 

T(t) • 

0 

(4.5.1) 

(F ,G (l,s),H n(x 1 ,x2r n n,m p, 

0 

0 

0 

1 

(4.5.2) 

h · h h h · U Mcr , U Mcr , T is means t at t e morp isms 1 ~ m,n,p 2 ~ m,n,p 



obtained from the morphisms cr and C1 n,m,p n,rn,p 
be composing with 

a morhpism 

7r: 1cr . 
m,n,p 

+ Mcr , combine m,n,p 

T : X + Mcr 
m,n,p m,n,p 

where X is the variety defined in 4.3 above. 

4.5.4. 
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of (4.5.1) 

to define 

(4.S.3) 

Let a be the nice selection'{(0,2),(1,2), ••• ,(n-l,2)} 

then we see from 4.4 that a p(U1) c U and hence m,n, a 
Tm,n,p(Ul) c Va. Let e be the nice selection'{(0,1),(1,l), 

.•• ,(n-1,1)} then we see from 4.4 that crm,n,p(U2) c US 

and hence Tm,n,p(U2) c V • It follows that the pullback 

of Eu by means of T is an algebraic vectorbundle over . m,n,p 
X whose restrictions to u1 and u2 are trivial, and the 

gluing data of this bundle are given by (Cf. [l) Appen

dix 3.6). 

(4.5.S) 

where T(t,y1 ,y2) is equal to the matrix 

(4.5.6) 

where a and 8 are the nice selections'{(0,2),(1,2), ••• , 

(n-1,2)} and.{(0,1),(1,l), ••• ,(n-1,1)}. Let E + X be 
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n 
this bundle. The exterior product bundle A E + X is then 

the line bundle obtained by gluing together ul x a1 and 
l 

u2 x A by means of the isomorphism 

and from (4.5.6) we see that 

det(T(t,YpYzD • lt-l 
-1 n-2 

t a 

( 4. s. 7) 

if n < 2 

(4.5.8) 

if n < 2 

" 
It follows that the line bundle defined by ~ is nontrivial. 

Cf. 4.3 above. 

4.5.9. Proposition 

' The algebraic vectorbundle T• Fu is nontrivial 
n,m,p 

if p ~ 2, m ~ 2. 

Proof. This follows from the above because if 

E + X is a trivial algebraic n-dimensional vector bundle 
n 

then A E + X is a trivial line bundle. 

4.5.10. Corollary 

Let M be a subvariety of M~:n,p such that Tn,m,p(x) 

CM. Then EulM is a nontrivial algebraic vectorbundle. 
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4.6. Nonexistence of Continuous Algebraic Canonical Forms 

We can now prove theorem 1.5. 

4.6.1. Proof of Theorem 1.5 

First let m > 2 and p ~ 2. Let Mw = w(L:.n,p) where 

Lw runs through the subvarieties listed in 1.4. Then 
m,n,p 

we see from 4.4 

T (X) C Mp,µ 
m n p • • 

(4.6.1) 

if m 1 n and p 1 n, and that in any case (still assuming 

p ~ 2 and m ~ 2) 

T (X) c Mcr,co,µ 
m,n,p (4.6.2) 

By corollary 4.5.10 and theorem 4.4.l this takes care of 

the only if parts of statements (iii), (iv), (v), (vi) 

of theorem 1.5. (Because Lp,µ c LP and Lcr,co c 
m,n,p m,n,p m,n,p 

1cr,co,p). 
m,n,p On the other hand if m 1 in cases (iii) 

and (iv) and m = 1 or n in cases (v) and (vi) then the 

respective subvarities are contained in one Ua for a 

certain nice selection a. By 4.1.2 there are therefore 

continuous algebraic canonical forms in these cases. 

The corresponding fact for p 1 in cases (iii), (iv) 

and p = 1 or n in cases (v), (vi) follows by duality, 

Cf. 4.2. This proves (iii) - (vi) of theorem 1.5. 
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The if part of (i) is corollary 4.1.3; the if part 

of (ii) follows by duality. Cf. 4.2. To prove the only 

if part of (i) observe that if m > 2 ~((F ,G (t,s),O). n n,m 

where t f 0 or s f o, depends only on the point (t:s) £ f 1 

and. not on the actual t and s. Thus 

defines a morphism £1 + Mcr for all (rn,n,p) such that m,n,p 
I 

As in 4.5 one now proves that ,.Eu is nontrivial. m > 2. 

By 4.SAl~ and 4.4.1 this proves the only if part of (i). 

The only if part of (ii) follows by duality. Cf. 4.2. 

This concludes the proof of theorem 4.5. 

4.7. On Relations between Various Local Canonical Forms 

Let U c l.~:n,p be a GLn invariant subvariety of 
er Lm , and suppose that there is a continuous algebraic ,n,p 

canonical form c: U + U. Let K:U + ~l be a morphism, 

e.g. a "coordinate function." Then KC: U ...,. A1 is GLn 

invariant, showing that "the coordinate functions of a 

canonical form ~re invariants." 

4.7.1 

Now ltn. :· U + GLn be a morphism which kills the 

action of GL on U. Then if c: U + U is a continuous 
i. 

algebraic caaonical form so is ea: U + U which is 
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defined by (F,G,H) + c(F,G,H)a(F,G,H). Inversely if c' 

is a second continuous algebraic canonical form on U 

then c' = ca for some morphism a: U + GL which kills 
n 

the action of Gtn on U. All this is proved as in section 

3. 6 of [l J. 

4.7.3 

The situation becomes slightly more complicated if 

we take u = UCO 
a • We still have the canonical forms 

clla and all other canonical forms are obtained by means 

of a morphism ~: vco + GLn. Now if p = 1 then det(fi:(x)) a 

need not be a constant independent of x e v~0 , because 

the codimension of Va.\ V~o in Va is one if p = 1. An 

example of this is found by taking m = 1 p and compar-

ing the canonical form c#a and its dual on Mcr,co 
l,n,1· How-

ever if p > - 2, then the codimension of v fJ. \ v~0 in v , ___ ~·" _,__......-·a 
is > z (cf. section 2.7 above), which means that in 

this case we again have that a: V~o + GLn is given by 

n2 polynomials such that det(i(x)) is a constant inde

pendent of x & v~0 • 
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