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1. INTRODUCTION.

In this paper we treat the algebraic-geometric version of the
topological theory developed in [3]. That is we study linear

dynamical systems over an algebraically closed field k

Ll
]

n m
e+l Fxt + Gut > Xy € k-, u, € k

(1.1)
Ye = Hxp, ytEkp
where F,G,H are matrices with coefficients in k of the appropriate
sizes. A change of basis in state space changes the triple of
matrices (F,G,H) into (TFT_I,TG,HT—I) and as in [3] we are interested
in such questions as the following.
Does the set of orbits under this action have a (natural) structure
of an algebraic variety? Do there exist continuous canonical forms?
Similar questions for the case of two matrices were studied and
answered in [1], cf. also [2].
Essentially the answers are as in [3]. This paper uses a moderate
amount of algebraic geometry (nothing much beyond definitiomns).
Appendices 1,2 and 3 of [1] provide sufficient background information
for this paper. All schemes in this paper will be reduced and of
finite type over k, and we shall identify them with their associated
algebraic varieties of closed points. We use é? to denote affine
space of dimension r over k, and we give the ;éace of all triples
of matrices (F,G,H) of dimensions n X n, n X m, p X n respectively,

n(n+m+p)

the algebraic variety structure of . Let L denote

s, P

this algebraic variety.

Then the assignment

1

(1,2) (T, (F,G,H))— (TFT ',TG,HT 1) = (F,G,H)T

defines an action of the algebraic group GLn of invertible n x n

matrices with coefficients in k on L . Cf [1] Appendix 2. We can
b ’

now define what a continuous algebraic canonical form on a subvariety

L' Lm would be,

»



1.3. Definition.

A continuous algebraic canonical form on L' is an algebraic morphism

c: L' = L' such that

(1.3.1) for every (F,G,H) € L' there is a T € GLn such that
F,6,m)" = c(F,G,H)

(1.3.2) c(F,G,H) = c(F,G,H) iff there is a T € GL_ such that
(F,G,B)" = (F,G,H)

Again, as in [3], we have that continuous algebraic canonical forms
on all of L cannot exist for trivial reasons. ("Jump phenomena').
The conditio;s,"completely reachable", '"completely observable',

"rank of G maximal and rank of H maximal and completely reachable
and completely observable"all define open subvarieties of L

. cr co P m,n,p
which we shall denote with L s , L respectively.
m,n,p m,n,p m,n,p

In addition we consider the condition "F is diagonalizable

(i.e. semisimple) with distinet eigenvalues all different from zero"

which defines a (non-open) subvariety LU of L . Combining
m’n’p m’n’p

different attributes we have the following list of (possibly

interesting) subvarieties of L .
m,n,p

1.4. List of subvarieties.

cr co er,co _ .cr n Lco Lu

m,n,p’ "m,n,p’ m,n,p m,n,p m,n,p’ m,n,p’
IAIASCIEES AN A At LN Ll A 1y
m,n,p m,n,p m,n,p m,n,p m,n,p m,n,p m,n,p

All these subvarieties of Lm are GLn~invariant. We now have the

b bl
following theorem.

1.5. Theorem.

The following table gives necessary and sufficient conditions for
the existence of continuous algebraic canonical forms on various

subvarieties of L .
m’n,p



variety L' necessary and sufficient condition
for the existence of an algebraic
continuous canonical form
) y _ L CT -
(£ L m,n,p m=1
.. 1 _ qCO -
@ BT Pt
(iii) L' = L;r;‘:; m=1orp=1
’ H
(iv) L' = ;r;cg,u m=1orp=1
’ >
(v) L' = Lg n,p m=lorp=1lorm=norp=n
H b
(vi) L' = Lg’ﬁ b m=1!lorp=1orm=mnorp=n-
B

This theorem is "identical"” with theorem 1.7 of [3]. The proof is

similar in spirit but different in details.

There is of course also a corollary similar to corollary 1.8 of [3].

We shall see that the "orbit space' LS* /GLn has the structure of

m!n’p

. . . . . g . cr,co

a quasi-projective algebraic variety and its open subvariety L ; p/GL
.. . . . . c P

is in fact a quasi-affine algebraic variety. Let M r denote this

algebraic variety.

Then we shall also see that M

m,n
ct ’F . .
1s a fine
’n’

moduli variety for a suitable definition of (algebraic) families of

linear dynamical systems.

As we said the field k we work over is supposed to be algebraically

closed. This is mainly a matter of convenience: the varieties

LCT»co cr

> s L s
m,n,p m,n,p m,n,p

, M
m,n,p’ m,n,p

e are all defined over

any field k; in fact they are even defined over Z. This also explains

. crY
our notation M

m,n,

P(]R), etc. of [3]: the underlying sets of these

real manifolds are simply the real points of the variety Me* , etc.

m,n,p

However, some care must be taken in interpreting the results of e.g.

part (iii) of theorem 1.5 in this context.

Consider e.g. the following situation: let k be a finite field; let

1,GY»cO
m’n’p

(k) be the set of all k rational points of L

cr,co

, L.e. the set
m’n’p

of all completely reachable and completely controllable triples of




matrices with coefficients in k; let GL_(k) be the group of n x n
matrices with coefficients in k acting on L;r;c;
b E
way. Then part (iii) of theorem 1.5 does not say that there is no
cr,co cr,co
L k) - L 7
map man’P( ) m,n,p
the analogues of (1.3.1) and (1.3.2) hold. E.g. such a map always

(k) in the obvious
(k) (locally) given by polynomials such that

exists when k isIFz, the field of two elements. But part (iii) of

theorem 1.5 does say that the map Lcr,co(i) - Lcr,co(i) defined by
m’n’p m’n’P

the same polynomials, does not satisfy the analogues of (1.3.1) and

(1.3.2). Here k is the algebraic closure of k.

A large part of the proofs and constructions of [3] can be carried

through unchanged in the algebraic geometric case. In these cases

we shall as a rule simply refer to the appropriate section of [3].

The contents of the paper are

1. Introduction and Statement of some of the Results
2. The Quotient Variety Met .

m,n,p

2.1. Nice Selections

2.2. The Local Quotients Ua/GLn

2.3. The Quotient Variety MeT

m’n’p
2.4. Some Realization Theory
2.5. Equations for MCF» €O
Mot P cr cr
2.6. The Algebraic Principal Fibre Bundle m: L - M .
m,n,p m,n,p

2.7. The Codimension of (Mcr Mcr,co) in MCr .

m,n,p m,n,p m,n,p

3. The Fine Moduli Variety MeT .
m’n’p

3.1. Families of Linear Dynamical Systems
3.2. THe Universal Family £ over M°F

cr m,n,p
3.3. The Fine Moduli Variety M
m’n’p

4. Existence and Nonexistence of Algebraic Continuous Canonical Forms

4.1. Triviality of EY and Existence of Continuous Algebraic Canonical

Forms.
4.2. Duality
4.3. Example of a Nontrivial Algebraic Line Bundle
4.4 . Examples
4.5. An embedding X - M°T
m,n,p
4.6. Nonexistence of Continuous Algebraic Canonical Forms

4.7. On relations between Various Local Canonical Forms



2. THE QUOTIENT VARIETY M;r

3+

2.1. Nice Selectiomns.

Let (F,G,H) € Lm n,p’ The matrices R(F,G) and Q(F,H) are defined

3 b
as in [3], 2.2. The conditions "R(F,G) has rank n", i.e.

"complete reachability'" and "Q(F,H) has rank n" i.e. "complete

observability" define open subvarieties of Lm 0. which we denote

by LT co respectively FP

y m,n,p’ m,n,p P )

In addition we put RGOS At n L° which is also an open

m,n,p m,n,p m,n,p

subvariety of L . As in [3], 2.3 we let J lenote the set
m,n,p n,m

of column indices of R(F,G). Nice selections g (from Jn m) and

b
the successor indices s(a,j), j =1, ..., m of the nice selection

Care defined as in [3], 2.3. We again have (c.f. [1] 2.4.1 for
a proof).

2.1,1. Lemma.

If (F,G,H) € L;rn . then there is a nice selection o such that
> b
det (R(F,G%x# 0.

2.2. The Local Quotients Ua/GLn'

. . . . . cr
Let o be a nice selection. One defines the subvarieties of Lm n,p
3 bl

(2.2.1) U

{F,GH) €L, | [det®(F,6) ) # 0}

(2.2.2) wd

{(F,G,H) € Lm’n’P|R(F,G)a =1}

THe map wa of [3], 2.4.5 now defines an isomorphism of algebraic

wrieties

(2.2.3) by i R

We define a morphism t, ¢ Ua - GLana

(2.2.4) £, : (F,G,H) » (r”!

T -1
,(F,G,H) ), where T = R(F,G)a
2.2.5. Lemma. ty is a GLn—invariant isomorphism of algebraic varieties
(where GLn acts on GLx W, by left multiplication on the left

hand factor.



2.2.6. Corollary.

The (categorial) quotients Ua/GLn exist (as algebraic varieties)
and are isomorphic to the affine space ;imn+np’

This follows from 2.5.5 and the isomorphism wa. For the notion of
categorical quotient cf. [1] A.2.7. As a matter of fact Ua/GLn

is also a geometric quotient in the sense of [6]; we shall not need

this fact.

2.3. The Quotient Variety MeT .
m,n,p

We are now going to define a quotient prevariety M;rn D by glueing
> b
the local quotients Ua/GLn together in a suitable way. For each
nice selectiom o let Vu = é?n+np
B let Va
VGB

and for each second nice selection
8 = w;l(Wd N UB). We define

8o by the formula (identical to [3], (2.5.4)).

be the open subvariety Vu

B

¢a8: TV

(2.3:1) 8ya(x) = ¥ = (F, (0),6,(0),H )T = (Fg(3),65(3) Hg(n)

with T = R(Fa(x),Ga(x))él

where we have written wa(x) = (Fu(x)’Gu(X)’Ha(x)) 6~Wd and
similarly for wB(y). These ¢a8 are well defined and define
isomorphisms of algebraic varieties V 8 - VBa’ which moreover
satisfy the cocycle condition ¢BY¢QB = ¢GY whenever the left
hand side is defined. This means that by glueing together the
various Vu by means of the ¢a6 we obtain a certain prevariety
which we shall denote M-© . To prove that ME* is an
m,n,p m,n,p
(abstract) variety we have to prove that it is separated. This
can either be done by using the algebraic geometric version of
[3], 2.5.7 6r by means an embedding argument. To carry this

embedding argument through we first observe.
2.3.2. Lemma.

The natural projections Tyt Ua - Va combine to define an algebraic

. cr . . . .

morphism : Lt -~ M , and T is a categorical quotient in
m,n,p manzp , cr -

the category of prevarieties for the action of GLn on Lm n,p
— s ils

defined by (1.2).



Proof. It is obvious that T: L°* - M°F kills the action of
er m,n,p r?’n’P .
GLn‘ Now let ¢: Ln 0,p + X be any morphism which kills the action
b b
of GLn' Let UuB = Ua n UB. Then we know that Ua > Vu and

U , = VuB are categorical quotients by 2.2.6. Let ¢u be the

rzgtriction of ¢ to U, By the categorical quotient property of

Uu - Vu there are unique morphisms Xo Vu - X such that

¢a = Xyt Because UaB - VuB are categorical quotients we also know
that XB¢QB(X) = xa(x) for x € VaB’ where ¢GB is as in (Zéi.l).

It follows that the Xy combine to define a morphism Y: Mﬁ,n,p + X
such that ¢ = 7. The morphism X is unique because on each Va it must

equal xa. Essentially the same proof was used for [1], 3.2.14.

- . r
2.3.3. The Morphisms h: Lm,n,p *‘éi and g: Lm,n,p - Gn,(n+l)m

Let (F,G,H) € L . We let h(F,G,H) € AY, where r = (n+1)%mp,

. ’ =

be the block Hankel matrix

HG HFG ) ) HF'G \
HFG .

h(F,G,H) = . e = Q(F’H)R(FaG)
HE™G Co HFZHGJ

This defines a morphism h: Lm - éf, which certainly kills the

>0, P
action of GLn’

Restricting to L;rn . and applying lemma 2,3.2 we obtain an induced
> b

morphism

=\ CT r _ 2
(2.3.4) h: Mm,n,p~élé , r = (n+l1)“pm

Let L;rn be the algebraic variety of all pairs of matrices (F,G)
b

of sizes n x n and n x m. In [1] we constructed a morphism

cr . . . cr
->
m,n Gn,(n+1)m which kills the action of GLn on Lm,n’ where

Gn (n+1)m IS the Grassmann variety of n-planes in (n+l)m space:



g assigns to (F,G) the point of Gn(n+l)m corresponding to the
rank n matrix R(F,G) of size nx(n+1)m. We proved that the quotient

. cr
variety Mm = L

0 o n/GLn exists and that g induces an embedding
b b4

g: Mm,n - Gn,(n+l)m' cf. [1] Theorem 3,2.13 and proposition 3.2.14.

v. ;CI
Now let g': Lm,n,p Gn,(n+l)m

g(F,G). This morphisms kills the action of GLn and hence induces a

be the composed morphism (F,G,H)~ (F,G)
morphism

A. Cr
(2.3.5) &* Mm,n,p 7 G, (a+Dm
From the remarks make above we know that if (F,G,H), (F',G',H')
(F',G',H") € L;rn . are such that g'(F,G,H) = g'(F,G,H) then there

H 2

is a T € GLn such that (F,G)T = (f,a).

2.3.6. An embedding MET

-+ G
’’’’’’’’ m,n,p

T
n, (n+1)m x ._é..

The morphisms h,§ of (2.3.4) and (2.3.5) together define a morphism
.. CT r

(2.3.7) i: Mm,n,p - Gn,(n+l)m b4 _1_&___

We claim that i is injective. Indeed if (¥,G,H), (F,G,0) € L;rn P

b >

are such that h(F,G,H) = h(¥,G,H) and g'(F,G,H) = g'(F¥,G,H),then

we know that there is a T € GLn such that (F,G)T = (F,G) i.e.

TR(F,G) = R(f,@), and then because h(F,G,H) = h(F,é,ﬁ) we have in

particular HR(F,G) = HR(F,G) so that HTR(F,G) = HR(F,G) and hence

H = HT-1 because R(F,G) has rank n. This concludes the proof that i

is injective.

2.3.8. Corollary.

. Ccr . . C . o
The prevariety M is separated, 1.e. M r 1s a varilety.
m’n’p m’n?p

2.3.9. Corollary. LF - M
I m’n’p m’n’P

cr . . N
GLn on L n in the category of algebraic varieties.
> s

is a quotient for the cation of

cr . . . .
In fact Mﬁ n,p is also a geometric quotient in the sense of [6],
3 b

but we shall not need this.

2.3.10. co _ -1 cr,co co _ Co T
Let %x wa (W& n Lm,n,p) and WXB Wx n YJB Then the

. v . . . L, co_ COo co .
¢d8 08 - Véa induce isomorphisms ¢a8' v '*V(x. Glueing together

o B



cr,co

co co . .
the Vu by means of the ¢u8 we obtain an open subvariety kh o of
>0, P
cr which is the image of LS under
m’nég cT m9n’p
: - M . It follows that the ind i
g Lm,n,p n,n,p e induced morphism
co cr,co cr,co . . .
7 o L - M 1s also a categorical quotient.
m,n,p m,n,p & d

- . : p —l p
3 . l > =
2.3.11 Similarly, using V Yy (Woc n Lm,n,P)’

wo_ ol U wp_ -1 u,p .
Vu wu (Wu neuL ), Vu wa (W& ntL P) and the corresponding

m,n,p m,n,
V_, we obtain categorical quotients 1P > R
aB . m,n,p m,n,p
M > MM , 1P s P Ghere the MU are subvarieties
m,n,p m,n,p m,n,p m,n,p >
of ME .
m,n,p

2.4. Some Realization Theory.

The morphism h of (2.3.4) above induces a morphism

ﬁ : M;f;f; +~é?. It is tEe purpose of this and the following
subsection to show that h is injective and to derive equations

for the subvariety B(M;r,co) c é?. To do this we use some (partial)

b s -
realization theory an embodied by proposition 2.4.3 below. Firsta

definition
2.4.1. Definition.

Let Ao’Al’ ... be a sequence of p x m matrices. Then h r(A)

3
denotes the block Hankel matrix

Ao Al Ar
AI .

b ,r(A) - : )
Aq . . . Ar+q

2.4.2. Definition.

If A is a matrix and O% is a subset of the column indices of A,

and (g is a subset of the row indices of A, then we define

A, = matrix obtained from A by removing all columns whose index

is not in ab

A, = matrix obtained from A by removing all rows whose index is not

in O
T



10

Ad o - matrix obtained from A by removing all rows and columns
bl
T ¢ Whose indices are not in O, O respectively.

2.4.3. Proposition.

Let Ao’Al’ e A2n—1 be a sequence of 2n matrices with coefficients

in k, all of size p x m, and suppose that

rank(h (a)) = rank(hn’n_](A)) = rank(mn_]’n(A)) = n.

n—-1,n-1

cr,co

Then there exists an (F,G,H) € L such that HF'G = A, for

2 H]
i=20,1, ..., 2n-1.

Moreover if (F,G,H) € 12 C0
mﬁn,P

is a second triple such that
oFiG = Ai for i =0, 1, ..., 2n-1 then there is a T € GLn such
that (F,G,H) = (¥,G,H) .

Proof. Existence of a triple (F,G,H) € Lm such that

b ’p

(2.4.4) HF'G = A, 1=0, ..., 20-1

holds is assured by the realizability criterion 11.32 of Chapter
10 of [4]. We define

(2.4.5) R(EF,0) = (¢ Fe ... o,
QE,E)' = (B'Erar ... @)Y e
Then it follows from (2.4.3) that Q(F,H)R(F,H) = b (8.

Now we have rank(R(F,G)) < n, rank(Q(F,H)) < n and rank(hn_1 n_](A)) =n.
It follows that rank(R(F,G)) = rank(Q(F,H)) = n, so that

(F,G,H) € L0 Now let (f,é,ﬁ) be a second triple in L such
m,n,p , 0,

that

(2.4.6) BF'C = A, i=0,1, ..., 20-1

Then as above we find a(f,ﬁ)ﬁ(f,é) = hnwl n_I(A). Now because

i(F,G) has rank n there is a subset uc of size n of the column

indices of R(F,G) such that R(F,G)a is inVertiblé; further because
c



11

Q(F,H) has rank n there is a subset o fo size n of the row indices
of Q(F,H) such that a(F,H)a is invertible. We have
T

(2.4.7) (h

n—1 ,n-l (A))(},r’ac = Q(F’H)u R(F’G)OL =

r c
Q(F,H)a R(F’G)u
r c
so that it follows that all five n x n matrices occurring in (2.4.7)

are invertible.

Now let

o
T
(2.4.9) (F,E,H) = (F,6,D7, vhere T = AF,B)
r
Then we have of course
i, _ = zim _ _
(2.4.10) HIFJG] HIF]G1 A. for 1 =0, ..,, 2n-1
which means
(2.4.11) QCF L HDR(F,6) = QF LEDREL,E) = by (&)

and moreover because

Q| ,H) = QEWT, AE LR = AF,DT

we have

(2.4.12) Q(F],Hl)ar =1 - Q(FI,HJ)OLr

Now combine (2.4.12) and (2.4.11) to obtain that R(F],GI) = R(fl,al)
which by corollary 2.4.2 of [1] means that Fl = f] and G1,= 5]. And
because R(f],al) = R(FI,G]) has rank n, it follows from (2.4.11)

that also H, = H,. We therefore have (F,G,H)" = (F ,G ,H) =

1
(FI’GI’HI) = (F,G,H)T, which proves the second statement of the
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proposition.

2.4.13. Corollary.

The morphism h: MEE2C0 AT of (2.3,4) above is injective.

5D,

2.5. Equations for MET2 €0,
m’n’P

~
By means of the injective morphism h we can now consider
cr,co

.1, p as a subvariety of Ar, r = (n+1)2pm, where we write x € A"
s iy = -

as an (n+l)p x (n+l)m matrix. We now consider the following sets

of polynomials in the coordinates of éf.

(2.5.1) Pa(x) : these polynomials are such that E;(x) = 0 for

all a if and only if the matrix x is of block Hankel type
(cf. 2.4.1) with the blocks of size p x m.

(2.5.2) Qb(x)

here Qb(x) runs through all determinants of

(n+1) x (n+l1) submatrices of x.

(2.5.3) Rc(k) : here Rc(x) runs through all determinants of

n X n submatrices of the submatrix x' of x which is
obtained by removing the last p rows and the last m

columns.

2.5.4. Lemma.

Let (F,G,H) € L°°¢° | x = h(F,G,H) € A. Then we have P_(x) = 0
m,n,p = a

for all a, Q,(x) = 0 for all b and there is a c such that Rc(x) # 0.
Proof. Obvious because h(F,G,H) = Q(F,H)R(F,G).

2.5.5. Proposition.
b (MCT €O

m,n,p
that Pa(x) = 0 for all a, Qb(x) = 0 for all b and such that these is

a c¢ such that Rc(x) # 0.

r . . .. T
) € A is the subvariety consisting of those x € A" such
= —
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Proof. Because of lemma 2.5.4 we only have to show that if

x € AS satisfies Pa(x) = 0 all a, Qb(x) = 0 all b and

Rc(x) # 0 for some c, then x is in h(M°F?¢°

). Write x as a
m,n,p

block Hankel matrix

A1 A2 . An

A2 .
X = N .

An T A2n

0 for all a. Cf. 2.5.1. Then the

fi

This can be done because Pa(x)

matrices A ey A satisfy the conditions of proposition 2.4.3

1’ 2n-1

so that there is a triple (F,G,H) € L;r;cg such that HF'G = Ai
b b

for i = 0,1,2, ..., 2n-1. To show that h(F,G,H) = x it therefore

2

UG = A, . This follows from lemma

only remains to show that HF 2n

2.5.6 below.

2.5.6. Lemma. Let E,E' be two partioned matrices

and suppose that rank(E) = rank(E') = rank(A). Then D = D',

Proof. Let d be an element of D and d' the corresponding element
of D'. Let A' be an n x n submatrix of A such that det(A') # 0

h = . ' = ' = g! .
where n rank(A). Suppose A Ear’ac, then also A Ear,uc

Let Br = Q. U {i} where i is the index of the row in E containing
d and of the row in E' containing d') and Bc =oa, U {j} where j
is the index of the column in E containing d (and of the column in

E' containing d'). Then we have det(E ) = 0 = det(E

1 ).
BB B_»8,

r’“c
All elements of E and E/} except possibly the one in the
B_,B B_,8B
r’c r’“c
right hadn lower corner are equal and det(A') # 0. It follow that

d = d'. (By expanding the determinants along the last row e.g .).
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2.5.7. Corollary (of proposition 2.5.5).

cr,co . . . .
is a quasiaffine variety.
m,n,p

2.5.8. Using similar arguments as above combined with those used

in [1] to find equations for the variety Mm 0 (cf. [1] section 3.2),

b

it is not fifficult to find equations for the variety M;rn P
>y

. r . .
(as a subvariety of G x A" or as a subvariety of

n,(n+1)m

((n+1)m) -1).

n

1
EF X é?, where r' =
cr
m,n,p
if m > 1. This last statement is seen as follows. The embedding
cr cr . . .
Lm,n - Lm,n,p given by (¥,G) -~ (F,G,0), where 0 is a zero matrix

of appropriate size, induces an embedding M - MSF . Now
m,n m,n,p
according to [1] section 3.3 there is an embedding PoM .
- ’
Combining these we find an embedding gl - M;rn which shows that
cr >

M is not quasi affine. (Cf. also the proof of theorem 3.4.6

m,n,p
in [1]).

is a quasiprojective variety but not a quasi affine variety

2.6. The Algebraic Principal Fibre Bundle T: Le* > M°F .
m3n’p m’n!P

. T cr
As in [3] we can now show that LS - M
m3n’p m’n’

principal GLn fibre bundle over the variety Mmrn p? and we could
H E]
use an analysis of the nontriviality or triviality of this bundle

is an algebraic

to prove nonexistence and existence of algebraic continuous canonical
forms. This can be done almost exactly as in [3] section 3 except

that one has to construct a different example because the example

of [3], section 3.2 is essentially nonalgebraic. Cf. alsd section

4.1 below for further comments. In this paper, however, we shall

first discuss the fine moduli variety properties of M;fn,p and

then use these to investigate the existence of continuous algebraic
canonical forms; this is the same procedure as in [2], cf.

especially theoremsgk [2]. The two approaches are essentially equivalent
because the underlying vectorbundle of the universal family over

;fn,P is the algebraic n-vectorbundle associated to the principal

GL_ bundle 1L.°F > MY .
n m,n,p m,n,p
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2.7. The codimension of (MCr ~ Mcr,co) in M°F .
m,n,p m,n,p" — m,n,p
Let K be the subvariety of MeT defined by the equations
’n’P m,n’

det(Q(F,H))B) = 0 for all subsets of size n of the row indices of
Q(F,H). I.e.

(2.7.1) K O NG otk
m,n’p m3n’p m’n’P
We want to find out something about the codimension of the closed

subvariety K of M°F . The result is.
m,n’p m’n’p

2.7.2. Proposition.

The codimension of K in M°F is 1 if p = 1 and it is
m,n,p m,n,p
>p if p > 2,

To prove proposition 2.7.2 we use the following combinatorial lemma
2.7.3. Lemma.

Let X = {a .,an} be a finite set of n elements. Let X bea

12"
subset of X and 0O: XO ~ X an injective map with the following

property

(2.7.4) If Y < XO then O (Y) @ Y unless Y = Xo = X.
Then there exists a cyclic permutation ¥: X > X of order n such

"
that o(a) = o(a) for all a € Xo'

Proof. If X0 = X then condition (2.7.4) says that 0 is already a

cyclic permutation of order n. We can therefore assume that XO # X.
We are going to show that there is b € X ~ Xo and an injective map
o;: Xl > X with Xl = X0 U {b} and O](a) = 0(a) for a € XO such that
(2.7.4) holds with X0 replaced by X,. By induction (with respect to
the number of elements in X \-Xo) this proves the lemma. Because

X # X there is an a

€ X which is not in the image of 0. If a, € X0

1 1

let a, = O(al), if a; ¢ Xo stop; if a, € XO let ag = G(az),

if a, ¢ Xo stop; continuing in this way we find a sequence of elements

815 85, ceey @, X > 1 such that
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(2.7.5) a, ¢ Im(0), a; =o(a; ;) for i =1, ..., -1,
a. ¢ X0

Note that the ay, ..., @, are all different from one another
because 0 is injective and a ¢ Imo. There now are two possibilities
(i) There is no b § X ~ Img different from aj.
In this case Im0 has n — 1 elements and hence so has.XO. Therefore
X ~ Xo = {ar}. Let Y = X ~ {al,...,ar} and suppose Y # @#. Then we
have Y < XO because X ~ Xo = {ar}. We also have 0(Y) — Y because
O({al,...,ar} n XO) c {a],...,ar}.

Therefore, because 0 is injective, we would have o(Y) = Y
contradicting (2.7.4). Therefore Y = @ and X = {al,...,ar} in this
I 1° Then
X, = Xo U {ar} = Xand 0;: X+ X is clearly the desired cyclic

case (i.e. r = n). We now take b = a, and define gl(b) = a
permutation.

(1i) There is a b] € X ~ Imo which is different from a-
1
o, is injective because bl ¢ Imo . Now suppose that Y ¢ X

In this case we take b = a, and define O](b) = b,. The map

1
is such that OI(Y) = Y. Note that in this case X ~ Imo has at
least two elements, hence so has X - XO, so that X1 # X.

There are two possibilities

]

(ii]) b = a_ ¢ Y. In this case Y = 0,(Y)
contradicts (2.7.4).

0(Y) and Y c X0 which

(iiz) b = a. € Y. Then because OI(Y) = Y we must have a €Y,

a €Y, ..., a, €Yc X which is a contradiction because

t;eie is no ¢ € X such that o(c) = a, because a ¢ Imol =
Imc U {bl}' This concludes the proof of the lemma.
2.7.6. Now consider x € Q?n; consider (Fa(x)’Ga(X)’ where o ié a
nice selection, o < Jm,n' We recall how Fa(x) and Ga(x) are defined
(cf.[1] section 2,3). Let J = a U {s(a,1), ..., s(a,m)} as an
ordered subset of Jm,n' Let X, bé the column vector consisting of
the first n coordinates of x, X, the column vector comnsisting of

the second n coordinates etc. We now define n + m column vectors



17

Yo i=1,2, ..., mtn of length n as follows
e if the i-th element of J is the 2-th element

- (2.7.7) .y

of a

Xj if the i-th element of J is s(a,j)

where e2 is the 2~th standard basis vector.

The matrices Ga(x) and Fa(x) are now defined by

(2.7.8) Ga(x)j = yj, j=1, ..., m; Fa(x)j = =1, ..., 1

ym+j s ]
It readily follows from this that Fa(x) is a matrix of the following
type: the j-th column of Fa(x) is either a standard basis vector e

with £ > j, or Fa(x)j = X, for some i; moreover if F

0L(X)- = ell,

J

1
Fo‘(x)j2 = e22 with 31 <3y then 21 < iz. Applylng lemma 2.7.3 we
thus see that by specifying the X, i=1, ..., m to be suitable

standard basis vectors one obtains
2.7.9. Lemma.

For every nice selection 0, there is an x € A__ such that Fa(x)

is a c¢yclic permutation of order n of the standard basis vectors.

2.7.10. Let o be a nice selection. Now consider K 1, n Va = Vu ~ V;O
where o is a nice selection. This closed subvariety of Ua is

defined by the equations det(Q(Fa(X)’Hu(X))B) = 0 for all subsets

B of size n of the row indices of Q(Fa(x)’Ha(X))' We number the

rows of Q(Fa(x),Ha(x)) as follows

((0,1), e vy (O,P); (]sp)a e vy (I,P); £

eee 3(0,1), oon, (m,p))

Take B, = {,1),1,1), ..., (n-1,1)}. Write x € v, = é?n X é?n

as x = (y,z) and write z as the matrix (Zij)’ i=1, ..., p,
i=1, ..., n. We write Fa(x) = Fu(y), Hu(x) = z. Now consider

the equation
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(2.7.11) det(Q(Fa(x),Ha(x))Bl) =0

Now specify the y such that Fa(x) is a cyclic permutation matrix of
order n and suppose that the first row vector of Fa(x) under this
specification is the f-th standard basis vector. Now take

zij = 0 for j # 2. Then (2.7.11) becomes

(2.7.12) + 27

If p = 1, equation (2.7.11) defines Km N Va (Because if

rank Q(F,H) = n then there is a nice ";eiection" B from the row
indices of Q(F,H) such that det(Q(F,H)B) # 0 by the transposed
version of lemma 2.1.1). Equation (2.7.12) which is obtained
from (2.7.11) by a suitable specification of some of the variables

shows that (2.7.11) is nomn trivial, so that the codimension of

K NV in V_ is one for each nice selection o proving that
m,n,p o o or
the codimension of K in M is one. Now suppose that
,0, 1 m,n,l

p > 1. And consider the selections
B; = {(0,1i), (1,i), ..., (m=-1,i)} i =1, ..., p

Specifying the y and z as before (NB the specification to be used

depends on ¢!), the equations
(2.7.13) det(Q(Fa(x)’Hu(x))Bi) =0 1i=1, ..., P
specify to

(2.7.14) #2i, =0 i=1,...,0p

The equations (2.7.14) are independent, hence so are the equations .
2’ . . 1 . . - . . > .
(2.7.13) proving that the codimension of Km,n,p n Va in Va is > p
This holds for all nice selections o so that the codimension of
- er

m,n,p in Mm,n,p is always > p. We have now proved assertion 2.7.2.
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2.7.15. Remark.

To prove 2.7.2 all one really needs is the existence of a triple
(F,G,H) € Wu for each a such that F' is a cyclic matrix. This can be
seen as follows: Ua is a nonempty open subvariety of L . Let

,n’

L' = {{F,G,H) € Lo PIF‘ is cyclic} this also defines a nonempty
9y b

open subvariety of L np’ Because L is irreducible
b ? b b

L' N U, # ¢. Let (F,G,H) € L' N U_ and let (F,G,H) = (F,G,H)"
where T = R(F,G);l. Then (F,G,H) € Wu and F' is cyclic.

3. THE FINE MODULI VARIETY M % .
m’n’P

We now proceed to study families of linear dynamical systems.

Some motivation as to why one would like to study families is given
in section 1.8 of [3]. Morover, in this paper we shall use families
to investigate whether there exist continuous canonical forms or mnot.
This is not necessary;one can also use the principal algebraic

GL_ bundle AR A

m,n,p  m,n,p’
theory in the algebraic geometric case is practically completely

Cf. also 2.6 above. This part of the

analogous to the corresponding part of the topological case which

was treated in section 4 of [3].

3.1. Families of Linear Dynamical Systems,
3.1.1. Definition.

A family of linear dynamical systems over a variety S of dimensions

(n,m,p) consists of

(1) an algebraic ﬁ—dimensional vectorbundle p:E > S
(ii) an algebraic vectorbundle endomorphism F:E + E
(iii) an algebraic vectorbundle homomorphism G:Sxé?-+ E

(iv) an algebraic vectorbundle homomorphism H:E - Sxé?.
Let s € S, then F,G,H induce homomorphisms Fs: E_ > Eg,
GS: sxé? > Es’ H : ES - sxé?;-Es = p—l(s) is the fibre over s.

(Cf. Appendix 3 of [1]). Choosing a basis el(s), .oy en(s) of ES
and taking the obvious bases in sxA™ and sxé? we calculate the

matrices of Fs’Gs’Hs relative these bases. Let the result be
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(F(s,e), G(s,e), H(s,e). This triple depends on el(s), cees en(s)
only to the extent that a different choice of el(s), ey en(s)
gives a triple in the same orbit (under GLn) as (F(s,e), G(s,e),
H(s,e)).

The family I is said to be completely reachable if (F(s,e), G(s,e)

H(s,e)) € LSt for all s. (This 1is well defined because LF
m’n’p m’n’p

is GLn invariant).

3.1.2 The Canonical Morphism Associated to Completely Reachable

Family.

Now let I be a completely reachable family. Then FS,GS,HS define

a unique orbit in LEF and thus a unique point in Mt which
b b 2 2

we shall denote f_(s). Thus we have a map £, : S +~ MY . Using
X ) m,n,p

the local triviality of the bundle E one shows by means of the
algebraic analogues of the constructions in 4.1.2 - 4.1.8 of [3]

that fZ is a morphism in the category of varieties.

3.1.3. In the topological case we associated a continuous map

fZ: XM R) to every-family Y, and used this map to define
m,n,p

complete reachability of families. This cannot be done in the

algebraic geometric case because the variety M n does not exist.
3 3

3.2. The Universal Family I" over M
m,n,p

Let o be a nice selection. Let E =V x AP, p.: E -V the obvious
a a = o o a
projection. We define families Za of linear dynamical systems with

underlying bundles Ea by the formulas

(3.2.1) Fa(x,V) = (X,Fa(X)V), Ga(x,u) = (x,Ga(X)U),
Ha(x,V) = (x,Ha(X)V)

where for x € Voo wa(x) = (Fu(x),Ga(x),Qu(x», cf. [3] 2.4.5. Now let
- n . . . .

EaB VaB X é. and define the isomorphisms ¢&B' EaB -> EBa by

formula (4.3.6) of [3]. Then glueing together the E, by means of the

¢u8 we obtain an algebraic vectorbundle E . The Fa’Ga’Ha are
compatible with the ¢GB in the sense of (4.3.9) — (4.3.11) of [3]
and thus define homomorphisms ' B - Eu, gu: Mot x AT > Eu,

m,n,p =
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H: Y > M;rn . X é?. This defines the family f“. The family Y is
b s -
completely reachable (because this is true for the families Zu)’
cr cr

and the associated map f o Mm n,p > Mm n,p is the identity map
Z b b 2 2

(because the triple (Fa(x),Ga(x),Ha(x)) maps to x € Va c Mm n

under T: Lcr - MCr P

m,n,p m:n’p).

3.3. The Fine Moduli Variety Mo .
m,n,p

3.3.1. Two families %, ¥ are isomorphic if there is an algebraic
vectorbundle isomorphism ¢: E - E such that‘§¢ = ¢F, ¢G = G,

H = ﬁ¢. For each S € Sch], the category of algebraic varieties over

k, let @m n p(S) be the set of isomorphism classes of completely

s’ >
reachable families of linear dynamical systems over S. By means
of the pullback construction we turn @m

o : SchyPP > set.
m’n’p

(S) into a functor
n,p

E ]

3.3.2. Theorem.

. cr . . . . .
The variety M is a fine moduli variety for ¢ or, in
m,n,p m,n,

. T

other words, the functor ¢ i1s representable by M . More
m,n,p m,n,

precisely, the assignment It fZ induces a functorial isomorphism

cr . . . .
@m,n’p(S) - Sch](S,Mﬁ’n,p), the inverse isomorphism assigns the

]
isomorphism class of fﬂzP to f: S -~ M;rn .
b b}

Proof. Identical with the proof of the corresponding theorem 4.5.2
of [3].

4. EXISTENCE AND NONEXISTENCE OF ALGEBRAIC CONTINUOUS
CANONICAL FORMS.

In [1] we used the fact that M admits an embeddingiml +~ M
m,n = m,n

if m > 2 to show that there is no algebraic continuous form for
completely reachable pairs.of matrices. This cannot be used to prove
e.g. part (iii) of theorem 1.5 because as we have seen M;r;f; is

a quasi affine algebraic variety. Further the example we ;sed in

[3] to prove nonexistence of continuous canonical forms for real
linear dynamical systems if m > 2 and p > 2 is essentially
nonalgebraic. There is,however, a three (instead of one) dimensional

version of it which is algebraic and that is the example we shall
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use in this paper. We proceed via moduli varieties as in [2].

4.1. Triviality gﬁigf.and Existence of Continuous Algebraic

Canonical Forms.

4.1.1, Theoremn.

cr . . . c

Let L < L be a GL_-invariant subvariety of L T and let
>y P n m,n,

M = m(L). Then there exists a continuous algebraic canonical form

on L if and only if the algebraic vector bundle Eu|M is trivial.

Proof. Let @; be the subfunctor of @m 0 defined by considering
b4 b ’ 2

only isomorphism classes of families X over S such that f_ maps S

z

into M = m(L). It follows directly from theorem 3.3.2 that Im> fZ

then defines a functorial isomorphism @L (s) X Schk(S,M5 and
that the inverse isomorphism is given by’f;+ f!(ZuIM) where
Zu[M = (EY|M,F%|M,G"%|M,H"|M) is the restriction of I" to M. Now
suppose that there exists a continuous algebraic canonical form
c: L > L. Because c kills the action of GLn there is a unique
morphism ©: M - L such that ¢ = Cr. For each x € M we write

c(x) = (Fc(x),Gc(x),Hc(x)). Note that m& = id, by condition (1.3.1)

of the definition of canonical form.

(&%,F%,6%,5%)
with EC = M x A", Fo(x,v) = (x,F_(x)v), 6% (x,u) = (x,G_(x)u),
1% (x,v) (x,H_(x)v). Because Tc = id and c(x) = (F_(x),6_(x),H_(x))

We now define a family =€ over M as follows;'Zc

we have that f ot M > M is the identity morphism, cf. 3.1.2.
But, according to theorem 3.3.2, or rather the relative version
discussed in the beginning of this proof, we have that
(fzc):(Zu[M) is isomorphic to 3¢, which in particular means that

1
(f C)'(EulM) ~ 5% =Mx én; but £ c =1id, hence EulM is trivial.
z z
Inversely suppose that EuIM is trivial. Then we can find n algebraic
sections @5 --es € M~ EulM such that el(x), cens en(x) is a basis
for Ei for all x € M. Let F(x,e),G(x,e),H(x,e) be the matrices of

F : EC » Eu, G : {x} x A" » Eu, H :E” + xxAP relative the obvious
x' x x’ °x x> "x'7x

‘bases in x x A" and x x é? and the basis {el(x), e en(x)} of E:.

We now define a morphism c: L ~ L as follows
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c(F,G,H) = (F(x,e), G(x,e), H(x,e)) where x = m(F,G,H)

One easily checks that this is a continuous algebraic canonical form.
4.1.2. The Local Canonical Forms c#a.

Let o be a nice selection. The bundle Eu‘Ua is trivial (by the
definition of EY cf. 3.2) hence by theorem 4.1.1 there exist
continuous algebraic canonical forms on Ua' Such canonical forms

are wellknown. An example is the canonical form X o defined by
(4.1.3) c, (F,G,H) = (F,G,H)T, T = R(F c;)"1
o Lo #OL” sIsl) Ly

4.1.3. Corollary.

If m = 1 there is a continuous algebraic canonical form on
cr
m,n,p’

Proof. If m = 1 there is only one nice selection o, and hence

LY = U by lemma 2.1.1.
m,n,p O

4.2, Duality.

The assignment &8: (¥,G,H) »> (F',H',G') defines an isomorphism of

algebraic varieties L > L . If LclL is GL_~-
m,n,p p,n,m m,n,p n

invariant then so is §(L) < Lp n.m (but § is not GLn—invariant).
b 3

As in [3], 3.1.6 one now easily shows that there is a continuous

algebraic canonical form on L if and only if there is a continuous

canonical form on S(L).
4.2.1. Corollary.

. . . . cr .
There is an algebraic continuous canonical form on Lm n,p if p=1.
e |

4.3. Example of a Nontrivial Algebraic Line Bundle.

Let U, = é] x(éz\(0,0)), U2 = él X (éz\(0,0)). We give U, coordinates

1 1
(t,yl,yz) and U2 coordinates (s,xl,xz). Let U12 = {(t,yl,yz) € Ul |

t # 0}, U21 = {(s,x],xz) € U2|S # 0}. We define an isomorphism
: -1 )
EOH U]2 - U2] by (t,yl,yz) - (t ,ylt,yzt). Let X be the prevariety
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obtained by glueing U1 and U2 together by means of ¢. In fact X

is a variety viz. the quasi affine subvariety of

23#0 or 24#0). The embeddings of Ul and U

A4 e {(21,22,23,24)} given by 2,2, = Zy24 and (zl¢0 or 22#0 or

2 in this subvariety are
given by (t,y,,¥,) > (y,£,7,5¥,t,55)5 (5,%,%,) > (X,%;5,%,,%,8).
It is easy to check that this respects the identification ¢ given

above.

We now define an algebraic line bundle V over X by glueing U] b 4 Al

and U2 X él together by means of the isomorphism

v 1 1 .
q): Ulzxﬁ_ > U21}%_ ’ (t,Yl,Yzau)*"* (Ssxl 3X23V)— lff
ts = 1, X, = ty, X, = tyz, v = t. u

Now suppose that this line bundle is trivial. Then there must be.

everywhere non zero sections U1 > Ul b4 é],

- 1
(t,Yl ,Yz)"* ((t’ylyyz)’ gl (t’yl’yz)); Uz -+ U2 X :é— )
(s,xl,xz)r+ ((s,xl,xz), gz(s,xl,xz)) compatible with the
identification %. Now g and g, are morphisms él X (éz\-(mm) > A
Because A] x () is of codimension 2 in é} X A2 = é? this means

1

that g, and gy extend to morphisms on all of é3, i.e. 8, and &y

are polynomials. Putting everything together we therefore have that C is a
trivial line bundle iff there are polynomials gl(t,yl,yz),

gz(s,xl,xz) such that gl(t,yl,yz) # 0 if Yy # 0 or Yy # 0 and

gz(s,xl,xz) # 0 if X, # 0 or X, # 0 and such that moreover

-1
(4.3.2) tg; (£,5,5¥,) = go(t "ty sty,)

for all points (t,yl,yz) such that t # 0 and yi # 0 or 2 # 0. One
easily checks that the only polynomials gl(t,yl,yz) such that
gl(t,yl,yz) # 0 for all (t,yl,yz) for which Y, # 0 or ) # 0 are
constants. Similarly gz(s,xl,xz) is a constant. But then (4.3.2)

is a contradiction. So we have proved

4.3.2. Lemma. The line bundle V defined by 4.3.1 is nontrivial.
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}

4.4, Examples. 2

Let p > 2 and m > 2. We write down a number of G,F and H matrices

as follows

(4.4.1) Ifn=1,m>2 G1 m(t,s) = (t s 0 cee Q)

t s 0. .
1 1 0.

a
L]
.

(4.4.2) If n>2<m<n Gn,m(t’s)

bt £ D 8 s

a

where a is a nonzero element of k different from 1, and where B
is an (n-2) x (m—2) matrix with coefficients in k such that the
columns of B and the column vector (1, .,., 1)' together span
an m - | dimensional subspace of kn—Z. Such a B exists because

2 <m< n.

“"’ﬂ)‘—‘ﬁ
— D As

(4.4.3) Ifn>2=m Gn’z(t,s) =
a
t s 0. . Q 0.
1 1 1 0---0 !
0 0 0 S .«
. PN !
(4.4.4) If m >n > 2 Gn,m(t’s) =1 . , C 0 ,
0 0 0---01 0. ..
s ' d ————
n—-1 m-n-1
t s 0. 0
11 ‘
a 1 , '
= = ) ¢
(4.4.5) Ifm=n>2 Gn,n(t’s) ‘ ‘ ‘ n =2
] 4
a 1 o0....0
N et
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al 0 \. . 0
0 a2 ~ i
(4.4.6) Fn = : O .
0
< N
0 - - ~ 0 a
n

where aj, +-+, @ aren different elements of k which are all

different from zero

= '
(4.4.7) Hp’n(yl,yz) Gn’p(yl,yz) s
4.5 An Embedding X -~ MSF

e 2 m,n,p

Let U;, U, be as in 4.3 above. We define for all n,m,p with m > 2

and p > 2

cr
On,m,p’ U1 7 Lp,n,pr (B2¥12¥) > FuG (6,108 (5555,))

(4.5.1)

cr
gn’m,p- U2 - Lm,n’p’ (S’xl ’xz) > (Fn’Gn,m(l’S)’Hp,n(xl ’XZ))
We now note that if ts = 1, X, =¥t X, = y2t

T(t)

(4-5~2) (Fn:Gn,m(t,I>3Hp’n(Y1 ,Yz)) (Fn’Gn,m(l’S)’Hp,n(xl :xz))

where

o
- - - O

T(t) =

O --- 0O
7

This means that the morphisms U, + MoT , U, ~> Mot obtained from -
1 m,n,p 2 m,n,p’

the morphisms o and G of (4.5.1) by composing with
p n’m’p n,m’p ( ) y p g
cr MCT

> gcombine to define a morphism
m’n’P m’n’p

(4.5.3) T : X > M°F
m’n’p m’n’p
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where X is the variety defined in 4,3 above.

4.5.4. Let o be the nice selection {(0,2), (1,2), ..., (n-1,2)}

then we see from 4.4 that © (Ul) c Ua and hence T p(Ul) c Va'

m,n, sy
Let B be the nice selection {(0,1), (1,1), ..., (n-1,i)} then
we see from 4.4 that CA (U2) C:UB and hence Tm,n,p(UQ‘: VB.

>I,
It follows that the pullback of johet by means of Th.n o is an
b Iatel

algebraic vectorbundle over X whose restrictions to Uy and U2

are trivial, and the glueing data of this bundle are given by
(cf. [1] Appendix 3.6)

(4.5.5) v U, x A 2

-1
((t:yl’y2),u) - ((t 9ty1:ty2): T(t’yl:yz)u)
where T(t,yl,yz) is equal to the matrix

-1
(4.5.6) RE G, (61 REIF LG (£,10)

?
where o and B are the nice selections {(0,2),(1,2), ..., (n-1,2)}
and {(0,1),(1,1), ..., (n-1,1)}. Let E - X be this bundle. The

exterior product bundle AE + X is then the line bundle obtained by

glueing together UI X A] and U2 b'e A1 by means of the isomorphism

1 . 1
(4.5.7) P U12 X .é_ - U21 X

B

((t,9157,),u) > ((£ ey, ,ty.), det(T(t,y,,y,))u)
1°72 1 2 1272

and from (4.5.6) we see that
¢ if n < 2
(4.5.8) det(T(t,¥,,¥,)) =] _{ __
1272 ¢ lan 2 if n>2

~

It follows that the line bundle defined by Y is nontrivial.
Cf. 4.3 above.
4.5.9. Proposition.

|
The algebraic vectorbundle T; E" is nontrivial if p>2,m>2.
3 b
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Proof. This follows from the above ‘because if E - X is a trivial
algebraic n dimensional vector bundle then A'E > X is a trivial

line bundle.
4.5.10. Corollary.

. cr
Let M be a subvariety of M
€ y m,n’p

such that T (X) € M. Then
n,m,p

2

EulM is a nontrivial algebraic vectorbundle.

4.6. Nonexistence of Continuous Algebraic Canonical Forms.

We can now prove theorem 1.5

4.6.1. Proof 2£ Theorem 1.5

First let m > 2 and p > 2. Let M" = T (LY ) where LY
- - m,n,p m,n,p

runs through the subvarieties listed in 1.4. Then we see from

4.4

p,U
4.6,2 T X) oM™
(4.6.2) nn,p®
if m# n and p # n, and that in any case (still assuming p > 2

and m > 2)

cr,co,l
(4.6.3) Tm’n,p(X) M
By corollary 4.5.10 and theorem 4.4.1 this takes care of the only

if parts of statements (iii), (iv), (v), (vi) of theorem 1.5.

Lp,}‘l c Lp and Lcr’co c Cr,co’p)‘

(Because
m,n,p m,n,p m,n,p m,n,p

On the other

hand if m = 1 in cases (iii) and (iv) and m = 1 or n in cases

(v) and (vi) then the respective subvarieties are contained in

one Ua for a certain nice selection 0. By 4.1.2 there are therefore
continuous algebraic canonical forms in these cases, The corresponding
fact for p = 1 in cases (iii), (iv) and p = 1 or n in cases (v),

(vi) follows by duality. Cf. 4.2. This proves (iii) - (vi) of

theorem 1.5.

The if part of (i) is corollary 4.1.3; the if part of (ii) follows

by duality. Cf. 4.2. To prove the only if part of (i) observe that
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ifm>2 ﬂ((Fn,Gn (t,s),0), where t # 0 or s # 0, depends only on
the point (t:s) € P' and not on the actual t and s. Thus

T (tis) » ﬂ((Fn,Gn’m(t,SJ,O)

defines a morphism 21 - M;rn P for all (m,n,p) such that m > 2. As
- sty 1 -
" in 4.5 one now proves that T'E" is nontrivial. By 4.5.10 and 4.4.1

this proves the only if part of (i). The only if part of (ii) follows
by duality. Cf. 4.2. This concludes the proof of theorem 4.5.

4.7. On Relations between Various Local Canonical Forms.

r . . .
Let U c LS be a GL_ invariant subvariety of Lot , and suppose
3 b n m’n,p

that there is a continuous algebraic canonical form c: U »> U,
1 . . .
Let k: U~ A be a morphism, e.g. a "coordinate function'. Then
1 . . . . . .
Kc: U > A is GLn invariant, showing that '"the coordinate functions

of a canonical form are invariants'.

4.7.1. Now let a: U > GLn be a morphism which kills the action of
GLn on U. Then if c¢: U ~ U is a continuous algebraic canonical

form so is ¢®: U » U which is defined by (F,G,H)havc(F,G,H)a(F’G’H).
Inversely if c¢' is a second continuous algebraic canonical form on

U then ¢' = ¢? for some morphism a: U - GLn which kills the action of

GL_ on U. All this is proved as in section 3.6 of [1].

4.7.2. Now let U = Ua' We have the canonical forms(:%“x. Every other
canonical form is given by a morphism a: Ua > GL which kills the

action of GL , i.e. by a morphism &: Vu - GLn. Because
mn+np

Va = we must have that det(3(x)) is a nonzero constant

independant of x € v, Cf. also section 3.6.7 of [1].

4.7.3. The situation becomes slightly more complicated if we take

U= U;o. We still have the canonical forms c. and all other canonical

forms are obtained by means of a morphism 3; V;o - GLn' Now if p = 1

then det(2(x)) need not be a constant independant of x € V;o, because
the codimension of Va ~ V;o in Va is one if p = 1. An example of this

is found by taking m = 1 = p and comparing the canonical form C
cr,co

co I,m,1 . .

Vu ~ Va in Va is > 2 (cf. section 2.7) above), which means that 1in

Q

and its dual on M . However if p > 2, then the codimension of
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this case we again have that F; V;o - GLn is given by n2 polynomials

such that det(@(x)) is a constant independant of x € V;O.
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