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1, INTRODUCTION 

In this paper we treat the algebraic-geometric ver­

sion of the topological theory developed in [3]. That 

is we study linear dynamical systems over an algebrai-

cally closed field k 

(1.1) 

~here F,G,H are matrices with coefficients in k of the 

appropriate sizes. A change of basis in state space 

changes the triple of matrices (F,G,H) into (TFT- 1 ,TG, 
-1 HT ) and as in [3] we are interested in such questions 

as the following. 

Does the set of orbits under this action have a 

(natural) structure of an algebraic variety? Do there 

exist continuous canonical forms? Similar questions for 
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the case of two matrices were studied and answered in [l], 

cf. also [2] • 
• Essentially the answers are as in [3]. This paper 

used a moderate amount of algebraic geometry (nothing 

much beyond definitions). Appendices 1, 2 and 3 of [l] 

provide sufficient background information for this paper. ~ 

(Related results, usually couched in more sophisticated 

aliebraic-geometric language can be found in [7].) All 

schemes in this paper will be reduced and of finite type 

over k, and we shall identify them with their associated 

algebraic varieties of closed points. We use Ar to denote 

affine space of dimension r over k, and we give the space 

of all triples of matrices (F,G,H) of dimension n x n, 

n x m, p x n respectively, the algebraic variety struc­

ture of An(n+m+p) - . 
variety. 

Let L n p denote this algebraic 
m, • 

Then the assignment 

(T,(F,G,H)) + (TFT- 1,TG,HT-l) = (F,G,H)T (l.Z) e 
defines an action of the algebraic group GLn of invert-

ible n x n matrices with coefficients in k on L • 
m,n,p 

Cf. (l] Appendix 2. We can now define what a continuous 

algebraic canonical form on a subvariety L' c L n p would m, , 
be. 
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1. 3. Definition 

A continuous algebraic canonical form on L' is an 

algebraic morphism c: L' n L' such that 

for every (F,G,H) E L' there is a T E GLn such 

that (F,G,H)T = c(F,G,H) (1.3.1) 

c(F,G,H) = c(F,G,H) iff there is a T E GLn such 

that (F,G,H)T (F,G,H) (1.3.2) 

Again, as in [3], we have that continuous algebraic 

canonical forms on all of L p cannot exist for trivial m,n, 
reasons. ("Jump phenomena"). The conditions "completely 

reachable," "completely observable," "rank of G maximal 

and rank of H maximal and completely reachable and com-

pletely observable" all define open subvarieties of L m,n,p 
which we shall denote with Lcr , Leo , LP 

m,n,p m,n,p m,n,p 
respectively. In addition, we consider the condition 

"F is diagonalizable (i.e. semisimple) with distinct 

eigenvalues all different from zero" which defines a 

(non-onen) subvariety Lµ of L . Combining dif-• m,n,p m,n,p 

ferent attributes we have the following list of (possibly 

interesting) subvarieties of L • m,n,p 

1.4. List of subvarieties 

1cr 1co • 1cr,co 
m,n,p' m,n,p m,n,p 

Lcr n Leo ' Lµ 
m,n,p m,n,p m,n,p 
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Lcr,co,ii 
m,n,p 

LP n Lcr,co LP Lp,µ 
rn,n,p m,n,p' m,n,p• m,n,p 

LP fl tll 
m,n,p m,n,p 

All these subvarieties of L are GLn-invariant. We m,n,p 
now have the following theorem. 

1. 5. Theorem 

The following table gives necessary and sufficient 

conditions for the existence of continuous algebraic 

canonical forms on various subvarieties of L . m,n,p 

necessary an(fS!JfITc i en t con- I 
variety L' dition for the existence of an 

algebraic continuous canonical 
form -----.. • '"' 

(i) L' = 1cr 
m,n,p ffi"'l 

(ii) L' = 1co 
m,n,p p=l 

(iii) L' = 1cr,co m=l or p=l m,n,p 

(iv) L' "' 1cr,co,µ 
m,n,p m=l or p=l 

-
(v) L' = LP m=l or rn,n,p p=l or m=n or p=n 4J' 

(vi) L' = LP ,µ m=l or P"'l or m=n or p=~ m,n,p 

This theorem is "identical" with theorem 1. 7 of [3]. The 

vroof is similar in spirit but different in details. 

There is of course also a corollary similar to corol-

1<.> . .cy 1.8 of [3]. We shall see that the "orbit space" 
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Lcr /GL has the structure of a quasi-projective alge­
m,n,p n 

braic variety and its open subvariety Lcr,co/GL is in 
· m,n,p n 

fact a quasi-affine algebraic variety. Let Mcr denote m,n,p 

this algebraic variety. Then we shall also see that 

Mcr is a fine moduli variety for a suitable definition 
m,n,p 

of (algebraic) families of linear dynamical systems. 

As we said the field k we work over is supposed to 

be algebraically closed. This is mainly a matter of con-

venience: the varieties Lcr,co, Lcr , L , Mcr,co 
m,n,p m,n,p m,n,p m,n,p' 

Mcr , MP are all defined over any field k; in fact 
m,n,p m,n,p 

they are even defined over ?l. This also explains our 

er 
notation Mm n p(lll), etc. of [3]: the underlying sets of , , 
these real manifolds are simply the real points of the 

variety Mcr , etc. Ho~ever, some care must be taken 
m,n,p 

in interpreting the results of e.g. part (iii) of theorem 

1.5 in this context. 

Consider e.g. the following situation: let k be a 

finite field; let Lcr,co(k) be the set of all k rational 
m,n,p 

points of Lcr,co, i.e. the set of all completely reachable 
m,n,p 

and completely controllable triples of matrices with 

coefficients in k; let GL (k) be the group of n x n 
n 

matrices with coefficients ink acting on Lcr,co(k) in 
m,n,p 

• 
the abvious way. Then part (iii) of theorem 1.5 does not 

say that there is no map Lcr,co(k) + Lcr,cpo(k) (locally) 
m,n,p m,n, 

given by polynomials such that the analogues of (1.3.1) 
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and (1.3.2) hold. E.g. such a map always exists when k 

is JF 2 , the field of two elements. But part (iii) of 

theorem i.s does say that the map Lcr,co(k) + Lcr,co(K) 
m,n,p m,n,p 

defined by the same polynomials, does not satisfy the 

analogues of (1.3.1) and (1.3.2). Here K is the ~lge-

braic closure of k. 

A large part of the proofs and constructions of [3] 

can be carried through unchanged in the algebraic geo-

metric case. In these cases we shall as a rule simply 

refer to the appropriate section of [3]. 

The contents of the paper are: 

1. 

2. 

3. 

Introduction and Statement of some of the Result! 

The Quotient Variety Mcrn p' 
m, • 

2.1. 

2.2. 

2.3. 

2.4. 

2.5. 

2.6. 

Z.7. 

The 

3.J. 

3.2. 

Nice Selections 

The Local Quotients Um/GL0 

The Quotient Variety Mcr p m,n, 
Some Realization Theory 

Equations for Mcr,co. 
m,n,p 

The Algebraic Principal Fibre Bundle ~= 

1cr + Mcr 
m,n,p m,n,p 

The Codimension of (Mcr \Mcr,co) in 
m,n,p m,n,p 

Mcr 
m,n,p 

Fine Moduli Variety Mcr m,n,p 
Families of Linear Dynamical Systems 

The Universal Family Eu over M~1n p 
• • 



3.3. The Fine Moduli Variety Mcr m,n,p 
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4. Existence and Nonexistence of Algebraic Continu­

ous Canonical Forms 

4.1. Triviality of Eu and Existence of Continu­

ous Algebraic Canonical Forms 

4. 2. Duality 

4.3. Example of a Nontrivial Algebraic Line 

Bundle 

4.4. 

4.5. 

4.6. 

Examples 

An embedding X + Mcr m,n,p 
Nonexistence of Continuous Algebraic Canon-

ical Forms 

4.7. On relations between Various Local Canoni-

cal Forms 

2. THE QUOTIENT VARIETY M~:n,p 

2.1. Nice Selections 

Let (F,G,H) € Lm n p" The matrices R(F,G) and Q(F,H) 
• • 

are defined as in [3], 2.2. The conditions 0 R(F,G) has 

rank n" i.e. "complete observability" define open subvari-

ties of L which we denote by Lcr Leo ~espec-m,n,p m,n,p' m,n,p 
tively. 

In addition we put L~r~cpo = L~rn p 
' ' J J 

Leo which 
m,n,p 

is also an open subvariety of L • m,n,p As in [3], 2.3 we 
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let J denote the set of column indices of R(F,G). Nice n,m 
selections a(from J m) and the successor indices s(a,j), n, 
j = l: ••• ,• of the nice selection a are defined as in [3], 

2.3. We again have (c.f. [l] 2.4.1 for a proof). 

2 • 1 .1 • Lemm.a 

If (F,G,H} £ L~rn p' then there is a nice selection , . 
such that aet(R(F,G) f O. a 

2.2. The Local Quotients Ua/GLn. 

Let a be a nice selection. One defines the subvarie­
cr 

ties of L m,n,p 

Ua ='{(F,G,H) £ L pldet(R(F,G) ) r O} m,n; a (2.2.l) 

(2.2.2) 

The map ~a of (3], 2.4.S now defines an isomorphism of 

algebraic varieties 

.,,, ~nm+np ~ w 
"'a: 

We define a morphism t : U + GL xW a a n a 

-1 T ta : (F,G,H) • (T ,(F,G,H) ), where T 

Z. 2. s. Lemma 

(2.2.3) 

R(F,G)~l 

(2.2.4) 

t 0 is a GLn-invariant isomorphism of algebraic 
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varieties (where GLn acts on GLn x Wa by left multiplica­

tion on the left hand factor.) 

2.2.6. Corollary 

The (categorial) quotients Ua/GLn exist (as alge­

braic varieties) and are isomorphic to the affine space 

anm+np. 

This follows from 2.S.S and the isomorphism ~a· 

For the notion of categorical quotient cf. [l] A.2.7. 

As a matter of fact Ua/GLn is also a geometric quotient 

in the sense of [6]; we shall not need this fact. 

2.3. Th Q . V . Mcr euot1ent ar1ety m n p 
• • 

We are now going to define a quotient prevariety 

Mcr by gluing the local quotients Ua/GLn together in m,n,p 
suitable way. For each nice selection a let Va = arnn+np 

and for each second nice selection B let Vas be the open 

subvariety Vas 

VSa by the formula (identical of [3], (2.S.4)). 

with T = R(F (x),G (x)):1 
a a µ 

(2.3.1) 

where we have written $a(x) = (Fa(x),Ga(x),Ha(x)) & Wa 

and similarly for $a(y). These ~as are well defined and 

define isomorphisms of algebraic varieties Vas + Vaa• 
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which moreover satisfy the cocycle condition ~Sy$aS = 9ay 

whenever the left hand side is defined. This means that 

by gluing together the various Va by means of the ~as we 

obtain a certain prevariety which we shall denote Mcr • m,n,p 

To prove that Mcr is an (abstract) variety we have to 
m,n,p 

prove that it is separated. This can either be done by 

using the algebraic geometric version of [3], 2.5.7 or by 

means an embedding argument. To carry this embedding argu­

ment through we first observe. 

2.3.2. ~ 

The natural projections 1T : u .... v combine to define 
Cl Cl a 

an algebraic morphism TI:Lcr ... Mcr , and 1T is a cate-m,n,p m,n,p 

gorical quotient in the categorr of Erevarieties for the 

action of GLn on Lcr defined by (1.2). m,n,p 

Proof. It is obvious that TI: Lcr m,n,p 
-+ Mcr kills 

m,n,p 

the action of GL . Now let $:Lcr -+ X be 
n n,n,p any morphism 

which kills the action of GL0 • Let UaS = Ua n u8 • Then 

we know that Ua -+ Va and u08 -+ Vas are categorical quo­

tients by 2.2.6. Let $0 be the restriction of $ to U0 • 

By the categorical quotient property of U -+ V there are 
a a 

unique morphisms x : V + X such that $ = x TI • Because 
a a a aa 

UaS + VaB are categorical quotients we also know that 

x8$a 8(x) = x_{x) for x E VaS' where ~as is as in (2.3.1). 

It follows that the x combine to ·define a morphism 
a 
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Mcr + X such that $ = xn . x: m,n,p The morphism x is unique 

because on each Va it must equal Xa· Essentially the 

same proof was used for [l], 3.2.14. 

2.3.3. The Morphisms 

h: L ~ Ar and g: L + G • Let 
m,n,p - - m,n,p n, (n+l)m 

(F,G,H) EL • We let h(F,G,H) E Ar. where r z 
m,n,p 

2 (n+l) mp, be the block Hankel matrix 

HG HFG 

HFG 
h(F,G,H) = Q(F,H)R(F,G) 

This defines a morphism h: L + ~r. which certainly 
m,n,p 

kills the action of GLn. 

Restricting to Lcr and applying lemma 2.3.2 we 
m,n,p 

obtain an induced morphism 

h: Mcr + f:.r, r = (n+l) 2pm 
m,n,p 

(2.3.4) 

Let Lcr be the algebraic variety of all pairs of matrices 
m,n 

(F,G) of sizes n x n and n x m. In [l] we constructed a 

morphism g: L~:n ~ Gn,(n+l)m which kills the action of 
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GLn on Lcr , where G ( l) is the Grassmann variety m,n, n, n+ m 
of n-planes in (n+l)m space; g assigns to (F,G) the point 

I 

of Gn(n+l)m eorresponding to the rank n matrix R(F,G) of 

· size nx(n+l)m. We proved that the quotient variety M m,n 
= Lcr /GL exists and that g induces an embedding m,n n 

g: Mm,n + Gn,(n+l)m" Cf. [l] Theorem 3.2.13 and proposi~ 

tion 3.2.14. Now let g': L~:n,p + Gn,(n+l)m be the com­

posed morphism (F,G,H) + (F,G) + g(F,G). This morphism 

kills the action of GLn and hence induces a morphism 

~: Mcr + G 
m,n,p n,(n+l)rn (2.3.S) 

From the remarks made above we know that if (F,G,H), 

(F',G',H') (F',G',H') E L~:n,p are such that g'(F,G,H) 

= g'(F,G,H) then there is a TE GLn such that (F,G) 1 = 

~.~. 

2.3.4 An embedding Mcr + G ( +l) x Ar m,n,p n, n m . -
The morphisms h,g of (2.3.4) and (2.3.5) together 

define a morphism 

(2.3.6) 

We claim that i is injective. Indeed if (F,G,H), (F,G,H) 

£ Lcr are such that h(F,G,H) = h(F,G,H) and g'(F,G,H) m,n,p 
= g'(F,G,H), then we know that there is a T £ GL such 

n 

that (F,G)T = (F,G) i.e. TR(F,G) = R(F,G), and then because 

h(F,GH) =· h(F,G,H) we have in particular HR(F,G) = HR(F,G) 



so that RTR(F,G) = HR(F,G) and hence H = HT-l because 

R(F,G) has rank n. This concludes the proof that i is 

injective. 

2.3.S. Corollary 
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The prevariety Mcr is separated, i.e. Mcr 
m,n,p is m,n,p 

a variety. 

2.3.6. Corollary 

Lcr + Mcr is a quotient for the action of GLn m,n,p m,n,p 
on Lcr in the category of algebraic varieties. In m,n,p 
fact Mcr is also a geometric quotient in the sense of m,n,p 
[6], but we shall not need this. 

2. 3. 7 •. 

Let yco = w- 1 cw n Lcr,co) and vco • vco n v Then a a a m,n,p a8 a as· 

the "1as: VaS + VSa induce isomorphisms <fi~~: V~~+V~~· 
. Gluing together the v~0 by means of the "1~~ we obtain an 

open subvariety Mcr,co of Mcr which is the image of m,n,p m,n,p 
Lcr,co er er f h m,n,p under n:Lm,n,p + Mm,n,p· It ollows that t e 
induced morphism nc0 : Lcr,co + Mcr,co is also a cate-m,n,p m,n,p 
gorical quotient. 

2.3. 8 .. 

Similarly, using yP • ,,,-l(W n LP ) 
a ~a a m,n,p ' 
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yl.IP. -.· 1 cw n L11 ) vµp = w· 1 cw n Lµ,p ) and the 
a a a •,n,p ' a a a m,n,p 

corresponding v- 0 we obtain categorical quotients LP 
ap m,n,p 

+ MP , LJ.1 + MJJ , Lp,µ Mp,µ where the 
m,n,p m,n,p m,n,p m,n,p m,n,p 

M- are subvarieties of Mcr • m,n,p m,n,p 

2.4. Some Realization Theory 

The morphism n of (2.3.4) above induces a morphism 
,.. 
h: McT,co + Ar It is the purpose of this and the follow­

m,n,p - • 
A 

ing subsection to show that h is injective and to derive 

equations for the subvariety h(Mcr,co) c ~r. To do this m,n,p 
we use some {partial) realization theory an embodied by 

proposition 2.4.3.below. First a definition 

2.4.1. Definition 

Let A0 ,A1 , ••• be a sequence of p x m matrices. Then 

hq,r(A) denotes the block Hankel matrix 

Ao Al Ar 

Al 
hq,r(A). . . 

Aq Ar+q 

Z.4.2. Definition 

If A is a matrix and ac is a subset of the column 
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indices of A, and a is a subset of the row indices of 
r 

A, then we define 
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A matrix obtained from A by removing all columns whose 
ac 

A 
ar 

index is not in a c 
matrix obtained from 

index is not in a 
r 

A by removing all rows whose 

matrix obtained from A by removing all rows and 

columns whose indices are not in ar, ac respec­

tively. 

2.4.3. Proposition 

Let A0 ,A1 , ••• ,Azn-l be a sequence of 2n matrices 

with coefficients in k, all of size p x m, and suppose 

that rank(h 1 1 (A)) = rank(h 1 (A)) = rank(h 1 (A)) 
n- ,n- n,n- n- ,n 

= n. Then there exists an (F,G,H) E Lcr,co such that 
m,n,p 

HFiG =Ai for i = 0,1, ••• ,Zn-l. 

Moreover, if (FGH) e:Lcr.co is a second triple such 
• ' m,n,p 

that HFiG =Ai for i = 0,1, ••• ,Zn-l then there is a 

T e GL0 such that (F,G,H) T (F, G ,H) • 

Proof. Existence of a triple (F,G,H) e: L such m,n,p 

that 

i = O, ••• ,Zn-1 (2.4.4) 

holds is assured by the realizability criterion 11.32 of 
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Chapter 10 of [4]. We define 

n-1 lr(F,G) = (G,FG ••• F G), 

Q(F,H)' = (H'F'H' ••• (F')n-lH') (2.4.S) 

Then it follows from (2.4.3) that Q(F,H)R(F,H) 

hn-1,n-l (A). Now we have rank (R(F,G)) ~ n, ~ 

rank(Q(F,H)) ~ n and rank(hn-l,n-l(A)) = n. It follows 

that rank(R(F,G)) = rank(Q(F,H)) = n, so that (F,G,H) 

£ Lcr,co. Not let (F,G,R) be a second triple in L m,n,p m,n,p 
such that 

(2.4.6) 

Then as above we find Q(F,H}R(F,G) hn-l n-l(A). Now • 
because ll(F,G) has rank n there is a subset a of size n c 

of the column indices of R(F,G) such that R(F,G)a is 
c 

invertible; further because Q(F,H) has rank n there is a 

subset ar of size n of the row indices of Q(F,H) such 

that Q(F ,H) is invertible. We have 
r 

(2.4.7) 

so that it follows that all five n x n matrices occurring 

in (2.4.7) are invertible. 

Now let 
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(Fl,Gl,Hl) 
T (F ,G,H) , where 

(F1 ,Gl' H1) ---T (F,G,H) , where 

Then we have of course 

which means 

and moreover because 

we have 
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T = Q(F ,H) a (2.4.8) 
r 

'f = Q(F,H) (2.4.9) 
ar 

0, ••• , Zn -1 (2.4.10) 

hn-1,,.n(A) 

(2.4.11) 

(2.4.12) 

Now combine (2.4.12) and (2.4.11) to obtain that R(F 1 ,G1) 

= R(F 1 ,G1) which be corollary 2.4.2 of [l] means that 

F1 = F1 and G1 = (j1 • and because R(F ,G) = R(F ,G) has 

rank n, it follows from (2.4.11) that also H1 = H1• We 

therefore have (F,G,H)T = (F1 ,G 1 ,H1) = CF1 ,G1 ,H1) = 
(F,G,H)T, which proves the second statement of the 

proposition. 

2.4.4. Corollary 

" The morphism h: Mct,co + ~r of (2.3.4) above is m,n,p 
injective. 
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2.S. Equations for ~:~~~ 
A 

By means of the injective morphism h we can now con-
' 

sider Mcr,co as a subvariety of Ar. r = (n+I) 2pm, where ""111,n,p 
we write x £ Ar as an (n+l)n x (n+l)m matrix. We now 

consider the following sets of polynomials in the coordi­

nates of ~/. 

Pa(x): these polynomials are such that Pa(x) = O 

for all a if and only if' the matrix x is of block 

Hankel type (cf. 2.4.1) with the blocks of size 

p x m. (2.S.l} 

Qb(x): here Qb(x) runs through all determinants 

of (n+l) x (n+l) submatrices of x. (2.5.2) 

Rc(x): here Rc(x) runs through all determinants 

of n x n submatrices of the submatrix x' of x 

which is obtained by removing the last p rows 

and the last m columns. 

2.5.4. Lemma 

Let (F,G,H) e Lcrn,cpo' x = h(F,G,H) m, , 

have P8 (x) = O for all a, Qb(x) = 0 for 

is a c such that Rc(x) ~ o. 

r 
£ A • Then we 

all b and there 

Proof. Obvious because h(F,G,H) = Q(F,H)R(F,G). 
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z.s.s. Proposition 

h(Mcr,co) ar is the subvariety consisting of those 
m,n,p 

x £ !:/ such that Pa(x) 0 for all a, Qb(x) = 0 for all 

b and such that these is a c such that Rc(x) 1 o. 

Proof. Because of lemma Z.S.4 we only have to show 

that if x ~ ~s satisfies Pa(x) = 0 all a, Qb(x) = 0 all 

b and Rc(x) r 0 for some c, then x is in h(Mcr,co). m,n,p 

Write x as a block Hankel matrix 

x 

This can be done because Pa(x) = 0 for all a. Cf. 2.5.l. 

Then the matrices A1 , ••• ,Azn-l satisfy the conditions of 

proposition 2.4.3 so that there is a triple (F,G,H) £ 

Lcr,co such that HFiG =A. for i = 0,l,2, ••• ,2n-l. To 
m,n,p 1 

show that h(F,G,H) = x it therefore only remains to show 

that HF 2nG = Azn· This follows from lemma 2.5.6 below. 

2.S.6 Lemma 

Let E,E' be two partitioned matrices 
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E· l~l E' • !*l 
and suppose that rank(E) = rank(E') = rank(A). Then 

D • D' • 
~ 

Proof. Let d be an element of D and d' the corre-

sponding element of DI. Let A' be an n x n submatrix of 

A such that det(A') f 0 where n = rank(A). Suppose A' = 
E , then· also A' = E' • Let B = a U {i} where 
ar,ac ar,ac r r 

i is the index of the row in E containing d (and of the 

row in E' containing d') and Bc = QC· u {j} where j is the 

index of the column in E containing d (and of the column 

in E 1 containing d') • Then we have det (E ) = 0 = 
l\,Bc 

det(E~ 0 ). 

i>r•Pc 
All elements of Ea B and ES B except 

r' c r' c 
possibly the one in the right hand lower corner are equal 

and det(A') f O. It follows that d z d'. (By expanding 

the determinants along the last row e.g.). 

2.S.7. Corollary (of proposition Z.5.5.) 

Mcr,co is a quasiaffine variety. 
m,n,p 

2. s. 8 .• 

Using si.ldlar arguments as above combined with those 

used in [l] to find equations for the variety M n (cf. m, 
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[1] section 3.2), it is not difficult to find equations 

for the variety Mcr (as a subvariety of G x Ar 
m,n,p n,(n+l)m -

or as a subvariety of ~r'x ~r. where r' cCn+~)m) -1). 

Mcr is a quasiprojective variety but not a quasi m,n,p 

affine variety if m > 1. This last statement is seen as 

follows. The embedding Lcr + Lcr given by (FG) ~ 
m,n,p m,n,p 

(F,G,O) where 0 is zero natrix of appropriate size, 

induces an embedding M + Mcr 
m,n m,n,p Now according to [l] 

section 3.3.there is an embedding ~l + M m,n Combining 

an embedding p1 + Mcr 
= m,n,p these we find which shows that 

Mcr is not quasi affine. (Cf. also 
m,n,p the proof of 

theorem 3.4.6 in [1]). 

2.6 The Algebraic Principal Fiber Bundle 

lf: Lcr .... Mcr As in [3] we can now show that 
m,n,p m,n,p 

Lcr 
m,n,p ~ Mcr is an algebraic principal GL fibre bundle 

m,n,p n 

over the · Mcr d ld l · variety , an we cou use an ana ys1s 
m,n,p 

of the nontriviality or triviality of this bundle to 

prove nonexistence and existence of algebraic continuous 

canonical forms. This can be done almost exactly as in 

[3] section 3 except that one has to construct a different 

example because the example of [3], section 3.2 is essen­

tially nonalgebraic. Cf. also section 4.1 below for 

further comments. In this paper, however, we shall first 
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discuss the f.ule moduli variety properties of Mcr and m,n,p 
then use th~ to investigate the existence of continuous 

algebraic canonical forms; this is the same procedure as 

in (2], cf. especially theorem 6.1 of [2]. The two 

approaches are essentially equivalent because the under-

lying vectorbundle of the universal family over Mcr is, m,n,p . 
the algebraic n-vectorbundle associated to the principal 

GLn bundle Lcr m,n,p 
.... Mcr • 

m,n,p 

2.7 The Codimension of (Mcr \ Mcr,co) in Mcr • 
m,n,p m,n,p m,n,p 

Let K be the subvariety of Mcr defined by the m,n,p m,n,p 
equations det(Q(F,H)) 8) = 0 for all subsets of size n of 

the row indices of Q(F,H). i.e. 

K = Mcr \ Mcr,co 
m,n,p m,n,p m,n,p (2.7.1) 

We want to find out something about the codimension of the 

closed subvariety Km p of Mcr • The result is: ,n, m,n,p 

2.7.2. Proposition 

The codimension of K in Mcr is 1 if p m,n,p m,n,p i and 

it is > p if p ~ 2. 

To prove proposition 2.7.2 we use the following com­

binatorial lemma. 
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Z.7.3 ~ 

Let X = {a1 , ••• ,an} be a finite set of n elements. 

Let X0 be a subset of X and a:X0 + X an injective map with 

the following property 

If Y c X0 then a{Y) ~ Y unless Y = X0 = X. (Z.7.Z) 

Then there exists a cyclic permutation ~:X + X of order n 

"' such that a(a) = a(a) for all a & X0 • 

Proof. If X0 = X then condition (Z.7.4) says that 

a is already a cyclic permutation of order n. We can 

therefore assume that X0 1 X. We are going to show that 

there is b € X.\ XO and an injective map cr1 : x1 + x with 

x = x 1 0 
u {b} and cr1 (a) = a (a) for a & XO such that 

(2.7.4) holds with X0 replaced by x1• By induction (with 

respect to the number of elements in X \ X0 ) this proves 

the lemma. Because X0 I X there is an a1 & X which is not 

in the image of cr. If a1 e X0 let a 2 = cr(a1), if a1 t X0 

cr(a 2), if a 2 t X0 stop; continu-

ing in this way we find a sequence of elements a1 ,a2, ••• , 

ar, r > 1 such that 

a (a. 1) for i 
1-

l, •.. ,r-1, 

Note that the a1 , ••• ,ar are all different from one another 
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because a is injective and a1 t Ima. There now are two 

possibilities 

(i) There-is nob t X \Ima different from a1 • 

In this case Ima has n-1 elements and hence so has 

X0 • Therefore X \ X0 ='{ar}. Let Y = X \'{a1 , ••• ,ar} 

and suppose Y ; ~. Then we have Y c X0 because X \ X0 = 

{a}. We also have a(Y) c Y because at{a1, ••• a }nX) r r o 
c{a1, ••• ,ar}. 

Therefore, because is injective, we would have 

a(Y) = Y contradicting (2.7.2). Therefore Y = ~ and X = 

{a1 , ••• ,ar} in this case (i.e. r = n). We now take b = 

a1 and define a1 (b) = a1• Then x1 = X0 u {ar} = X and 

a1: X + X is clearly the desired cyclic permutation. 

(ii) There is a b1 EX Im which is different from a1 • 

In this case we take b = ar and define cr1 (b) = b1• 

The map cr1 is injective because b1 t Imo. Now sup­

pose Y C X1 is such that a1(Y) = Y. Note that in 

this case X \ Ima has at least two elements, hence 

so has x - XO, so that xl ; x. There are two possi­

bilities. 

.. a 
r t Y. In this case Y = a1(Y) 

Y c X0 which contradicts (2.7.4). 

cr(Y) and 

ar £ Y. Then because a1 (Y) = Y we must have 
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ar-l £ Y, ar_ 2 E Y, ••• ,a1 £ Y c x1 , which is a con­

tradiction because there is no c E X such that 

cr(c) = a 1 because a 1 t Imcr1 = Ima U {b1}. This con­

cludes the proof of the le .. a. 

2.7.6. 

Now CG'a$ider x E Arnn; consider (Fa(x),Ga(x), where 

a is a aice selection, a c J • We recall how F (x) a,n. a 

and G (x) are defined (cf. l section 2.3). Let J • a 
a U {s(a,l), ••• ,s(a,m)} as an ordered subset of J n· m, 
Let x1 be the column vector eonsisting of the first n 

coordinates of x, x2 the column vector consisting of the 

second n coordinates, etc. We now define n + m column 

vectors yi, i = l,Z, ••• ,m+n of length n as follows 

if the i-th element of J is the 1-th element 

of a 

if the i-th element of J is s(a,j) (2.7.3) 

where e1 is the 1-th standard basis vector. 

The matrices Ga(x) and F0 (x) are now defined by 

Ga(x)j = yj, j = l, ••• ,m; Fa(x)j = Ym+j' j = l, ••• ,n 

(2.7.4) 

It readily follows from this that F (x) is a matrix of a 
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the following type: the j·th column of Fa(x) is either 

a standard bccis vector e1 with 1 > j, or Fa(x)j = xi 

for some i; :eovf"" i~ Fa(x)j 1 = e11 , Fa(x)j 2 = e12 with 

j 1 < j 2 ther. .:. < - - • Applying lemma 2. 7. 3 we thus see 

that by speclfying the xi' i = l, ••• ,m to be suitable 

standard basis vectors one obtains 

2.7.9 ~ 

For every nice selection a, there is an x £ ~n such 

that Fa(x) is a cyclic permutation of order n of the stan· 

dard basis vectors. 

2.7.10. 

Let a be a nice selection. Now consider K n V m,n,p a 

c V \ Vco where a is a nice selection. a a This closed sub-

variety of Ua is defined by the equations det(Q{Fa(x), 

Ha{x)) 6) c 0 for all subsets 6 of size n of the row 

indices of Q(Fa(x),Ha(x)). We number the rows of 

Q(Fa(x),Ha(x)) as follows 

('",1), ... ,(0,p); (l,p), ••• ,(1,p); ••• 

, (n.~ .••• , (n,p)) 

Take 81 ='{(0,1),(1,1), ••• ,(n-1,1)}. Write x £Va 

amn x Apn ( ) d · h · ( ) _ as x • y,z an write z.as t e matrix zij , 
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i = l •••• ,p. j = 1, ••• ,n. We write Fa(x) = Fa(y), 

H (x) = z. Now consider the equation a 

det(Q(F (x),H (x)) 0 ) = 0 
a a Pl 
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(2.7.5) 

Now specify the y such that Fa(x) is a cyclic permutation 

matrix of order n and suppose that the first row vector 

of Fa(x) under this specification is the 1-th standard 

basis vector. Now take zij = 0 for j ; 1. Then (2.7.5) 

becomes 

(2.7.6) 

If p = 1. equation (2. 7 ."11) defines K n V (because m,n,p a 

if rank Q(F,G) = n then tnere is a nice "selection" e 
from the row indices of Q(F,H) such that det(Q(F,H) 6) ; 0 

by the transposed version of lemma 2.1.1). Equation 

(2.7.12) which is obtained from (2.7.11) by a suitable 

specification of some of ~he variables shows that (2.7.5) 

is nontrivial, so that the -codimension of Km,n,p Ii Va in 

Va is one for each nice -selection a proving that the 

d • f K · -Mcr · co imension o n 1 in n p is one. m, • m, , 
Now suppose 

that p > 1. And consider the selections 

ai ='{(O,i),(1,i), ••• ,(n-1,i)} i = l, ••• ,p 

Specifying they and z as~efore (NB the specification 

to be used depends on a!), the equations 
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det(Q(F0 (x),Ha(x))S_) 
l 

specify to 

0 i 

0 i 1, ... ,p (2.7.7) 

1, ••• ,p (2.7.8) 

The equations (2.7.14) are independent, hence so are the 

equations (Z.7.13) proving that the codimension of K m,n,p 

n Va in Va is~ p. This holds for all nice selections a 

so that the codimension of K in Mcr is always ~ p. m,n,p rn,n,p 

We have now proved assertion 2.7.2. 

2.7.12. Remark 

To prove 2.7.2 all one really needs is the existence 

of a triple (F,G,H) £ W for each a such that F' is a 
a 

cyclic matrix. This can be seen as follows: U is a non-

empty open subvariety of L m,n,p Let L' = • {(F,G,H) E 

Lm,n,plF' is cyclic} this also defined a nonempty open 

subvariety of L Because L is irreducible 
m,n,p m,n,p 

L' n U r .p. 
Cl 

T (F,G,H) where 

is cyclic. 

Let (F,G,H) E L' n U and let (F,G,H) 
-1 T = R(F,G) • Then (F,G,H) E W and F' . a a 

3. THE FINE MODULI VARIETY Mcr 
m,n,p 

We now proceed to study families of linear dynamical 

systems. Some motivation as to why one would like to 

• 



319 

study families is given in section 1.8 of [3]. Moreover, 

in this paper we shall use families to i?vestigate whether 

there exist continuous canonical forms or not. This is 

not necessary; one can also use the principal algebraic 

GLn bundle L~:n,p + M~:n,p" Cf. also 2~6 above. This 

part of the theory in the algebraic geometric case is 

practically completely analogous to the corresponding 

part of the topological case which was treated in sec-

tion 4 of [3]. 

3.1. Families of Linear Dynamical Systems 

3.1.1. Definition 

A family of linear dynamical systems over a variety 

S of dimensions (n,m,p) consists of 

(i) an algebraic n-dimensional vectorbundle .p:E + S 

(ii) an algebraic vectorbundle endomorphism F:E + E 

(iii) an algebraic vectorbundle homomorphism G:Sx:Am-+ E 

(iv) an algebraic vectorbundle homomorphism H:E + SxAP. 

Let s e: s, then F,G,H induce homomorphisms Fs:Es + E s' 
G :sxAm + E s' Hs:Es -+ sxAP. E = P-l(s) is the fibre 

s - .... ' s 
over s. (Cf. Appendix 3 of [ 1 ]) • Choosing a basis 

e1(s), ••• ,en(s) of E5 and taking the obvious bases in 

sxam and sxaP we calculate the matrices of Fs,Gs,Hs 

relative these bases. Let the result be 
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(F(s,e),G(s,e),H(s,e). This triple depends on e1{s), ••• , 

e (s) only to the extent that a different choice of 
n . 

e1 (s), ••• ,en(s) gives a triple in the same orbit (under 

GL0 ) as (F(s,e),G(s,e),H(s,e)). 

The family ! is said to be completely reachable if 

(F(s,e),G(s,e)H(s,e)) E Lcr for alls. (This is well m,n,p 
er defined because Lm,n,p is GLn invariant). 

3.1.2. The Canonical Morphism Associated to Completely 
Reachable Family 

Now let r be a completely reachable family. Then 

Fs,Gs,Hs define a unique orbit . 1cr 
in m n p and thus a uniquE , , 

point in Mcr 
m,n,p which we shall denote f!(s). Thus we have 

a map fr : s + Mcr • 
m,n,p Using the local triviality of the 

bundle E one shows by means of the algebraic analogues 

the constructions in 4.1.2 - 4.1.8 of [3] that fr is a 

morphism in the category of varieties. 

3.1.3 

In the topological case we associated a continuous 

map fr : X + Mm n p(IR) to every family !, and used 
• • 

this map to define complete reachability of families. 

This cannot be done in the algebraic geometric case 

because the variety M does not exist. m,n,p 

of 
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m,n,p 

Let a be a nice selection. Let E = V x An p : 
a a - • a 

Ea +Va the obvious projection. We define families Ea 

of linear dynaminal systems with underlying bundles E 
a 

by the formulas 

Fa(x,v) = (x,Fa(x)v), Ga(x,u) = (x,Ga(x)u), 
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Ha(x,v) = (x,Ha(x)v) (3.2.1) 

2. 4. 5 

Now let E 0 = V 0 x An and define the isomorphisms a., a., -

~ae= Eae + Eea by formula (4.3.6) of [3]. Then glueing 

together the E by means of the 4> 0 we obtain an algebraic a a., 

vectorbundle Eu. The Fa,Ga,Ha are compatible with the 

$aB in the sense of (4.3.9) - (4.3.11) of [3] and thus 

define homomorphisms Fu: Eu + Eu gu· Mcr x Am + Eu, ' · m,n,p -
Hu: Eu + Mcr x Ap 

m,n,p - • This defines the family Eu. The 

family Eu is completely reachable (because this is true 

for the families E ), and the associated map f u= M~rn p + 
a E • ' 

Mmcr is the identity map (because the triple (F (x), ,n,p a 
Ga(x),Ha(x)) maps to x E Va c M under~= Lcr + m,n,p m,n,p 
Mcr ) 

m n p • , . 
3. 3. The Fine Moduli Variety Mcr m,n,p 
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3.3.1 

Two.families r, E are isomorphic if there is an 

algebraic vectorbundle isomorphism $:E + E such that 

Fcp = </lF, ~G = G, H = H<1i. For each s E: ~k· the cate-

gory of algebraic varieties over k, let \i,n,p (S) be the 

set of isomorphism classes of completely reachable fami-

lies of linear dynamical systems over S. By means of 

the pullback construction we turn:~ p(S) into a func-m,n, 
tor ~ :Schopp + ~. 

m,n,p -=-k -

3. 3. 2. Theorem 

The variety Mcr is a fine moduli variety for m,n,p 

t n p or, in other words, the functor ~ n is repre-m, , m, ,p 

sentable by Mcr • More precisely, the assignment m,n,p 
:E + f~ induces a functorial isqmorphism ~ (S) + ,. m,n,p 
Schk(S,Mcr ); the inverse isomorphism assigns the iso-
~ m,n,p 
morphism class of f!ru to f: S + Mcr p~ m,n, 

~ 

Proof. Identical with the proof of the correspond- " 

ing theorem 4.5.2 of [3]. 

4. EXISTENCE AND NONEXISTENCE OF ALGEBRAIC CONTINUOUS 
CANONICAL FORMS 

In [l] we used the fact that M admits an embedding m,n 
t.1 + M if m ~ 2 to show that there is no algebraic -ill,n 
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continuous form for completely reachable pairs of matrices. 

This cannot be used to prove e.g. part (iii) of theorem 

1.5 because as we have seen Mcr,co is a quasi-affine alge-m,n,p 
braic variety. Further the example we used in [3] to 

prove nonexistence of continuous canonical forms for real 

linear dynamical systems if m > 2 and p ~ 2 is essentially 

nonalgebraic. There is, however, a three (instead of one) 

dimensional version of-it which is algebraic and that is 

the example we shall use in this paper. We proceed via 

moduli varieties as in [2]. 

4.1. Triviality of Eu and Existence of Continuous Alge­
braic Canonical Forms 

4.1.1. Theorem 

Let L c Lcr be a GLn-invariant subvariety of m,n,p 
Lcr ind let M = w(L). Then there exists a continuous m,n,p 
algebraic canonical form on L if and only if the algebraic 

vector bundle EulM is trivial. 

Proof. Let ~L be the subfunctor of ~ m,n,p m,n,p 
defined by considering only isomorphism classes of fami-

lies I over S such that fI maps S into M = w(L). It fol­

lows directly from theorem 3.3.2 that I+ fI then defines 

a functorial isomorphism ~L P(S) ~ Schk(S,M) and that m,n, 
I U the inverse isomorphism is given by f + f"(I IM) where 

IulM =· (EulM,FulM,GulM,HuiM) is the restriction of Iu to 
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M. Now suppose that there exists a continuous algebraic 

canonical form c; L .... L. Because c kills the action of 

GLn there' is a unique morphism c: M .... L such that c = cir. 

For each x £ M we write c(x) = (Fc(x),Gc(x),Hc(x)). Note 

that nc. id, by condition (1.3.1) of the definition of 

canonical form. 

We now define a family Ic over M as follows: ~ 
tc • (Cc,Fc,Gc,Hc) with Ec = M x An, Fc(x,v) = (x,Fc(x)v), 

c c G (x,u) = (x,Gc(x)u), H (x,v) = (x,Hc(x)v). Because nc 

id and c(x) = (Fc(x),Gc(x),Hc(x)) we have that fI:c: M .... M 

is the identity morphism, cf. 3.1.2. But, according to 

theorem 3.3.2, or rather the relative version discussed 

in the beginning of this proof, we have that (F )!(Eu!M) 
I:c 

is isomorphic to Le. which in particular means that 

(f c)!(EUIM): EC= M x an; but f =id, hence EUIM is 
I I:c 

trivial. 

Inversely suppose that Eu!M is trivial. Then we can 

find n algebraic sections el' ••• ,en: M ~ Eu IM such that 

e1 (x), ••• ,en(x) is a basis for E~ for all x £ M. Let f 
F(x,e),G(x,e),H(x,e) be the matrices of Fx: E~ .... E~, Gx 

{x} x Am .... Eu, H : Eu .... xxAP relative the obvious bases 
x x x 

in x x am and x x aP and the basis'{e1 (x), ••• ,en(x)} 
u of Ex. We now define a morphism c: L .... L as follows 

c(F,G,H) = (F(x,e),G(x,e),H(x,e)) where x = n(F,G,H) 



One easily checks that this is a continuous algebraic 

canonical form. 

4.1.2. The Local Canonical Proms c#a" 
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Let a be a nice selection. The bundle EulUa is triv­

ial (by the definition of:Eu cf. 3.2) hence by theorem 

4.1.l there exist continuous algebraic canonical forms 

on Ua. Such canonical forms are well known. An example 

is the canonical form c;a defined by 

T -1 c1a(F,G,H) = (F,G,H) ,T = R(F,G)a (4.1.3) 

4 .1. 3 Corollary 

If m = 1 there is a continuous algebraic canonical 
er 

form on Lm,n,p" 

Proof. If m = 1 there is only one nice selection a, 

and hence Lcrn p 
m, • 

4.2. Duality 

ua by lemma 2.1.1. 

The assignment o: (F,G,H) + (F',H',G') defines an 

isomorphism of algebraic varieties L + L • If m,n,p p,n,m 
L C Lm n p is GL -invariant then so is o(L) C L • (but , , n p,n,m 
o is not GLn-invariant). As in [3], 3.1.6 one now easily 

shows that there is a continuous canonical form on o(L). 
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4.2.1. Corollary 

There is an algebraic continuous canonical form on 

Lcr if P = 1. m,n,p 

4.3. Example of a Nontrivial Algebraic Line Bundle 

1 2 1 . 2 
Let u1 = ~ x CA \(O,O)), u2 = ~ x CA \(O,O)). We~ 

give u1 coordinates (t,y1 ,y2) and u2 coordinates (s,x1 ,x 2}. 

Let u12 ='{(t,yl'y 2) e: U1 t r O}, u21 ='{(s,x1 .x2 ). e:U 2 !s '} 

O}. We define an isomorphism •: u12 u21 by (t,y1 ,y 2) ~ 

-1 (t ,y1 ,t,y2t). Let X be the prevariety obtained by glue-

ing u1 and u2 together by means of •· In fact X is a 

variety viz. the quasi-affine subvariety of A4 

{(z1 ,z2 ,z 3 ,z 4)} given by z1 z4 = z2z3 and (z1 #- 0 Or z2 #- 0 

or Z3 1 0 or Z4 r 0). The embeddings of ul and Uz is this 

subvariety are given by (t,y1 ,y 2) ~ (y1t,y2t,y2), 

this respects the identification <j> give.n above. 

We now define an algebraic line bundle V over X ~y ~ 

glueing u1 x A1 and u2 x A1 together by means of the iso­

morphism 

-1 ty, x2 = ty2 , v = t u (4.3.1) 

Now suppose that this line bundle is trivial. Then 
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there must be everywhere nonzero sections ul + ul x a1 • 

(t,Y1•Y2) + ((t,yl,y2)' &1(t,y1•Y2)); U2 + Uz x al, 

(s,x1 ,x 2) + ((s,x1 ,x 2), g2 (s,x1 ,x2)) compatible with the 

identification l. Now g1 and g2 are morphisms Ai x 

ca2 x co. o) ) + A1· Because A1 x ( ) is of codimension 2 

Al x A2 = f:.3 this means that &1 and &2 extend to morphisms 

on all of A3 - . i.e. &1 and g2 are polynomials. Putting 

everything together we therefore have that C is a trivial 

line bundle iff there are polynomials g1 (t,y1 ,y2), 

g2(s,x1 ,x 2) such that g1 (t,y1 ,y2) i o if y1 i O or y 2 i o 
and g 2 (s,x1 ,x2) f 0 if Xl f 0 Or Xz r 0 and such that 

moreover 

(4.3.2) 

for all points (t,y1 ,y2) such that t i 0 and y1 i 0 or 

y2 i O. One easily checks that the only polynomials 

g1 (t,y1 ,y2) such that g1 (t,y1 ,y 2) i o for all (t,y1 ,y2) 

for which y1 i 0 or y 2 i 0 are constants. Similarly 

g2(s,x1 ,x 2) is a constant. But then (4.3.2) is a contra­

diction. So we have proved 

4.3.2 Lemma 

The line bundle V defined by 4.3.l is nontri~ial. 

4.4. Examples 

Let p ~ 2 and m > 2. We write down a number of G,F 
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and H matric'5 as follows 

If n • 1, a ~ 2 G1 (t,s) = (t s 0 ,m 

If n < 2 < m < n G m(t,s) n, 

t 

1 

a 

. . 
a 

s 

1 

1 

1 

0) 

(4.4.l) 

0 • • • 0 

0 • 0 

B 

(4.4.2) 

where a is a nonzero element of k different from 1, and 

where B is an (n-2) x (m-2) matrix with coefficients in 

k such that the columns of B and the column vector 

(1, ••• ,1)' together span an m-1 dimensional subspace of 

kn-z. Such a B exists because 2 < m < n. 

, 

f' 
t s 

1 1 

If n > 2 Gn 2(t,s) a 1 m (4.4.3) , 

a l 



If m > n > 2 -

If m n > 2 

Gn,m(t,s) 

G (t,s) 
n,n 

al 0 

0 a2 

F = n 

0 

= 

t s 0 . . . 0 

1 1 1 0 0 

0 0 0 . . . 
. . . 

0 

0 0 o ••• 0 1 
~ 

t s 0 • • • • 0 

1 1 
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0 0 

0 0 -...-­
rn-n-1 

(4.4.4) 

a 1 

. }·-2 
0 • • • • 0 a 1 
~ 

n-2 (4.4.5) 

0 

(4.4.6) 

0 

0 

where a1 , ••• ,an are n different elements of k which are 

all different from zero 
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4.S 
er 

An Embedding X + M-
• "ln, n, p 

(4.4.7) 

Let u1 , u2 be as in 4.3 above. We define for all 

n,m,p with m > 2 and p ~ 2 

0 n,m,p 

(4.5.1) 

an,m,p: Uz + L~:n,p•(s,x 1 ,x 2 ) + (Fn,Gn,m(l,s),Hp,n(x1 ,x2) 

We now note that if ts = 1, x1 

(4.5.2) 

where 

0 

T(t) • 

0 

0 0 1 
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obtained from the morphisms a and a of (4.5.1) n.m,p n,m.p 
be composing with n: Lcr · + Mcr , combine to define m,n.p m,n,p 
II. morhpism 

-r : X + Mcr 
m,n,p m,n,p (4. s. 3) 

where X is the variety defined in 4.3 above. 

4.5.4. 

Let a be the nice selection'{(0,2),(1,2), ••• ,(n-l,2)} 

then we see from 4. 4 that a p (U1) c U and hence m,n. a 
'm,n.p(U1) c Va. Let B be the nice selection'{(0.1),(1,1), 

••• ,(n-1,1)} then we see from 4.4 that crm,n,p(U2) c u8 
and hence 'm,n,p(U2) c V • It follows that the pullback 

u of E by means of -r n p is an algebraic vectorbundle over m, , 

x whose restrictions to ul and u2 are trivial, and the 

gluing data of this bundle are given by (Cf. [l] Appen­

dix 3.6). 

(4.5.5) 

where T(t,y1,y2) is equal to the matrix 

(4.5.6) 

where a and Bare the nice selections'{(0,2),(1,2), ••• , 

(n-1,2)} and'{(0,1),(1,1), ••• ,(n-l,l)}. Let E + X be 
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n 
this bundle. The exterior product bundle A E + X is then 

the line bundle obtained by gluing together u1 x ~l and 
l 

u2 x A by means of the isomorphism 

( 4. s. 7) 

and from (4. 5 .6) we see that 

{ -1 if 2 

• t-1 n-2 

n < 

det(T(t,Y1·Yz)) (4. s. 8) 

t a if n < 2 

,. 

~ 

It follows that the line bundle defined by ' is nontrivial 

Cf. 4.3 above. 

4.5.9. Proposition 

' The algebraic vectorbundle T' Fu is nontrivial n,m,p 
if p ~ 2, m ~ 2. 

Proof. This follows from the above because if 

E + X is a trivial algebraic n-dimensional vector bundle 
n 

then A E + X is a trivial line bundle. 

4.5.10. Corollary 

b b er h ( ) Let M e a su variety of Mm p such t at T m P x ,n, n, , 
CM. Then EulM is a nontrivial algebraic vectorbundle. 
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4.6. Nonexistence of Continuous Algebraic Canonical Forms 

We can now prove theorem 1.5. 

4.6.1. Proof of Theorem 1.5 

First let m > 2 and p ~ 2. Let Mw = ~c1:,n,p) where 

Lw runs through the subvarieties listed in 1.4. Then m,n,p 
we see from 4.4 

( 4. 6 .1) 

if m 1 n and p 1 n, and that in any case (still assuming 

p ~ 2 and m ::._ 2) 

T (X) c Mcr,co,µ 
m,n,p (4.6.2) 

By corollary 4.5.10 and theorem 4.4.1 this takes care of 

the only if parts of statements (iii), (iv), (v), (vi) 

of theorem 1.5. (Because Lp,µ c LP and Lcr,coc m,n,p m,n,p m,n,p 
1cr,co,p). 
m,n,p On the other hand if m 1 in cases (iii) 

and (iv) and m = 1 or n in cases (v) and (vi) then the 

respective subvarities are contained in one U for a a 

certain nice selection a. By 4.1.2 there are therefore 

continuous algebraic canonical forms in these cases. 

The corresponding fact for p 1 in cases (iii), {iv) 

and p = 1 or n in cases (v), (vi) follows by duality. 

Cf. 4.2. This proves (iii) - (vi) of theorem 1.5. 
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The if part of (i) is corollary 4.1.3; the if part 

of (ii) follows by duality. Cf. 4.2. To prove the only 

if part of (i) observe that if m ~ 2 v((F0 ,Gn,m(t,s),O), 

'where t ; O or s ; O, depends only on the point (t:s) e pl -
and not on the actual t and s. Thus 

defines a morphism ll + Mcr for all (m,n,p) such that m,n,p 
' m > 2. As in 4.5 one now proves that T 0 Eu is nontrivial. 

By 4.5.-10 and 4.4.l this proves the only if part of (i). 

The only if part of (ii) follow~ by duality. Cf. 4.2. 

This concludes the proof of theorem 4.5. 

4.1. On Relations between Various Local Canonical Forms 

Let 9 c l.cr be a GLn invariant subvariety of m,n,p 

L~:n,p• and suppose that there is a continuous algebraic 

canonical form c: u + u. Let K:U + a1 be a morphism, 

e.g. a "coordinate function." Then Kc: U + A1 is GLn 

invariant, showing t:hat "the coordinate functions of • 

canonical form lJ,re invariants." 

4.7.1 

Now let w:· U + GLn be a morphism which kills the 

action of GL~ on U. Then if c: U + U is a continuous 

algebraic caaonical form so is ea: U + U which is 
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defined by (F,G,H) + c(F,G,H)a(F,G,H). Inversely if c• 

is a second continuous algebraic canonical form on U 

then c' = ea for some morphism a: U + GL which kills n 
the action of GLn on U. All this is proved as in sectiofi 

3.6 of [lJ. 

4.7.3 

The situation becomes slightly more complicated if 

we take U = Uco. We still have the canonical forms a 
c#a and all other canonical forms are obtained by means 

of a morphism ~: v~0 + GLn. Now if p 1 then det(!(x)) 

need not be a constant independent of x £ Vco because a • 
the codimension of V \ v~0 in Va is one if p = 1. An a. a 

example of this is found by taking m = 1 p and compar-

ing the canonical form c 11 a and its dual on Mcr,co How-l,n,1 • 
ever if p .::_ 2, then the codimension of Va\ v~0 in Va 

is> 2 (cf. section 2.7 above), which means that in 

this case we again have that a: V~o + GLn is given by 

n 2 polynomials such that det(a(x)) is a constant inde-

pendent of x £ Yeo a • 
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