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1, INTRODUCTION

In this paper we treat the algebraic-gedmetric ver-
sion of the topological theory developed in [3]. That
is we study linear dynamical systems over an algebrai-

cally closed field k

b'4 = Fx, + Gu

t+l t t 7t

7 (1.1)

Ye = th N V¢ € kP
where F,G,H are matrices with coefficients in k of the
appropriate sizes. A change of basis in state space
changes the triple of matrices (F,G,H) into (TET !,TG,
HT'l) and as in [3] we are interested in such questions
as the following.

Does the set of orbits under this action have a
(natural) structure of an algebraic variety? Do there

exist continuous canonical forms? Similar questions for

291
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the case of two matrices were studied and answered in [1],
cf, also [2].

Egsentially the answers are as in [3]. This paper
used a moderate amount of algebraic geometry (nothing
much beyond definitions). Appendices 1, 2 and 3 of [1]
provide sufficient background information for this paper. .
(Related results, usually couched in more sophisticated
algebraic-geometric language can be found in [7].) All
schemes in this paper will be reduced and of finite type
over k, and we shall identify them with their associated
algebraic varieties of closed points. We use ér to denote
affine space of dimension r over k, and we give the space
of all triples of matrices (F,G,H) of dimension n x n,

n xm, px n respectively, the algebraic variety struc-
ture of An(n+m+p)' Let L denote this algebraic

= m,n,p
variety.

Then the assignment
(T, (F,G,H) -1 "Ly . T
+(F,G,H)) » (TFT™',TG,HT ™) = (F,G,H) 1.2 @

defines an action of the algebraic group GLn of invert-

ible n x n matrices with coefficients in k on Lm n,p
» bl

Cf. [1] Appendix 2. We can now define what a continuous

algebraic canonical form on a subvariety L' C Lm n,p would
i »
be.
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1.3. Definition

A continuous algebraic canonical form on L' is an

algebraic morphism c: L' N L' such that

for every (F,G,H) € L' there is a T ¢ GLn such

that (F,G,H)T = c(F,G,H) (1.3.1)

c(F,G6,H) = c(F,G,H) iff there is a T ¢ GL_ such

that (F,G,H)T = (F,G,0) (1.3.2)

Again, as in [3], we have that continuous algebraic

canonical forms on all of Lm a,p cannot exist for trivial
k] 9

reasons. ("Jump phenomena'). The conditions "completely
reachable,” '"completely observable,” "rank of G maximal
and rank of H maximal and completely reachable and com-

pletely observable' all define open subvarieties of Lm n,p
b4 td

which we shall denote with LT LEc° P

m,n,p’ m,n,p’ "m,n,p
respectively. In addition, we consider the condition
"F is diagonalizable (i.e. semisimple) with distinct
eigenvalues all different from zero" which defines a
(non-open) subvariety L; of L

sN,p m,n,p°
ferent attributes we have the following list of (possibly

Combining dif-

inter in subvarieties of L .
esting) m,n,p

1.4, List of subvarieties

LCT co Ccr,Co cr n co u

m,n,p’ “m,n,p’ "mM,n,p m,n,p m,n,p’ "m,n,p
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Cr,co,u _ (¥ A LETsC0 P 1Pl = LP u

L
m,n,p m,n,p m,n,p’ m;n,P’ m,n,p m,n,p m,n,p

All thes& subvarieties of L are GLn-invariant. We

m’n’p
now have the following theorem.

1.5. Theorenm

The following table gives necessary and sufficient ‘
conditions for the existence of continuous algebraic

canonical forms on various subvarieties of L

m,n,p’
necessary and sufficient con-
: dition for the existence of an
A}
variety L algebraic continuous canonical
form
i Lt = ST m=1
() m,n,p
s v = 1C0 _
(ii) L Lm,n,p p=1
y - (C€r,co = =
(iii) L m’ﬁ’p m=1 or p=1
. ¢+ - yCr,co,u = =
(iv) L Lm,n,p m=1 or p=1
T = p = = = =
{(v) L Lm,n,p m=1 or p=1 or m=n Or p=n
(vi) L' = L;:g,p m=1 or p=1 or m=n or p=n

This theorem is "identical" with theorem 1.7 of [3]. The
proof is similar in spirit but different in details.
There is of course also a corollary similar to corol-

lary 1.8 of [3]. We shall see that the "orbit space”
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LeT /GL_ has the structure of a quasi-projective alge-

m,n,p n

braic variety and its open subvariety L;rﬁc;/GLn is in
b et

fact a quasi-affine algebraic variety. Let M;rn p denote
» 3

this algebraic variety. Then we shall also see that
cr
Mm,n,P

of (algebraic) families of linear dynamical systems.

is a fine moduli variety for a suitable definition

As we said the field k we work over is supposed to

be algebraically closed. This is mainly a matter of con-

. . s s cr,co cr cr,co
venience: the varieties Lm,n,p’ Lm,n,p’ Lm,n,p’ m,n,p’
cr [*] . . .

M M are all defined over any field k; in fact
m,n,p’ 'm,n,p 7

they are even defined over Z. This also explains our

notation M;rn pGR), etc, of [3]: the underlying sets of
s ’

these real manifolds are simply the real points of the
variety M;rn p? etc. However, some care must be taken

s b
in interpreting the results of e.g. part (iii) of theorem

1.5 in this context.
Consider e.g. the following situation: let k be a
finite field; let L;rﬁcg(k) be the set of all k rational
2 b4
cr,co

» i.e. the set of all completely reachable
m!n’p

and completely controllable triples of matrices with

points of L

coefficients in k; let GLn(k) be the group of n x n
matrices with coefficients in k acting on L;rﬁc;(k) in

’ ?
the abvious way. Then part (iii) of theorem 1.5 does not

say that there is no map L;racg(k) > L;rﬁcg(k) (locally)
b b4 2 ’»

given by polynomials such that the analogues of (1.3.1)
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and (1.3.2) hold. E.g. such a map always exists when k
is Fz, the field of two elements. But part (iii) of

theorem 1.5 does say that the map Lgfﬁf;(E) N L;TQSS(E)

defined by the same polynomials, does not satisfy the
analogues of (1.3.1) and (1.3.2). Here k is the alge-

braic closure of k.

A large part of the proofs and constructions of [3]
can be carried through unchanged in the algebraic geo-
metric case. In these cases we shall as a rule simply
refer to the appropriate section of [3].

The contents of the paper are:

1. Introduction and Statement of some of the Results

cr

2. h tient Vari M .
The Quotien ariety m,n,p

2.1. Nice Selections
2.2. The Local Quotients U /GL_

. . cr
2.3. The Quotient Variety Mm,n,p

2.4. Some Realization Theory

X cr,co
2.5. Equations for Mm,ﬁ,p'

2.6. The Algebraic Principal Fibre Bundle w:
cr cr
L M
m,n,p = m,n,p
. - cr €T,COy -
2.7. The Codimension of (Mm,n,p\Mm,n,p) in
cr
m,n,p’

. . . cr
3. The Fine Moduli Variety Mm,n,p

3.3. Families of Linear Dynamical Systems

3.2, The Universal Family ¥ over MST
m,n,p
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. . . cr
The Fine Moduli Variety Mm,n,p

4, Existence and Nonexistence of Algebraic Continu-

ous Canonical Forms

4.1.

2. THE QUOTIENT VARIETY MCT

Triviality of EY and Existence of Continu-
ous Algebraic Canonical Forms

Duality

Example of a Nontrivial Algebraic Line
Bundle

Examples

An embedding X » M;fn,p
Nonexistence of Continuous Algebraic Canon-
ical Forms

On relations between Various Local Canoni-

cal Forms

m’n’p

2.1. Nice Selections

Let (F,G,H) ¢ L

n,n,p° The matrices R{F,G) and Q(F,H)

are defined as in [3], 2.2. The conditions "R(F,G) has

rank n" i.e. "complete observability" define open subvari-

ties of L

m,n,p

tively.

In addition we put L

is also an open subvariety of L

(o8 o co

whi we denote by L respec-

thh y m’n’p’ m’n’p p
cr,co _ cr co which
m’n’p m)n’p m’n’p

m,n,p" As in [3], 2.3 we
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let Jn n denote the set of column indices of R(F,G). Nice
»
selections a(from Jn m) and the successor indices s(a,j),
?
j = 1)...,m of the nice selection o are defined as in [3],

2.3. We again have (c.f. [1] 2.4.1 for a proof).

2.1.1, Lemma

1f (F,G,H) ¢ LET , then there is a nice selection
m,n,p

such that det(R(F,G)a # 0.

2.2. The Local Quotients Ua/GLn'

Let a be a nice selection. One defines the subvarie-

. cr
ties of L
m’n’p

U, = {(F,G,H) ¢ L |det(R(F,G) ) # 0}  (2.2.1)

m,n;p

W, = {(F,G,H) e L IR(F,G), = 1} (2.2.2)

m’n’p

The map Yy of [3], 2.4.5 now defines an isomorphism of

algebraic varieties

Vo ATVPP Loy (2.2.3)

We define a morphism t, Uu + GLana
. -1 T _ -1
t, (¥F,G,H) - (T ~,(F,G,H) ), where T = R(F,G)u
(2.2.4)

2.2.5. Lemma

t, is a GLn-invariant isomorphism of algebraic
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varieties (where GLn acts on GLn bJ Wa by left multiplica-

tion on the left hand factor.)

2.2.6. Corollary

The (categorial) quotients Uu/GLn exist (as alge-
braic varieties) and are isomorphic to the affine space

Amn+np .

This follows from 2.5.5 and the isomorphism wa.
For the notion of categorical quotient cf. [1] A.2.7.
As a matter of fact Ua/GLn is also a geometric quotient

in the sense of [6]; we shall not need this fact.

. . cr
2.3. Th t
e Quotient Variety Mm,n,p

We are now going to define a quotient prevariety
cr
M
m,n,p
suitable way. For each nice selection a let Vu =

by gluing the local quotients Ua/GLn together in
ATD+np

and for each second nice selection B let qu be the open

- _ -1 . .
subvariety vaB v, (Wa n UB)' We define ¢aB : vaB -
vBa by the formula (identical of [3], (2.5.4)).

9ag(X) = y o (Fu(x),6,0),H, N = (Fy(7),64(y) ,Hg(¥))

with T = R(Fa(x),Ga(x));l (2.3.1)

¢
where we have written wa(x) = (Fa(x),Ga(x),Ha(x)) € Wu
and similarly for ws(y). These ¢GB are well defined and

define isomorphisms of algebraic varieties VaB -+ Veu’
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which moreover satisfy the cocycle condition ¢BY¢uB = ¢0Y
whenever the left hand side is defined. This means that

by gluing together the various Va by means of the ¢GB we

cr
m,n,p°

is an (abstract) variety we have to

obtain a certain prevariety which we shall denote M
cr

M
m,n,p

prove that it is separated. This can either be done by

To prove that

using the algebraic geometric version of [3], 2.5.7 or by
means an embedding argument. To carry this embedding argu-

ment through we first observe.
2.3.2. Lemma

The natural projections m : Ua >V, combine to define

cT > MCI‘

an algebraic morphism ﬂ:Lm’n,p n,n,p

, and T is a cate-

gorical quotient in the category of prevarieties for the

. cr .
action of GL, on Lm,n,p defined by (1.2).

. . . .CTr cr .
Proof. It is obvious that w: Lm,n,p > Mm,n,p kills

the action of GL_. Now let ¢»:LCr + X be any morphism
n n,n,p

which kills the actiocn of GLn' Let Ucl = Ua nu Then

B B*

we know that Uu + Vu and UaB -+ vaB are categorical quo-
tients by 2.2.6. Let ¢y be the restriction of ¢ to Ua‘
By the categorical quotient property of Ua . Va there are
unique morphisms Xq* Va + X such that ¢a = XgTer Because
UaB hd vaB are categorical quotients we also know that
x8¢ae(x) = x'{x) for x € VGB, where ¢u8 is as in (2.3.1).

It follows that the Xq combine to ‘define a morphism



MCI‘

X: m,n,p + X such that ¢ = xm .

because on each Va it must equal Xq

same proof was used for [1], 3.2.14.

2.3.3, The Morphisms
. r -
h: Lm’n’p * é ég—dg‘ L
(F,G,H) ¢ Lm,n,p’

(n+1)2mp, be the block Hankel matrix

HG HFG . .

HFG
h(F,G,H) =

This defines a morphism h: L
kills the action of GLn'
< ws cr

Restricting to Lm,n,p

obtain an induced morphism

— cr
h: M
m,n,p -

>
m,n,p

>
m,n,p

301

The morphism x is unique

Essentially the

HF2n

- Ar, T = (n+1)2pm

n, (n+1)m"*
We let h(F,G,H) e AT, where r =

G
J

Let

= Q(F,H)R(F,G)

gr, which certainly

and applying lemma 2.3.2 we

(2.3.4)

Let L;rn be the algebraic variety of all pairs of matrices
H4

(F,G) of sizes n x n and n x m.

. . gcr
morphism g: Lm,n > Gn,(n+1)m

In [1] we constructed a

which kills the action of
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GLn on LET , where G

is the Grassmann variet
m,n, n,(n+l)m Y

of n-planes in {n+1)m space; g assigns to (F,G) the point
, .

of G eorresponding to the rank n matrix R(F,G) of

n(n+l)m

“size nx(n+l)m. We proved that the quotient variety Mm n
b

= L;rn/GLn exists and that g induces an embedding
]

g: + G .

g Mm,n n, (n+l)m

tion 3.2.14, Now let g': L

Cf. [1] Theorem 3.2.13 and proposi“‘

cr G

> be the com-
m,n,p

n,(n+l)m
posed morphism (F,G,H) + (F,G) »+ g(F,G). This morphism

kills the action of GLn and hence induces a morphism

g: MCT

m,n,p ~ ©

n, (e 1)m (2.3.5)

From the remarks made above we know that if (F,G,H),

(F',G',H') (F',6",H") e L") o

= g'(F,G,H) then there is a T ¢ GLn such that (F,G)T =

are such that g'(F,G,H)

(F,0).

- cr T
2.3.4 An embedding Mm,n,p > Gn,(n+1)m,x A

The morphisms h,g of (2.3.4) and (2.3.5) together “
define a morphism

s . CcT T
t Mm,n,P > Gn,(n+1)m x A (2.3.6)

We claim that i is injective. Indeed if (F,G,H), (F,G,H)

cr
L
m,n,p

= g'(F,G,H), then we know that there is a T € GL, such

€ are such that h(F,G,H) = h(F,G,H) and g'(F,G,H)

that (F,G)T = (¥,G) i.e. TR(F,G) = R(F,G), and then because
h(F,GH) = h(F,G,H) we have in particular HR(F,G) = HR(F,0) »
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so that HTR(F,G) = HR(F,G) and hence H = HT 1 because
R(F,G) has rank n. This concludes the proof that i is

injective.

2.3.5. Corollary

MCI‘ =

< cr
The prevariety Mm,n m,n,p is

P is separated, i.e.
»

a variety.

2.3.6. Corollary

cr cr
L + M
m,n,p m,n,p

in the category of algebraic varieties. 1In

is a quotient for the action of GLI1

is also a geometric quotient in the sense of

[6], but we shall not need this.

2.3.7..
co _ ,-1 cr,co co _ yCo
Let Va \pc (Wa n Lm,n,p) and vaB Va n vaB' Then
the ¢ ,: V . - V, induce isomorphisms ¢c°- veo ., yeo
aB” "aB Ba af” "af Ba®
. Gluing together the V§° by means of the cbzg we obtain an
< cr,Co cr - . R
o t > f h
zen subvariety Mm,n,p o Mm,n,p which is the image of
LCT>co .LST cr .
m,n,p under w Lm,n,p Mm,n,p It follows that the
: - co_ ,cr,co cr,co . _
induced morphism 7w : Lm,n,p -+ n,n,p is also a cate

gorical quotient.

2.3. 8. !

L. 3 p . -1 (]
Similarly, using Va Wu (WG n Lm,n,p)’
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VEP= il gy, vEP = il n LEef ) and the

m,n,p a m,n,p
corresponding V;B we obtain categorical quotients L;,n,p
> M:,n,p’ L:’n,p > M;’n’p, L;:g’p M;:g’p where the
M;,n,p are subvarieties of M;fn,p'

2.4, Some Realization Theory

The morphism h of (2.3.4) above induces a morphism
h: M;rﬁcg > ér. It is the purpose of this and the follow-
E e ]
ing subsection to show that h is injective and to derive

A

equations for the subvariety h(M;rﬁcg) c ér. To do this
bl ’
we use some (partial) realization theory an embodied by

proposition 2.4.3.below. First a definition

2.4.1. Definition

Let Ao’Al"“ be a sequence of p x m matrices. Then

h (A) denotes the block Hankel matrix

q,T

( ) !
Ay AL o o AL

h E

A -

q, 1A : :
A . . .
g Areq)

2.4.2. Definition

If A is 2 matrix and e is a subset of the column
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indices of A, and a. is a subset of the row indices of
A, then we define
Aa = matrix obtained from A by removing all columns whose

c .
index is not in a

c
Au = matrix obtained from A by removing all rows whose
T
index is not in a.
An « - matrix obtained from A by removing all rows and
r’c

cotumns whose indices are not in a., a. Tespec-

tively.

2.4.3. Proposition

Let A LA 5-005A,0 4 be a sequence of 2n matrices
with coefficients in k, all of size p x m, and suppose

that rank(hn_l,n_l(A)) = rank(hn,n-l(A)) = rank(h

cr,co
m,n,p

(a))

n-1,n
= n. Then there exists an (F,G,H) € L such tha;
HF'G = A, for i = 0,1,...,2n-1. |

Moreover, if (F,G,H) eLgfﬁf; is a second triple such
that AFG = A; for i = 0,1,...,2n-1 then there is a
T e GL_ such that (F,G,H) = (F,G,H) .

Proof. Existence of a triple (F,G,H) € L such
R m,n,p

that

HF'G = A;, i=0,...,2n-1 (2.4.8)

holds is assured by the realizability criterion 11.32 of
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Chapter 10 of {4]. We define

R(F,G) = (G,FG...F" 1g),
QE,H)' = (H'E'H'...(E")" 1an) (2.4.5)

Then it follows from (2.4.3) that Q(F,H)R(F,H) =
hn-l,n-l(A)‘ Now we have rank (R(F,G)) < n,
rank(Q(F,H)) < n and rank(h _; . ,(A)) = n. It follows
that rank(R(F,G)) = rank(Q(F,H)) = n, so that (F,G,H)

¢ LET»CO

m,n,p Not let (F,G,H) be a second triple in Lm,n,p

such that

AFG = A, i = 0,1,...,2n-1 (2.4.6)

Then as above we find Q(F,H)R(F,G) = hn—l,n-l(A)‘ Now
because R(F,G) has rank n there is a subset a. of size n
of the column indices of R(F,G) such that R(F’G)uc is
invertible; further because Q(F,H) has rank n there is a
subset oL of size n of the row indices of Q(F,H) such

that Q(F,H) is invertible. We have
T

n-1,n-1M)y o = AF,H), R(F,6), =
T C T c

(h
(2.4.7)
Q(F,H) , R(F,G)
%y %e
so that it follows that all five n x n matrices occurring
in (2.4.7) are invertible.

Now let
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(F1,G,H)) = (F,G,H)T, where T

Q‘(F,H)(x (2.4.8)
T

QFEM,  (2.4.9)
T

(Fp,Gp,H)

=3
]

(f,E,H)T, where

1]

Then we have of course

_ g
H,F 6, = H;F]G

i
1516

i

1 1 = Ai for i 0,...,2n-1 (2.4.10)

which means

QUELHDR(FLL,G6y) = QEFLADR(FLE) = by o (A)
(2.4.11)
and moreover because
QF,H) = QEWT Y, QF LA = QE,DHT !
we have
Q(Fl,Hl)a = In = Q(Fl’Hl)a (2.4.12)
r T

Now combine (2.4.12) and (2.4.11) to obtain that R(Fl,Gl)
= R(Fl,Gl) which be corollary 2.4.2 of [1] means that

F, = ?1 and G; = Ul. and because R(F ,G ) = R(F ,G ) has
p = Hp. Ve
therefore have (F,G,H)T = (F,,G,H;) = (F;,G,H;) =

rank n, it follows from (2.4.11) that also H

(?,E,E)T, which proves the second statement of the

pProposition.

2.4.4. Corollary

The morphism h: MELs€O AT of (2.3.4) above is
m,n,p =

injective.
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2.5. Equations for M;rﬁc;
ity

-~
By means of the injective morphism h we can now con-
1]
sider M;r,co as a subvariety of Af, r = (n+1)2pm, where
51, P
we write x € AT as an (n+l)n x {(n+l)m matrix. We now
consider the following sets of polynomials in the coordi-

nates of Ar.

Pa(x): these polynomials are such that Pa(x) =0
for all a if and only if the matrix x is of block
Hankel type (cf. 2.4.1) with the blocks of size

p x m. (2.5.1)

Qb(x): here Qb(x) runs through all determinants

of (n+l) x (n+l) submatrices of x. (2.5.2)

Rc(x): here Rc(x) runs through all determinants
of n x n submatrices of the submatrix x' of x
which is obtained by removing the last p rows

and the last m columns.
2.5.4. Lemma

Let (F,G,H) e LET2€%, x = h(F,G,H) € A¥. Then we
m,n,p =
have Pa(x) = 0 for all a, Qb(x) = 0 for all b and there

is a ¢ such that Rc(x) # 0.

Proof. Obvious because h(F,G,H) = Q(F,H)R(F,G).
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2.5.5. Proposition
h(M;rﬁcg) Ar is the subvariety consisting of those
» »
x ¢ AT such that P_(x) = 0 for all a, Qy(x) = 0 for all

b and such that these is a ¢ such that Rc(x) # 0.

Proof. Because of lemma 2.5.4 we only have to show

that if x ¢ és satisfies Pa(x) = 0 all a, Qb(x) = 0 all
. . T .CTr,Cco
b and Rc(x) # 0 for some c, then x is in h(Mm,n,p)‘

Write x as a block Hankel matrix

AL A, . . . A
A
X = Z

This can be done because Pa(x) = 0 for all a. Cf. 2.5.1.
Then the matrices Al""’AZn-l satisfy the conditions of
proposition 2.4.3 so that there is a triple (F,G,H) €
cr,co i. _ < _

Lm,ﬁ,p such that HF G = Ai for i = 0,1,2,...,2n-1. To
show that h(F,G,H) = x it therefore only remains to show

that HanG = AZn' This follows from lemma 2.5.6 below.

2.5.6 Lemma

Let E,E' be two partitioned matrices
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and suppose that rank(E) = rank(E') = rank(A). Then
D=0D'.

Proof. Let d be an element of D and d' the corre-
sponding element of D'. Let A' be an n x n submatrix of
A such that det(A') # 0 where n = rank(A). Suppose A' =

E then also A' = E' . Let Br =a_ U {i} where

’
ur,GC arsac

i is the index of the row in E containing d (and of the
row in E' containing d') and Be = a. U {j} where j is the

index of the column in E containing d (and of the column

in E' containing d4'). Then we have det(E ) = 0=
BrsBe
det (E! ). All elements of E and E! except
BroBe BroBe BroBe

possibly the one in the right hand lower corner are equal
and det(A') # 0. It follows that d = d'. (By expanding

the determinants along the last row e.g.). ‘

2.5.7. Corollary (of proposition 2.5.5.)

METsC0

is a quasiaffine variety.
m,n,p q y

2.5.8.

Using similar arguments as above combined with those

used in [1] to find equations for the variety M . (cf.
’
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[1] section 3.2), it is not difficult to find equations

for the variety MET T

m,n,p

, n, (n+1)m x 4
or as a subvariety of gf X ér’ where r' = ((n*i)m) -1).

(as a subvariety of G

(oh o . - - . . .
m,n,p is a quasiprojective variety but not a quasi
b4 »

affine variety if m > 1., This last statement is seen as

. cr cr .
follows. The embedding Lm,n,p + Lm,n,p given by (FG) -

(F,G,0) where O is zero matrix of appropriate size,

- : cr .
induces an embedding Mm,n - Mm,n,p' Now according to [1]

section 3.3.there is an embedding gl -> Mm . Combining
?

these we find an embedding gl

cr

m,n,p

theorem 3.4.6 in [11]).

> MST which shows that
m,n,p

is not quasi affine. (Cf. also the proof of

2.6 The Algebraic Principal Fiber Bundle

e LCr + MST .
m,n,p m,n,p
LET cT

m,n,p - Mm,n,p is an algebraic principal GLn fibre bundle
cr

over the variety M
Y Pm,n,p

As in [3] we can now show that

, and we could use an analysis

of the nontriviality or triviality of this bundle to

prove nonexistence and existence of algebraic continuous
canonical forms. This can be done almost exactly as in
[3] section 3 except that one has to construct a different
example because the example of [3], section 3.2 is essen-
tially nonalgebraic. Cf. also section 4.1 below for

further comments. In this paper, however, we shall first
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. . R c
discuss the fame moduli variety properties of Mmrn b and
3 3
then use these to investigate the existence of continuous

algebraic canonical forms; this is the same procedure as
in [2], cf. especially theorem 6.1 of [2]. The two

approaches are essentially equivalent because the under-

cr

M
m,n,p
the algebraic n-vectorbundle associated to the principal

cr cr
GLn bundle Lm,n,p - Mm,n,p’

lying vectorbundle of the universal family over is

2.7 The Codimension of (MST_ _\ MST:¢%y jin MST

m,n,p m,n,p i m,n:P'
. cr .
Let Km,n,p be the subvariety of Mm,n,p defined by the

equations det(Q(F,H))B) = 0 for all subsets of size n of
the row indices of Q(F,H). 1i.e.

= MCT cr,co

2.7.1
m’n,p m)n,p m’n,p ( )

We want to find out something about the codimension of the

- cr e
closed subvariety Km,n,p of Mm,n,p' The result is:

2.7.2. Proposition

The codimension of K in MST

m,n,p 1,1, p is 1 if p = 1 and

it is > p if p > 2.
To prove proposition 2,7.2 we use the following com-

binatorial lemma.
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2.7.3 Lemma

Let X = {al,...,an} be a finite set of n elements.

Let Xo be a subset of X and o:Xo + X an injective map with

the following property

IfY cC XO then o(Y) ¢ Y unless Y

X, = X. (2.7.2)

. . - N
Then there exists a cyclic permutation g:X - X of order n

such that E(a) = g(a) for all a ¢ XO.

Proof. If X, = X then condition (2.7.4) says that
o is already a cyclic permutation of order n. We can
therefore assume that XO # X. We are going to show that
there is b ¢ X \ Xo and an injective map oyt Xl + X with
Xl = xo U {b} and cl(a) = og(a) for a ¢ Xo such that
(2.7.4) holds with XO replaced by Xl. By induction (with
respect to the number of elements in X'\Xo) this proves
the lemma. Because Xo # X there is an ay ¢ X which is not
in the image of o. If a; € XO let a, = U(al), if a; ¢ Xo
stop; if a, € X let a; = o(a,), if a, £ X  stop; continu-
ing in this way we find a sequence of elements A135855000,
a ., r > 1 such that

a, ¢ Im(o), a; = o(ai'l) for i = 1,...,r-1,

a_ £ X

r o

Note that the a;s5...,3, 3are all different from one another
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because o is injective and ay £ Imo. There now are two
possibilities
(i) There is no b ¢ X \ Imo different from ay.
In this case Imo has n-1 elements and hence so has
X,. Therefore X \ X, ="{a_}. Let Y =X \ {al,...,ar}
and suppose Y # #. Then we have Y c Xo because X \ Xo =
{ar}. We also have o(Y) € Y because at{al,...ar}r1xo)
C{al,...,ar}.
Therefore, because is injective, we would have
o(Y) = Y contradicting (2.7.2). Therefore Y = § and X =
{al,...,ar} in this case (i.e. r = n). We now take b =
a, and define ol(b) = a;. Then X, = Xo U {ar} = X and

1
01¢ X » X is clearly the desired cyclic permutation.

(ii) There is a b1 e X Im which is different from a;-.
In this case we take b = a, and define ol(b) = bl'
The map 9 is injective because b1 ¢ Imo. Now sup-
pose Y C Xy is such that ol(Y) = Y., Note that in
this case X \ Imo has at least two elements, hence
so has X - X, so that Xy # X. There are two possi-

bilities.

(iil) b = a_ £ Y. In this case Y = cl(Y) = ¢g(Y) and

Y C Xo which contradicts (2.7.4).

(iiz) b = a. € Y. Then because clfY) = Y we must have
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a._q ¢ Y, a._, € Y,...,al eY C Xl, which is a con-
tradiction because there is no ¢ € X such that
o(c) = a; because a ¢ Imo; = Imo U {bl}. This con-

cludes the proof of the lemma.

2.7.6.

Now comsider x € Amn; consider (Fa(x),Gu(x), where
a is a nice selection, a C J-’n, We recall how Fa(x)
and Ga(x) are defined (cf. 1 section 2.3). Let J =
a U {s(e,1),.¢.,5(a,m)} as an ordered subset of Jm,n‘
let Xy be the column vector eonsisting of the first n
coordinates of x, X, the column vector consisting of the
second n coordinates, etc. We now define n + m column

vectors Yi» i=1,2,...,m*n of length n as follows

ey if the i-th element of J is the &-th element
y = of a

X; if the i-th element of J is s{a,j) (2.7.3)

where e, is the %-th standard basis vector.

The matrices Gu(x) and Pu[x) are now defined by

s 3 = 1r-~-,ﬁ

6 (X5 = ¥55 3 = Loweeoms Fo(X)5 = Yy
(z.7.4)

It readily follows from this that Fa(x) is a matrix of
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the following type: the j-th column of Fa(x) is either

a standard br-is vector e, with 2 > j, or Fa(x)j = X,

i
for some i; = reover i F (x). = e F (x). = e wi
€ G( )31 le u( )JZ 22 ith

j1 < jz ther | < ... Applying lemma 2.7.3 we thus see
that by spec:iying the X5 i=1,...,m to be suitable

standard basis vectors one obtains

2.7.9 Lemma

For every nice selection a, there is an x € émn such
that Fa(x) is a cyclic permutation of order n of the stan-

dard basis vectors.
2.7.10.

Let o be a nice selection. Now consider K ny
m,Nn,P a
= Vu \ vgo where o is a nice selection. This closed sub-
variety of Ua is defined by the equations det(Q(Fa(x),
Hu(x))ﬁ) = 0 for all subsets B of size n of the row
indices of Q(Fa(x),HG(x)). We number the rows of

Q(F, (x),H_ (x)) as follows

("7.1),..500,p)5 (1,P) .00, (1,P)5. 0
- (.. .auay(0,p))

Take 8, = {(0,1),(1,1),...,(n-1,1)}. Write x € Va =

an n . .
AT % ép as x = (y,z) and write z as the matrix (zi

)
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i=1l,c06,P5 J = 1,...,n. We write Fu(x) = Fa(y),

Ha(x) = z, Now consider the equation
det(Q(Fa(x),Hacx))Sl) =0 (2.7.5)

Now specify the y such that Pa(x) is a cyclic permutation
matrix of order n and suppose that the first row vector

of Fa(x) under this specification is the 2-th standard

basis vector. Now take Z35 = 0 for j # 2. Then (2.7.5)
becomes
n
* 23, =0 (2.7.6)

1f p = 1, equation (2.7.11) defines K NV, (because

n
if rank Q(F,G) = n then there is a nic; ;Zelection" B
from the row indices of Q(F,H) such that det(Q(F,H)y) # 0
by the transposed version of lemma 2.1.1). Equation
(2.7.12) which is obtained from (2.7.11) by a suitable
specification of some of the variables shows that (2.7.5)

is nontrivial, so that the codimension of K n Vu in

m,n,p
Va is one for each nice selection a proving that the
. . . CT .
codimensic M is . Now suppose
n of Km,n,l in m,n,p cne PP

that p > 1. And consider the selections
B]_ =’{(O,i),(1,i),..,,(n‘1,i)} is= 1""’p

Specifying the y and z as before (NB the specification

to be used depends on a!l), the equations
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det (Q(F (x),H (x))g ) = 0 i =1,...,p (2.7.7)
1
specify to
+z% =0 i=1 P (2.7.8)
— 12 yeoey o/ s

The equations (2.7.14) are independent, hence so are the
equations (2.7.13) proving that the codimension of Km n,p
2ty
AV, in V  is > p. This holds for all nice selections a
so that the codimension of Km,n,p in M;fn,p is always > p;
We have now proved assertion 2.7.2.

2.7.12. Remark

To prove 2.7.2 all one really needs is the existence
of a triple (F,G,H) € Wa for each o such that F' is a
cyclic matrix. This can be seen as follows: U is a non-

empty open subvariety of L Let L' = {(F,G,H) ¢

m,n,p’
L . piF' is cyclic} this also defined a nonempty open
’ b

subvariety of L Because L is irreducible

m,n,p' m,n,p
L'n Ua # $. Let (F,G,H) ¢ L' n U and let (F,G,H) = ’
(F,6,H)T where T = R(F,G)]'. Then (F,G,H) e W_ and F’

is cyclic.
3. THE FINE MODULI VARIETY MY .
m,n,p

We now proceed to study families of linear dynamical

systems. Some motivation as to why one would like to
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study families is given in section 1.8 of [3]. Moreover,
in this paper we shall use families to investigate whether
there exist continuous canonical forms or not. This is
not necessary; one can also use the principal algebraic
GLn bundle L;fn,p - M;fn,p‘ Cf. also 2.6 above. _This
part of the theory in the algebraic geometric case is
practically completely analogous to the corresponding

part of the topological case which was treated in sec-

tion 4 of [3].

3.1, Families of Linear Dynamical Systems

%3.1.1. Definition

A family of linear dynamical systems over a variety

S of dimensions (n,m,p) consists of

i) an algebraic n-dimensional vectorbundle p:E =+ §
(ii) an algebraic vectorbundle endomorphism F:E + E
(iii) an algebraic vectorbundle homomorphism G:SxA™ » E

(iv) an algebraic vectorbundle homomorphism H:E ~» SxAp.

Let s € S, then F,G,H induce homomorphisms FS:Es - Es’
GS:sxém > E, Hg:E_ » sxAP; E = p_l(s) is the fibre
over s, (Cf. Appendix 3 of [1]). Choosing a basis
el(s),...,en(s) of ES and taking the obvious bases in
sxA™ and sxép we calculate the matrices of F_,G ,H_

relative these bases. Let the result be
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(F(s,e),G(s,e),H{s,e). This triple depends on el(s),...,
en(s) only to the extent that a different choice of
el(s),...,en(s) gives a triple in the same orbit (under
GLn) as (F(s,e),G(s,e),H(s,e)).

The family I is said to be completely reachable if

(F(s,e),G(s,e)H(s,e)) € L;rn P for all s. (This is well
b ?

. cr . . .
defined because Lm,n,p is GLn invariant).

3.1.2. The Canonical Morphism Associated to Completely
Reachable Family

Now let I be a completely reachable family. Then

cTY

and thus a unique
m,n,p 4

FS,GS,HS define a unique orbit in L

point in MET which we shall denote f.(s). Thus we have
m,n,p I
amap f. : S » MET . Using the local triviality of the
Z m’n’p

bundle E one shows by means of the algebraic analogues of
the constructions in 4.1,2 - 4,1.8 of [3] that fZ is a
morphism in the category of varieties.
3.1.3

In the topological case we associated a continuous
map fZ : X » Mm,n,pGR) to every family I, and used
this map to define complete reachability of families.

This cannot be done in the algebraic geometric case

because the variety M does not exist.
m’n’p
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3.2. The Universal Family tY over M .
m’n"p

. : n
Let a be a nice selection. Let E, Va x A°, Pyt
Eu -+ va the obvious projection. We define families Za

of linear dynaminal systems with underlying bundles Eu

by the formulas

Fox,v) = (x,F (x)v), G, (x,u) = (x,6 (x)u),
Hd(x,v) = (x,Ha(x)v) (3.2.1)

where for x ¢ Va, wa(x) = (Fu(x),Gu(x),Ha(x)), cf. [3].

2.4.5

Now let Eas = VaB x An and define the isomorphisms
¢a8: EaB - EBa by formula (4.3.6) of [3]. Then glueing
together the Ea by means of the¢a8we obtain an algebraic
vectorbundle EY. The Fa’Gu’Ha are compatible with the

¢GB in the sense of (4.3.9) - (4.3.11) of [3] and thus

define homomorphisms F%: Y - Eu,gu: M;rn P x Am + Eu,
2 ]
HY: Y + MET x AP. This defines the family I". The

m,n,p
family ¥ is completely reachable (because this is true

for the families za), and the associated map f ut MET

m,n,p
M;fn,p is the identity map (because the triple (Fa(x),
. {Cr
Ga(x),Ha(x)) maps to x € Va < Mm,n,p under w: Lm,n,p >
cr
m,n,p)'

3.3, i Y i i cr
3 The Fine Moduli Variety Mm,n,p
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3.3.1

Two .families I, ¥ are isomorphic if there is an
algebraic vectorbundle isomorphism ¢:E + E such that
F¢ = ¢F, ¢G = G, H = Hp. For each S ¢ Schy, the cate-
gory of algebraic varieties over k, let ¢n (8) be the

s, P
set of isomorphism classes of completely reachable fami-
lies of linear dynamical systems over S. By means of
the pullback construction we turn'e p(S) into a func-
] b

tor Qm n

. opp
, ,p’égﬁk + Set.

3.3.2. Theorem

The variety MET is a fine moduli variety for
m,n,p
¢m,n,p or, in other words, the functor °m,n,p is repre-

sentable by M;rn p* More precisely, the assignment
b Rt 4 .
m,n,p8) 7

Sch (S,Mcr ); the inverse isomorphism assigns the iso-
==k m,n,p

I+ fz induces a functorial isqmorphism &

T
morphism class of £:% to f: S » M;rn p;
t4 s

Proof. 1Identical with the proof of the correspond-

ing theorem 4.5.2 of [3].

4, EXISTENCE AND NONEXISTENCE OF ALGEBRAIC CONTINUOUS
CANONICAL FORMS

In [1] we used the fact that Mm n admits an embedding

9

igl +M  if m > 2 to show that there is no algebraic
»
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continuous form for completely reachable pairs of matrices.
This cannot be used to prove e.g. part (iii) of theorem

Ccr,cC
1.5 because as we have seen M_"? % is

n,n,p a quasi-affine alge-

braic variety. Further the example we used in [3] to
prove nonexistence of continuous canonical forms for real
linear dynamical systems if m > 2 and p > 2 is essentially
nonalgebraic. There is, however, a three (instead of omne)
dimensional version of-it which is algebraic and that is
the example we shall use in this paper. We proceed via
moduli varieties as in [2].

4.1, Triviality of EY and Existence of Continuous Alge-
braic Canonical Forms

4.1.1. Theorem

cr . : .
Let L C Lm,n,p be a GLn invariant subvariety of
L;rn P and let M = w(L). Then there exists a continuous
b 3

algebraic canonical form on L if and only if the algebraic

vector bundle EY|M is trivial.

L
Proof. Let ¢m,n,p be the subfunctor of ¢m,n,p

defined by considering only isomorphism classes of fami-
lies Iz over S such that fz maps S into M = w(L). It fol-
lows directly from theorem 3.3.2 that I + fz then defines
. : - L
a functorial h ®
isomorphism m,n,p(s) (
the inverse isomorphism is given by f - f‘(zuIM) where

3 Schy (S,M) and that

M =-(Eu|M,Fu|M,Gu|M,H“|M) is the restriction of Y to
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M. Now suppose that there exists a continuous algebraic
canonical form c: L - L. Because c kills the action of
GLn there is a unique morphism c: M -+ L such that ¢ = cr,
For each x € M we write c(x) = (Fc(x),Gc(x),Hc(x)). Note
that nc = id, by condition (1.3.1) of the definition of
canonical form.

We now define a family I% over M as follows: .
£¢ = (c%,F%,6%,H%) with ES = M x A", ES(x,v) = (x,E_(x)V),
Gc(x,u) = (x,GC(xJu), Hc(x,v) = (x,Hc(x)v). Because 7nc =
id and c(x) = (Fc(x),Gc(x),Hc(x)) we have that fzc: M->M
is the identity morphism, cf. 3.1.2. But, according to
theorem 3.3.2, or rather the relative version discussed
in the beginning of this proof, we have that (F )!(EulM)
is isomorphic to t€. which in particular means Eﬁat
(fzc)’(nulu) = ES = M x A"; but £ o = id, hence EY|M is
trivial,

Inversely suppose that EY|M is trivial. Then we can
find n algebraic sections €seeasr€p M- EuIM such that
el(x),...,en(x) is a basis for E; for all x € M. Let "
F(x,e),G(x,e),H(x,e) be the matrices of Fx: E: > E:, Gx:
{x} x A" - Ei, Hx: E: » xxAP relative the obvious bases
in x x AP and x x é? and the basis'{el(x),...,en(x)}

of E:. We now define a morphism c: L - L as follows

c(F,G,H) = (F(x,e),G(x,e),H(x,e)) where x = 7(F,G,H)
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One easily checks that this is a continuous algebraic

canonical form.

4.1.2. The Local Canonical Froms Cia®

Let o be a nice selection. The bundle Euan is triv-
ial (by the definition of ‘EY cf. 3.2) hence by theorem
4.1.1 there exist continuous algebraic canonical forms
on Ua' Such canonical forms are well known. An example

is the canonical form Cta defined by

¢ (F26H) = (F,6,m7,T = r(F,0) ! (4.1.3)

4.1.3 Corollary

If m = 1 there is a continuous algebraic canonical

cr

form on Lm,n,p‘

Proof. If m = 1 there is only one nice selection a,
cr -
and hence Lm,n,p Ua by lemma 2.1.1.

4.2. Duality

The assignment &§: (F,G,H) » (F',H',G') defines an

isomorphism of algebrai ieti . If
P gebraic varieties Lm,n,p -+ Lp,n,m
Lc i -1 1 : i
Lm,n,p is GLn invariant then so is §(L) C Lp,ﬁ,m (but

§ is not GL -invariant). As in [3], 3.1.6 one now easily

shows that there is a continuous canonical form on §(L).
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4.2.1. Corollary

There is an algebraic continuous canonical form on

LCT

®,n,p if p = 1.

4.3. Example of a Nontrivial Algebraic Line Bundle

et ) = Al x AR\ (0,00), U, = A x (aZ\(0,0)). We
give U1 coordinates (t,yl,yz) and U2 coordinates (s,xl,xz).
Let U12 = {(t,yl,yz) € U1 t # 0}, U21 = {(s’xl’xz)AEUZlS #
0}. We define an isomorphism ¢: U12 U21 by (t,yl,yz) >
(t_l,yl,t,yzt). Let X be the prevariety obtained by glue-
ing U1 and U2 together by means of ¢. In fact X is a
variety viz. the quasi-affine subvariety of é4 =
{(21’22’23’z4)} given by 292, T 2,24 and (z1 # 0 or z, #0
or 2z, # 0 or z, # 0). The embeddings of U, and U, is this
subvariety are given by (t,yl,yz) o (ylt,yzt,yz),
(s,xl,xz) (xl,xls,xz,xzs). It is easy to check that
this respects the identification ¢ given above.

We now define an algebraic line bundle V over X by

glueing U, él and U, x él together by means of the iso-
morphism
$: v xal > u,oxal, (¢ W) » (S,X,,x,,v) iff
. 12 = 21 = 9 ,Yl»}’z» b} 1’ 2,
ts =1, x; = ty, x, = ty,, Vv = 1y (4.3.1)

Now suppose that this line bundle is trivial. Then
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there must be everywhere nonzero sections U1 - U1 % Al,

1
(t,Yl,Yz) e ((tyyl’YZ)a gl(t,Yl,yz)); UZ > UZ x A”,

(s,xl,xz) - ((s,xl,xz), gz(s,xl,xz)) compatible with the
identification 33 Now g and g, are morphisms Al x
(A, x (0,0)) ~» A;. Because A; x () is of codimension 2

Al x AZ = As this means that g; and g, extend to morphisms

on all of As

, i.e. g and g, are polynomials. Putting
everything together we therefore have that C is a trivial
line bundle iff there are polynomials gl(t,yl,yz),
gz(s,xl,xz) such that gl(t,yl,yz) # 0 if Y1 # 0 or Y, £0
and gz(s,xl,xz) # 0 if X # 0 or x, # 0 and such that

moreover

-1
tgl(t,)’l,yz) = gz(t .tyl,tyz) (4.3.2)

for all points (t,yl,yz) such that t # 0 and Y1 # 0 or

Y, # 0. One easily checks that the only polynomials
g1(t,y,,¥,) such that g, (t,y;,y,) # 0 for all (t,¥1,y,)
for which Y1 # 0 or Y, # 0 are constants. Similarly
gz(s,xl,xz) is a constant. But then (4.3.2) is a contra-

diction. So we have proved
4.3.2 Lemma
The line bundle V defined by 4.3.1 is nontriwial,

4.4. Examples

Let p > 2 and m > 2. We write down a number of G,F
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and H matrices as follows

Ifn=1,=>2 Glm(t,s)'-'(tso eee D)
’

(4.4.1)
[t s | 0. ..0)
1 1 0o...0
Ifn<2<m<n Gn,m(t’s) = : 1
. . B
a 1
\ J
(4.4.2)

where a is a nonzero element of k different from 1, and
where B is an (n-2) x (m-2) matrix with coefficients in
k such that the columns of B and the column vector

(1,...,1)' together span an m-1 dimensional subspace of

k" 2, Such a B exists because 2 < m < n.

»t s\

1 1

_ - la 1
Ifn>2-=nmn Gn’z(t,s) = (4.4.3)

(a1
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111 60... 0 . .
o 0 0 L : * - L] -
Ifm>n _>_ 2 Gn’m(t,sl = - . : e o 0 .
o 0 0. ..0 1 0. ..0
N s’
n-1 m-n-1 |
(4.4.4)

1 1 L] .

a 1 . .
Ifm=mn2>2 Gn,n(t’s) = . .

. . * . n"z

L n-2 ) (4.4.5)
ral o . . . 0)
0 az . .
Fn = |, . . . o (4.4.6)
. . . 0
ho . . . 0 anJ U

where ay54..,a, aren different elements of k which are

all different from zero
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B 2 Oayp) = 6 0y (4.4.7)

4.5 An Embedding X ~ M;’n °
> ’

Let U U2 be as in 4.3 above. We define for all

1’
n,m,p withm > 2 and p > 2

) cr
Un,m,p' 1 > Lm,n’p,(t,)’l,)'z) > (Fn’Gn,m(t’l)’Hp,n(yl’YZ’
(4.5.1)
- . cT
°n,m,p‘ u, » Lm’n’p,(s,xl,xz) > (Fn’Gn,m(l’s)’Hp,n(xl’xz)
We now note that if ts =1, Xy T yyt, X, yzt
(F .6 (t,1),H (7,0 = (F,6, (1,5),H | (x,x
n> n,m* >’ p,n71°72 n’> n,m- ’°°’p,n"1°"2
(4.5.2)
where
oo ... 0)
0 1 . .
. {
T(t) = . . . . .
. . . 0
0 . . . 0 1
\ : J
{eh o > CcT

This means that the morphisms U1 + Mm,n,p’ U2 m,n,p’
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obtained from the morphisms Un,m,p and on,m,p of (4.5.1)
: . . CT cr X .
be composing with w: Lm,n,p - n,n,p’ combine to define

4 morhpism

MCI’

Tm,n,p: - n,n,p (4.5.3)

where X is the variety defined in 4.3 above.
4,5.4.

Let a be the nice selection’{(0,2),(1,2),...,(n-1,2)}
then we see from 4.4 that Gm,n,pcul) C Ua and hence

Tm,n,pcul) c Va' Let B be the nice selection’{(0,1),(1,1),

eeey(n-1,1)} then we see from 4.4 that Eﬁ,n,p(uz) c UB

and hence T (U,) ©V . It follows that the pullback
m,n,p* 2

of EY by means of 1 is an algebraic vectorbundle over

i m,n,p
X whose restrictions to Ul and U2 are trivial, and the
gluing data of this bundle are given by (Cf. [1] Appen-

dix 3.6).

. n n
Vs Ujp x AT > Uy x A
(4.5.5)
(6,715,050 > ((t7,ty;,ty,),T(t,y,,y,)u)
where T(t,yl,yz) is equal to the matrix
-1
R(Fy, 6, n(t:1) 5 R(FL,G, o (8,1)) (4.5.6)

where a and B are the nice selections {(0,2),(1,2),...,

(n-1,2)} and’{(0,1),(1,1),...,(n-1,1)}. Let E + X be
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n
this bundle. The exterior product bundle AE + X is thep
the line bundle obtained by gluing together U1 x AI and

U2 x A by means of the isomorphism

. 1 1
¥:Up, x4 > Uy © 4

(4.5.7)
((t,yy5Y,),u) ((t'l.tyl,tyz). det(T(t,y,¥,))u) {
and from (4.5.6) we see that
t1 if n < 2
det(T(t,yy,y;)) = (4.5.8)
t™1a"? ifn <2

It follows that the line bundle defined by Y is nontrivial
Cf. 4.3 above.

4.5.9. Proposition

®
The algebraic vectorbundle t’

u . cs
F” is nontrivial
n,m,p

ifp>2,m> 2.

Proof. This follows from the above because if
E » X is a trivial algebraic n-dimensional vector bundle

n
then AE - X is a trivial line bundle.

4.5.10. Corollary

: cT
Let M be a subvariety of Mm,n,p such that Tn,m,p(x)

CM. Then E*|M is a nontrivial algebraic vectorbundle.
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4,6. Nonexistence of Continuous Algebraic Canonical Forms

We can now prove theorem 1.5.

4,6.1. Proof of Theorem 1.5

First let m > 2 and p > 2. Let MY = = (LY ) where

m,n,p

w Tuns through the subvarieties listed in 1.4, Then

m,n,p
we see from 4.4

L

To,n,p X € MPoH (4.6.1)

if m # n and p # n, and that in any case (still assuming

P> 2and m > 2)

Ta,n,p X € MET»CO5H (4.6.2)

By corollary 4.5.10 and theorem 4.4.1 this takes care of
the only if parts of statements (iii), (iv), (), (vi)
of theorem 1.5, Because L?’¥ < LP and LET2C°

( m,n,p ~ “m,n,p m,n,p ©
Lcr,co,p). On the other hand if m = 1 in cases (iii)
m,n,p
and (iv) and m = 1 or n in cases (v) and (vi) then the
respective subvarities are contained in one Ua for a
certain nice selection a. By 4.1.2 there are therefore
continuous algebraic canonical forms in these cases.
The corresponding fact for p = 1 in cases (iii), (iv)

and p = 1 or n in cases (v), (vi) follows by duality.

Cf. 4.2, This proves (iii) - (vi) of theorem 1.5.
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The if part of (i) is corollary 4.1.3; the if part
of (ii) follows by duality. Cf. 4.2. To prove the only

if part of (i) observe that if m > 2 w((Fn,Gn m(t,s),O),
where t # 0 or s # 0, depends only on the point (t:s) ¢ gl

and not on the actual t and s. Thus

t: (t:s) ~» ﬂ((Fn,Gn,m(t,s),O) '

1

> MST for all (m,n,p) such that

. hi
deflges a morphism P n,n,p

1 .
m > 2. As in 4.5 one now proves that t"EY is nontrivial.
By 4.5.10 and 4.4.1 this proves the only if part of (i).
" The only if part of (ii) follows by duality. Cf. 4.2.

Thisvconcludes the proof of theorém 4.5.

4.,7. On Relations between Various Local Canonical Forms

Let & CLST be a GL_ invariant subvariety of
m,n,p n

LET , and suppose that there is a continuous algebraic

m’n,p
canonical form c: U » U, Let x:U ~ él be a morphism,

e.g. a '"coordinate function." Then xc: U ~ Al

is GLn
invariant, showing that '"the coordinate functions of = ’-*

canonical form gre invariants."
4.7.1

Now lex :: U » GLn be a morphism which kills the
action of GL& on U. Then if ¢: U + U is a continuous

: . . a . -
algebraic camonical form so is ¢“: U » U which is

-
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defined by (F,G,H) ~» C(F,G,H)a(F’G’H). Inversely if c!
is a second continuous algebraic canonical form on U

then ¢! = c? f&r some morphism a: U » GLn which kills

the action of GLn on U. All this is proved as in section

3.6 of [1].
4,7.3

The situation becomes slightly more complicated if
we take U = Ugo. We still have the canonical forms

Cyq 2nd all other canonical forms are obtained by means

of a morphism 8: V:O -+ GLn’ Now if p = 1 then det(4(x))
need not be a constant independent of x ¢ Vio, because
the codimension of Va.\ V§° in V, is one if p = 1. An

example of this is founa by taking m = 1 = p and compar-

cr,co
i1,n,1°

~ever if p > 2, then the codimension of Va\ VZO in Va

ing the canonical form Cio and its dual on M How-

is > 2 (cf. section 2.7 above), which means that in
this case we again have that a: Vgo - GLn is given by

n2 polynomials such that det(ﬁ(x)) is a constant inde-

pendent of x ¢ Vzo.
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