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1. PREFACE 

This note is the written version of the part which 

is not covered by [15] and [16] (cf. also [12], [13], 

[14], and [3] of the talks I gave at the Ames conference 

in June/July 1976. The main purpose of this part of the 

talks was to acquaint engineers and applied mathematicians 

with the fact that some of the problems they have been 

studying in (algebraic) system theory and identification 

theory are identical (or at least very similar to) a cer­

tain set of problems studied by algebraists belonging 

to representation theory or linear algebra (depending on 

one's taste and judgement) viz. the theory of representa­

tions of "quivers." Inversely it may be of interest to 

the algebraists that the two quivers for which results 

have been obtained in algebraic system theory are both of 

wild type. 
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2. QUIVERS AND THEIR REPRESENTATIONS 

2 .1 Definition 

A quiver is a finite connected directed graph. 

i.e. a quiver Q consists of a finite set PQ of points and 

a finite set AQ of arrows between points of PQ. Loops 

are allowed and also multiple arrows between the same 

points. 

2.2 Some examples of quivers are 

(J .~. 
(J 

~ 
·~· ~. ·~· • 

...._..,, 

(a) (b) (c) (d) 

(J 
Q • ~ /' ~ v ·--· ·~· '--" ·~· 

(e) (f) (g) (h) 

2.3 Definitions 

A re12resentation v over a field K of a quiver Q 

assigns to each P € PQ a vector space V(P) and to each 

arrow a 8 AQ a vector space homomorphismV(a):V(s(a)) + 

V(r(a)) where a is an arrow from s(a)EPQ to r(a)ePQ. The 

zero representation assigns to each PePQ the zero vector 

space. Given two representations v1 and v2 their direct 
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sum vl (jl v2 assigns to each Pt:PQ the vector space v1 (P) EB 

v 2 (P) and to each arrow at:AQ the direct sum homomorphism 

V 1 (a) ill v 2 (a). A representation V is called indecomEos-

able if it cannot be written as a direct sum V = v1 ill v2 

with v1 and v 2 both unequal to the zero representation. 

Given a representation V a subreEresentation W consists 

of subspaces W(P) c V(P) for all Pe:PQ such that 

V(a)(W)(s(a)) c W(r(a)) for all asAQ. A representation 

V is called irreducible if it has no other subrepresenta­

tions than itself and the zero representation. Finally 

two representations V, Ware said to be isomorphic if 

there are isomorphisms ~(P) : V(P) + W(P) for every PePQ 

such that the following diagram commutes for all ae:AQ. 

V(a) 
V(s(a)) ~~~~~ 

l ~(s(a)) 
W(a) 

W(s(a))~~~~~ 

V(r(a)) 

j W(r(a)) 

W(r(a)) 

2.4 The general problem is now: given a quiver, 

describe all isomorphism classes of (indecomposable) 

representations. 

In the case of the quiver 2.Z(a) above this is 

the familiar linear algebra problem of classifying 

square matrices up to similarity. The indecomposable 
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representations are precisely those which have one Jordan 

block. 

In the case of example 2.2(b) a representation con­

sists of two matrices (A,B), and a second representation 

(C,D) is isomorphic to (A,B) if there are invertible 

matrices S, T such that C = SAT, D = SBT. Writing 

A+ sB and C + sD for (A,B) and (C,D), where s is an in­

determinate we see that the study of isomorphism classes 

of representations of the quiver 2.2(b) is the same as the 

study of pencils of matrices in the sense of Kronecker, 

who also solved this problem. 

Similarly quiver 2.2(g) concerns the study of two 

dimensional pencils A + sB + tC. (These turn up when one 

studies control systems with delays.) 

To conclude this section let us remark that quiver 

2.2(c) is the study of pairs of matrices under simultane­

ous similarity a problem which has been around for some 

150 years (and is still unsolved). 

2.5 A special quiver from system theory 

A linear dynamical system x Fx + Gu,y Hx 

or xt+I = Fxt + Gut• yt = Hxt (discrete case) gives rise 

to a triple of matrices (F,G,H) with coefficients in~. 

C in the continuous case or in any field (or ring for 

that matter) in the discrete case. Base change in all 
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three of the spaces involved (input space, state space, 
-1 output space) changes the triple (F,G,H) into (T 2FT 2 , 

-1 -1 T2GT1 ,T3HT 2 ) where the Ti, i = 1,2,3, are invert-

ible matrices of the appropriate sizes. 

In other words the study of linear dynamical sys-

terns under base change in input space, state space and 

output space is the same as the study of the representa-

tions up to isomorphism of the quiver 

which is the quiver 2.2(c). If one neglects outputs one 

obtains instead the quiver 2.2(f). 

For a description of some of the results obtained 

recently for these quivers cf. section 4 below. 

3. GABRIELS THEOREM AND ITS RELATIVES 

One of the really beautiful results in the theory 

of representations of quivers (and also the result which 

started the business) is Gabriel's theorem which describes 

all quivers which have--up to isomorphism--only finitely 

many indecomposables representations. First a definition. 
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3.1 Definitions 

A quiver Q is of finite type if there exist up to 

isomorphism only finitely many indecomposable representa­

tions; the quiver Q is tame if there are infinitely many 

isomorphism classes of indecomposable representations 

but these classes can be parametrized by a finite set of 

integers together with an irreducible polynomial (over 

the field k one happens to work over); the quiver Q is 

wild if given a finite dimensional k-algebra E there are 

infinitely many pair-wise non-isomorphic representations 

of Q with endomorphism algebra isomorphic to E. 

These classes of quivers are clearly exclusive. 

They are also, as it turns out, exhaustive. 

3.2 Gabriel's theorem 

The quivers of finite type are those whose under-

lying undirected graph is of one of the following types 

A : 
n 1 2 

D: 1~ 
n 2.-/3 -

I 

n>l 
n 

n>4 
n 
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• 

I 

I 
It is not an accident that the graphs above are Dynkin 

diagrams. For deatils cf. [7] and [l] and also [4] for 

where and how the other Dynkin diagrams fit. 

3.3 Nazarova [18] has similarly described all 

quivers which are tame. These have as underlying undir­

ected graphs one of the following extended Dynkin dia-

grams. 

A 
n 0 1 

• 

• 

n >O 
n 

n>4 

I 
• 

I 
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3.4 All other quivers are wild. So that in parti­

cular the quivers of algebraic system theory 2.2(c) and 

2.2(f) are wild. Also wild are the quivers 2.2(g) and 

2.2(e). The quivers 2.2(a), 2.2(b), 2.2(d) and 2.2(h) 

are all tame. 

3.5 The quadratic form of a quiver 

Let Q be a quiver. We attach to Q a quadratic form 

in as many variables Xp as there are elements in PQ. 

quadratic form is 

K ( ••• , Xp, ••• ) x2 
p x x 

s (a) r (a) 

Thus e.g. if Q is of type A4 we find a form 

The 

It now turns out that a quiver is respectively of finite 

type, tame or wild if this quadratic form KQ is respec­

tively positive definite, positive semidefinite, indefin-

ite. 

4. ON THE QUIVERS OF (ALGEBRAIC) LINEAR SYSTEM THEORY 

We now return to the quiver 2.2(c) of linear system 

theory. Cf. also 2.5 above. The quiver in question is 
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(2 
(QL) • ---· ~. 

1 2 3 

4.1 A representation of this quiver with dim 

V(l) = m, dim V(2) = n, dim V(3) = P is a linear dynami­

cal system with m inputs, p outputs and state space dimen-

sion n. Let L p(k) be the space of all representations m,n, 
over the field k with these dimensions. The group G(k) = 

GLrn(k) x GLn(k) x GLP(k) acts on Lrn,m,p(k) as ((T1 ,T2,T 3), 
+ -1 -1 (F,G,H)) (T 2FT 2 ,T2GT2 ,T3HT 2 ) and the isomorphism 

classes of representations correspond bijectively to the 

elements of the quotient set L p(k)/G(k). rn,n, 
Now most of the results which have been obtained 

recently are not about L (k)/G(k) but the equally m,n,p 
interesting related quotient Lm,n,p(k)/GLn(k) where GLn(k) 

is the subgroup 1 x GLn(k) x 1 of G(k). This corresponds 

to a finer notion of isomorphism (more isomorphism 

classes); viz. two representations V, W of (QL) are iso­

morphic in the fine sense if there is an isomorphism 

W : V + W such that w(l) = id, w(3) = id. For later pur-

poses we define the corresponding notions: a fine sub­

representation of a representation V of (QL) is a sub­

representa tion W such that W(l) = V(l) and V(3) W(3) 
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and we say that V is finely irreducible if the only fine 

subrepresentation of V is V itself. 

4.2 Complete reachability 

Recall that a triple (F,G,H) £ Lm n p(k) is corn-
' ' 

pletely reachable if and only if the space spanned by thE 

columns of the matrices G,FG, ••• FnG is all of kn= state 

space. Thus we see that a representation V (F,G,H) of 

(QL) is completely reachable if and only if it is finely 

irreducible. 

4.3 Some results on Lcr (k)/GL (k) m,n,p n 

Let Lcr (k) be the subspace of all completely m,n,p 
reachable triples (F,G,H). First suppose that k is an 

algebraically closed field. Then one has: 

4.3.l Lcr (k)/GL (k) is a connected nonsingular m,n,p n 
algebraic variety over k of dimension np + mn. 

Let us write Mcr (k) for this variety. m,n,p 

4.3.2 Mcr (k) = An+np affine space over k of 
l,n,p =k 

dimension n + np. 

4.3.3 If m > 2 then Mcr (k) · h 1 · 11 is co omo og1ca y m,n,p 

nontrivial. 

(For these and many related results cf. [12], [13], [14 

[15], [16] and [3].) 
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In the special case k = R one has that Mcr (R) = m,n,p -
is a smooth noncompact differentiable manifold diffeomor-

phic to Rn+np if m = 1 and cohomologically nontrivial 

if m > 2. 

In terms of representations of the quiver (QL) 

4.3.1 says c.q. that every fine class of finely irreduc-

ible representations of dimensions (m,n,p) can be continu-

ously deformed into any other fine class. In particular 

there are mn + np "moduli" for these classes of repre­

sentations, which, of course, is not unexpected given that 

(QL) is of wild type. 
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