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MODULI AND CANONICAL FORMS FOR LINEAR DYNAMICAL
SYSTEMS. II: THE TOPOLOGICAL CASE.

by Michiel Hazewinkel

1. INTRODUCTION.

We consider linear dynamical systems with constant coefficients

(1.1) % =Fx +Gu, x €ER”, u e R®

Hx , y € RP,

<
1]

(continuous time), and systems

(1.2) X4 =Fx *u, x € R,u €R', t€z

= P
Yt—HXt ytE]R

(discrete time)

I.e. there are m inputs, p outputs and the state space dimension
is n. A change of basis in state space changes the triple of
matrices (F,G,H) as follows

(1.3) (F,G,H) v (F,G,H)T = (TFT ', TG, HT '), T € GL_(R)

where GLnGR) is the group of invertible n x n matrices. Motivated
by e.g. identification of systems theory, the question now arises
whether there exist continuous canonical forms for this action of
GLnGR) on the space of all triples (F,G,H). A precise definition
of this notion follows. Let Lm,n,pGR) denote the topological space
of all triples of matrices (F,G,H) of sizes nXx n, nXxm, pXn
respectively; Lm,n,pGR) is naturally identifiable withLmﬁn*m+P)n
and is given the corresponding topology.

1.4. Definition.

Two elements (F,G,H), (F,G,H) €L GR) are called GL GR)

m’
equivalent if there is a T € GL_ ®R) such that (F,G H) = (F,G,H).



We can now define a continuous canonical form as follows:

1.5. Definition.

A continuous canonical form on a subspace L' ¢ L MR) is a
P m,n,p
’ b

continuous map c: L' > L' such that

(1.5.1) c(F,G,H) is GLnGR) equivalent to (F,G,H) for all

(F,G,H) € L',

(1.5.2)  c(¥,G,H) = c(¥,G,H) if and only if (F,G,H),(F,G,H) € L'

are GLnGR) equivalent.

Of course one usually lets L' be a GLnGR) invariant subspace of
Lm,n,p’ i.e. a subspace such that (F,G,H) € L' »-(F,G,H)T € L' for
all T € GLnGR).

One now remarks immediately that, for trivial reasons, there is no
continuous canonical form on all of Lm,n,paR); more precisely because
there are socalled jump phenomena; that is there are families
(Ft’Gt’Ht)’ t €ER, of elements in Lm,n,pGR)’ depending continuously
on the parameter t such that (Ft’Gt’Ht) and (FS,GS,HS) are GLnGR)~
equivalent for all t # 0, s # 0 but such that (Ft’Gt’Ht) is not
GLnGR)—equivalent to (FO,GO,HO) for t # 0. One now easily checks that
if L' contains such a family then no continuous canonical form on

L' can exist. One example of such a family is obtained as follows.
Let G, be any nonzero matrix, F

1

1
Gt = tGl’ Ht =0, Fr = F1 for all t € R.

So, for continuous canonical forms to exist we must first of all see

any matrix, H1 = 0. Now define

to it that no jump phenomena can occur. One subspace of Lm n pCIR)
E Baiel ]
for which this condition is satisfied is the subspace L;rn pGR) of
b b

all completely reachable triples (F,G,H). For a definition cf. 2.1
below.

This fits in rather well with the "identification of systems' point

of view where one is mainly interested in systems which are completely
reachable and completely observable because as far as input/output
behaviour is concerned every linear system is equivalent ta such aone.

cr,co

We denote with L the bspace of L
m,n,pGR) subspa m,

0 pGR) of completely
b .
reachable and completely observable triples (F,G,H); cf 2.1 below for



a definition of completely observable.

cr,co

In addition to Lm @) we consider some more (GLnGR)—invariant

3t

subspaces of Lm n pGR). A short list of interesting subspaces might
=t

be the following:

1.6. List of Subspaces.

[

Lmrn p(JR): all triples (F,G,H) such that (F,G) is completely reachable.
? b4

;On pGR): all triples (F,G,H) such that (F,H) is completely observable.
bt
cr,co cr co
L2 = L N L .
msnapaR) m’n’pGR) msn’PaR)
o pGR): all triples (F,G,H) such that the eigenvalues of F are all
2+t

real, distinct and different from zero.
A

cr,co,A Cr,co
| =17 nL
m’n’p CR) m’n’pm') m’n’pCR')
g 0 PGR): all triples (F,G,H) such that (F,G) is completely reachable,
b ’
(F,H) is completely observable, rank(G) = min(n,m),
rank H = min(n,p).
PsA P X
L =L nL
m’n’pm) m’n’pGR') m,n’paR)

The following theorem then describes the main results of section 3

below.
1.7. Theorem.

The following table lists mecessary and sufficient conditions for the

existence of a continuous canonical form on various GLnGR ~invariant

subspaces L' of L
P m,n’PGR)
space L' necessary and sufficient conditions for
existence of a continuous canonical form
. cr =
(1) Lm’n’p(IR) m =1
.. co =
(ii) Lm’n,pCIR) p=1
(iii) L502¢E m=1o0rp-=1
m,n,p & P
. co,cr,A i -
(iv) Lm,n’p (R) m=1orp-=1
(v) Lg’n’pUR) m=1lorp=lorn=morn=p
i %2 R =1 =1 - =
(vi) Lm,n,p( ) m=]lorp=lorn=morn=p




1.8. Corollary.

(i) If L' is a GLnGR) invariant subspace of Lm 0 PGR) such that
b

3

co,Cr A c . .
LS Ry « L' < 1°9°?°T(R) then there exists a canonical from
m,n,p - — m,n,p

on L' iff m =1 or p = 1.

(ii) If L' is a GLnGR) invariant subspace of Lm P(IR) such that

sy

Lp’A R) =cL' <LP (R) then there exists a continuous canonical
m,n,p - — m,n,p

formon L' iff m=1l orp=1o0orn =mor n= p.

There are many more theorems of this kind. The first step in proving
such a theorem is to examine the orbit spaces L'/GLnGR). If these
"quotient'" spaces are not Hausdorff, continuous canonical forms cannot
exist. (Jump phenomena again). Section 2 below is mainly concerned with
the structure of L;rn’pGR)/GLnGR) and the fibre bundle

b

L;fn,pGR) > L;fn’pGR)/GLnGR). In section 3 we then use these results
and some examples to prove the theorem 1.7 quoted above.

1.8. Thus theorem 1.7 shows that as a rule one cannot expect continuous
canonical forms to exist. However, the next best thing does exist:

the quotient space Mm,n,pGR) = Lm,n,pGR)/GLnGR) admits a fine moduli

space structure which very roughly means that it possible to define a
"family of linear dynamical systems' over Mm,n,pGR) such that up to
GLnGR)—equivalence every completely reachablesystem occurs exactly once in
this family and such that every family can be obtained from this
(universal) one in precisely one way (by pullback). Section 4 below is

concerned with these notions.
1.9. The contents of the paper are

1, Introduction and statement of some of the results
2. The quotient manifold Mt ®)

’n,
2,1. The quotient space Mm,n,pGR)
2.2. Completely reachable and completely observable systems
2.3. Nice selections
2.4. The local quotientst&JGLnoR) '
2.5. The differentiable manifolds MCT_ _(R) and M°T’°O(R)
crm’n’P m,n,p
2.6. The principal fibre bundle Lm

, B MY (R)

m,n,p
2.7. Remark on the local canonical forms %%a'



3. Existence and nonexistence of contilnuous canonical forms
. ) c cr
3.1. Local canonical forms and local sections of LT R) - M R)
m,n,p } m,n,p
3.2. Examples

. 1 cr,co
3.3. An embedding P > M2
g2 ®R) m,n,pGR)

3.4. Some remarks on principal GLnGR) bundles
3.5. On the nonexistence of continuous canonical forms
4. Families of linear dynamical systems and the fine moduli space

®).

cY
m,n,p

4.1. Families of linear dynamical systems
4.2, Description of families of linear dynamical systems by
transition functions

4.3. The universal family s over MST ®)

m,n,p
4.4, The functor ¢ of isomorphism classes of linear dynamical
b ?
systems.
4.5. The fine moduli space M (R)

m,n,p
4.6. Remarks.

2. THE QUOTIENT MANIFOLD MY ().
m,n,p

In this section we study the action of GLnGR) on Lm n pGR) and discuss
b b

the quotient spaces L'/GLnGR) for various GLnGR)—invariant subspaces L'.

2.1. The Quotient Space M .
Q P 0, p &

We define M as the tient space of L under GL
n,n,p®) 28 quo P m,n,p & LR
equivalence as defined in 1.4. I.e. the points of Mh n pCIR) are the
3 >

orbits of GLnGR) in Lm 0 pGR) and its topology is the finest topology

> b
for which the natur@l projection 7 : L -+ M is continuous.

projection m,0,p® 7 Mn,n,p®
The space Mm o p(]R) is never a Hausdorff space. (Because of the Jump

b s

phenomena mentioned in the introduction above;or in other words, because

not all orbits of GL_(R) in L (R) are closed subsets).
n m,n,p

>

2.2. Completely Reachable and Completely Observable Systems.

Let (F,G,H) € Lm n pGR). The system (F,G,H) is said to be completely
’ b

reachable if the matrix R(F,G) has rank n, where R(F,G) is the matrix

(2.2.1) R(F,G) = (G FG ... F%G)



consisting of the columnvectors FlG., i=20, ..., n;
j=1, ..., m, where Gj’ j=1, ..., m is the j-th column of G.

Dually the system (F,G,H) is said to be completely observable if

the matrix‘Q(F,H) has rank n, where Q(F,H) is the matrix defined
by

(2.2.2) Q(F,H)' = (4" F'H' ... F'"@")

where A' denotes the transposed matrix of a matrix A.

Let

(2.2.3) L;fn,pCIR) = {(F,6,H) € L  (R)|rank (R(F,G)) = n}
(2.2.4) L;"’n’paa) = {6, €L ®)|rank(Q(F,H) = n}
(2.2.5) L;f;lf;aa) = L;fn’pGR) n L;(:n,p(IR)

We define

(2.2.6) My L p® = T @)

where w stands for cr or co or cr,co.

2,3. Nice Selections.

We number the m(n+l) columns of R(F,G) by pairs of indices as follows
o1, ..., om; 11, ...y, Im; ... 3 nl, ..., nm

and use Jn o to denote this ordered set. A nice selection o is now
b

defined as an ordered subset o < Jn o of size n such that (i,j) € o

b

implies (i',j) € a for all i' <i. Ifa is a nice selection we define

s(a,j), 3 =1, ..., m as that element (k,j) € Jn o such that

b4
(k',j) € a for all 0 < k' < k. (If o contains no elements of the form
(i,j) then s(a,j) = (0,j)). These s(a,j) are called the successor

indices of o. There are precisely m of them; one for each j =1, ..., m.
If a is any subset of Jn we denote with R(F,G)a the matrix obtained
y

from R(F,G) by removing all columns whose index is not in a.



2.3.1. Lemma.

If (F,G,H) € L;r pC]R) then there is a nice selection a such
b >
# 0.

n
that det(R(F,G)a)

Proof. Cf. [1] lemma 2.4.1.
2.4. The Local Quotients Ua/GLnGR)'

Let 0. be a nice selection. We define

(2.4.1) U, = {(F,G,H) € Lm’n,p(IR)l det R(F,G), # 0}
(2.4.2) W, = ((F,GH) €L ®)| RF,C) = I}

where In is the n x n identity matrix. We claim that Wa is naturally
. . 1 RDFDP, . . mn

homeomorphic with To see this write x € R as a sequence of

m column vectors of length n as follows x = (xl,...,xm) where X

consists of the first n coordinates of x, X, of the second n

coordinates of x, etc.
2.4.3. Lemma.

For each x € R there is precisely one pair of matrices (F,G)

of sizes n x n and n x m respectively such that

(2.4.4) R(F,G), = I_, R(F,C) X.5 =1, ..., m

s(a,j) - %3

Proof. Cf. [1] lemma 2.3.3.

2.4.5. Now let x = (y,z) € ™" x R"P we define

woﬁx) = (Ex(x),%x(x),ﬁu(x)) as the unique triple of matrices such that

(Fa(x),Ga(x)) is the unique pair corresponding to y € ™™ as in

lemma 2.4.3 and such that Ha(x) is the p x n matrix corresponding to z.

Lemma 2.4.3 now implies that wa is a homeomorphismimpn x R™P » Wﬁ'

2.4.6. Let X be any topological space. We let GLnGR) act on
GLnGR),x X by multiplication on the left hand factor.

There now is a natural GLnGR)~invariant morphism ta defined as follows



(2.4.7) t, ¢ Ua - GLnGR) X Wa,

_.] -
(F,G,H) = (T (F,G,10)7T), where T = R(F,G)al

2.4.8. Lemma.
'ta is a GLnGR)—invariant homeomorphism.

Proof. One obviously has for all T € GLnGR).
(2.4.9) R(TFT !,T6) = TR(F,G)
The GL (R)—invariance of t follows immediately from this. To see

that t is a homeomorphlsm observe that (T,(F,G,H))~> (F,G H) is ‘an

inverse map to t_.

2.5. The Differentiable Manifolds MY (R) and MST’C°@R).
m P —— mn,n,p

By means of the results of 2,4 we can now obtain a local pieces and
patching of the topological space M (R). We see from 2.4.8

and 2.4.5 that U /GL ®R) = ROOP, It ;Zmalns to patch these local
pieces together.

We define for each pair of nice selections a,B

+
(2.5.1) V= RETRP v§° = {x € V_|rank Q(F (x),H (x)) = n}

{x E'Vuldet(R(Fu(x),Gu(x»B) # 0}

(2.5.2) | VuB

co _ co
(2.5.3) VaB = VGB n Va

We now define homeomorphisms ¢a8 : VuB > VB& as follows

(2.5.4) ¢a8(x) =y = (Fu(x),Gu(x),Ha(x)T = (FB(Y),GB(Y),HB(Y))

. _ -1
with T = R(Fa(x),Ga(x))B .

One easily checks thatfor all triples of nice selections o,8,Y -.:

¢Ey¢a°(x) ¢ (x) whenever the left hand side is defired and that

veo ¥ yeo
¢GB induces homeomorphlsms ¢GB uB - VB



2.5.5. Lemma.

The topological space obtained by glueing together the Va by means

r

of the ¢&B is M; (R). More precisely we have

b b
. Q cr -~ M°TF is injective.
(i) V,— W, <y, < Lm,n’pClR) m’n,p(lR) ]

Let w& be this composite map. Then

(ii) w&(x) = Wé(y) if and only if x € VaB and ¢a8(x) =y

®) = U w&(va) where o runs through all nice selectioms.
a

(iii) M°F
m,n,p
Proof (i): If (F,G,H), (F,G,H) € Wd are GLnGR) equivalent. Then
(cf. (2.4.9) we must have R(F,G) = TR(F,G) for some T € GLHGR).
Hence R(F,G)a = TR(F,G)a. But R(F,G)a = R(F,G)a = In:
hence T = In' Part (ii) of the lemma follows directly from
the definition of ¢GB (ef. (2.5.4)), and part (iii) follows

from lemma 2.3.1 and 2.4.8.

2.5.6. Corollary.

(i) M;rac;GR) is the topological space obtained by glueing together
b b
co . . co  _co co
the Va by means of the induced homeomorphisms ¢GB' VaB > VBQ.
.. co cr cr,co
Th A\l ] b
(ii) e wa(Va) and wa(va ) are open subsets of Mﬁ,n,paR) and Mm,n,pGR)

respectively

We now want to show that M;rn pGR) is a Hausdorff space. To do this
b b

we use the following lemma.
2.5.7. Lemma.

Let a,B be two nice selections and suppose that (Gi,Gi,Hi), i €N is
quufncf of elements in Ua converging to (F,G,H) € Ua as 1 » » and that
(Fi’Gi’Hi)’i € N is a sequence of elements in UB converging to (f,a,ﬁ) €U
Suppose moreover that (F,,G;,H;) and (fi,éi,ﬁi) are GL_(R) equivalent

for all i € N. Then (F,G,H) and (F,é,ﬁ) are GLnGR)—equivalent.

g
Proof. We have

2.5.8 i . =
( ) lim R(F;,6,), = R(F,6),

100
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Now R(Fi,Gizx and R(F,G)(x are invertible for all i€ N. This means

that also
. -1 _ -1
(2.5.9) %1m R(Fi,Gi)(l = R(F,G%x
)
We also have that
(2.5.10) }1m R(Fi’Gi%x = R(F,sz
Irco

= = = . cr
Now because (Fi’Gi’Hi) and (Fi’Gi’Hi) are both in Lm,n,pGR) they
are GLnGR) equivalent if and only if

T.
i o= = = . = = -1
(2.5.11) (F;,G;,H) © = (Fy,6p,H) with T; = R(F,G,) R(F;,6,)

This follows from the fact that Ti must be such that TiR(Fi’Gi) =
R(Fi,Gi) and that R(Fi’Gi) and R(Fi’Gi) both have rank n. By

(2.5.9) and (2.5.10) we know that lim Ti exists and is equal to
1500

R(F,G)aR(f,a);] = T_ and taking the limit for i+ in the

equality TiR(Fi’Gi) = R(Fi’Gi) we find
(2.5.12) T _R(F,G) = R(F,G)

Both R(F,G) and R(F,a) are of rank n so that rank(?w) =n, i1.e. Ty 18

invertible so that

(2.5.13) lim TE‘ =7}

1->c0

We already had

(2.5.14) lim T, = T
. . 1 )
and 130
(2.5.15) F.=T.F.T.' , 8. =1T.G,, A, = BT,
1 1 1 1 1 1 1 1 1 1

Taking the limit for i - w of the equalities (2.5.15) now shows that

m
T

(2.5.16) (F,G,H) = (F,G,H)

which proves the lemma.
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2.5.17. Theorem.

cTr

M~ _(R) is a differentiable manifold and MET2CORY is a differentiable
ERPY Y m,n,p
submanifold.

Proof. The patching functions ¢&B and ¢§g are n times differentiable
for all n. In view of lemma's 2.5.5 and 2.5.6 it therefore

suffices to prove that M;rn pGR) is a Hausdorff space. This follows

> >
from the fact that M°© (R) is covered by the Hausdorff open
+np

E At ]

subsets V& = R and lemma 2.5.7 above which says that a

sequence 1in Vu n VB cannot converge to two different points

. . . cr
(one in Va and one in VB) at the same time. (If Mh,n,pGR) were

not Hausdorff such a sequence would exist).

2.5.18. Remark. The manifold M;rn PCJR) is never a compact manifold.
b 3

m

2. . . . . . Cr cr .
6. The principal fibre bundle Lm,n,pGR) - Mm,n,pGR)

From now on we shall occasionally talk about fibre bundles and
principal fibre bundles over a topological space X. For these concepts
and some elementary facts concerning them the reader is referred to
[4]. A1l fibre bundles in this paper will be locally trivial and we
shall often omit to mention this.

According to lemmas 2.5.5 and 2.4.8 we have a commutative diagram

1 -1
GL (R) V_ﬁg GL_ (R)xW _f\’t_a_.._; UC‘___>Lcr
n X o n x o o m,n,pGR)
(2.6.1)
,q)l
[0 cr
Va a Mﬁ,n,pGR)

where P, is the projection onto the second factor. By lemma 2.5.5
and corollary 2.5.6 we know that the V& = w&(Va) are open and form
an open covering of M;fn,pGR) where o runs through all nice
selections.

We now obtain from (2.6.1) a commutative diagram
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X
6L @y’ " v 1 @)
— ey
n Q m,n,p
2.6.2) 4 Q 4
V! = v'C—y*F
a Voc Mm,n,paR)
vhere T is the restriction of T to Ua and Xy, is equal to
_ 1 N ;
(2.6.3) Xy =ty () Axyl) " (ix1)
vhexre 1 : GLn(lR) - GLn(]R) is the homeomorphism T#> T—] .
. . , cr
'he homeomorphism Xy Can be described as follows. Let x € Va c Mm,n,p(]R)’

let (F,G,H) € ﬂ—l(x). Then we have

T . -1
Xoa(ln’x) = (F,G,H)” with T = R(F,G)a

(2.6.4) —1

xa(f,X) = (F,G,H)TT

Now let (T,x) € GLn(IR) X (V& N V). Then we know (by the commutativity
of (diagram (2.6.2) above)that Xé )(OL is well defined and of the form

Xg X (T = (pyg(x,T),3)

We are going to calculate paB(X’T)'

Let x' = \}J'—](x). Then we have
o o

(g g (6T = (D)™ () ()™ e ! (g ) () ™ (2wl (1,

-1 . -1 -1 -1 .,
(1x1) (lst)(lst) gty (lxwu)(T ’xa)

1

]

-1 v -1 - -1 '
(1x1) (lst)(lst) tgty (T ,(FG(X&),GQ(X& )’Hu(xu))

_ -1
()™ () () ™ ey (20,6, ) B, )T )
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This shows that (cf. the definition of tg (2.4.7)).

R(rTVE )T, T 6 )

paB(X’T)

- 1 -1
(2.6.5) 0 gD = REL(WY T (02,6, 07 GG’

We have now proved:

cr > M°T (R) is a principal (locally trivial)
2.6.6. Theorem. Lm’n’p(JR) n,n,p ) P y

fibre bundle with group GLn(_IR).
Proof. This follows from 2.5.6, the commutativity of (2.6.2) and
(2.6.5); cf. Steenrod [4], 2.3 and 8.1.

2.6.7. Corollary.

The covering {V&} of MST pCIR) and the transition functionsdefined

m’n’
by (2.6.5) define the principal fibre bundle L;rn,paR) > M;fn’pC[R).

s

2.6.8. Corollary.

cr,co cr,co . .. .. .
Lm,n,pGR) - Mm’n’pC[R) is a (locally trivial) principal fibre bundle

with group GLn(]R). It is the restriction of the bundle

cr cr cr,co
L > M to th ’ .
m’n’pCIR) m,n,pGR) o e subspace Mm,n,paR)

2.7. Remark on the local canmonical forms C)ro

The constructions and calculations carried out in the sections above

are very much related to certain (currently popular) local continuous
canonical forms

2.7.1 :
( ) Cm. U, > UOL

where 0 is a nice selection. These are defined as follows

(2.7.2) Cy (@)(F,G,H) = (R(F,G);IFR(F,G)OL, R(F,G);IG,HR(F,G);l)

The relation between the Cy o 2nd the various maps above is as follows
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(cf. (2.6.4)).
(2.7.3) C)xa((F’G’H)) = X (T, (F5G,H))
Cf. also diagram (2.6.2). If we define
. T
(2.7.4) Sy ¢ Va—~+ Ua’ X Xa(In’x)
then we have
(2.7.5) Ty Sq = lV'
. . . cr cY
i.e. s is a local section of the bundle Lm,n,pGR) -+ Mm,n,pGR) and

the canonical forms CK(X are related to these sections by

(2.7.6)

3. EXISTENCE AND NONEXISTENCE OF CONTINUOUS CANONICAL FORMS.

We are now in a position to start investigating whether continuous
canonical forms exist or not.

m
3.1. Local Canonical Forms and Local Sections of Lcr R) ~> MCr R)
— m,n,p m,n,p

Let L' < LT (R) be a GL_-invariant subset of Lcr (R) and
m,n’p n m’n’p

let M' = m(L'). Then we have an (induced) principal GLnGR) bundle

LISVl

3.1.1. Lemma. Let ¢ : L' + Y be any continuous map such that ¢ is
- constant on the orbits of GLnGR) in L'. Then there is a unique map

Y : M' > Y such that ¢ = y7'.

Proof. Let U& =L'nNn Ua, V& = V& N M'. Then we have a commutative

diagram
{
o*Ol.
n n " 1 14
GLnGR)x o n VB <> GLn(JR)x —_— Uac") L
(3.1.2) l l JW& l -
1] " C . . 1" —— nf_+ '
Va n VB > Va - Va M
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where 0& is a GLnGR)—invariant homeomorphism, viz. the restriction to
" =1 =1 ..
GLnGR) x Va of ty (lxwa)(lxwa) . Let ¢a be the restriction of ¢ to
U&. Then the middle commutative square of 3.1.2 shows that there is
a unique wa: V& - Y such that wuﬁa' = ¢a' In fact we have
-1

— L} n " - " 11
wa(x) = ¢ata (In,x). It follows that ¢a|va n VB wB‘Va n VB ,
so that the wa combine to define a continuous map ¥ : M' - Y such

that Ym' = ¢. The map § is unique because we must have ¢|V& = wa for

all nice selections .
3.1.2. Lemma.

There exists a continuous form c¢' on L' if and only if there is a
section s' of the bundle w': L' -+ M', i.e. a continuous map

s': M' > L' such that n's' = ]M"

Proof. Suppose s': M' + L' is a section. Then s'm': L' -~ L' is a
continuous canonical form on L'. This follows immediately because

T's' = IM' and because 7' induces a l-1 onto correspondence between
the orbits of GLnGR) in L' and the points of M'. Inversely suppose that
¢': L' - L' is a continuous canonical form. Then c¢' is constant on

the orbits of GLnGR) in L', therefore by lemma 3.1.1 there is .an
induced map s': M' -+ L' such that s'n' = c'. One checks easily

that s' is indeed a section.

3.1.3. Remark.

The induced principal GLnGR) bundle L' - M' admits a section if and
only if it is (isomorphic to) the trivial principal GLnGR)—bundle over
M'. Cf. Steenrod [4], 8.3. Thus there are canonical forms on each

of the Ua Lo LCr

. PGR), 0 a nice selection. Cf. also section 2.7 above.
> b

3.1.4. Corollary.

. . . . cr

(i) If m = 1 there is a continuous canonical form on L ®)
m,n,p

(i1) If m = n there 1s a continuous canonical form on P (R)
m,n,p

Proof.

(1) I£f m = 1 there is only one nice selection viz.

. . cr _
a = {¢0,1),(1,1), ..., (n-1),1)}. So that in this case Lm,n,pGR) =U,.

And we know that the induced bundle Ua - V& = W(Ua) has a section,

-1
e.g. s, * V& - Ua’ Xt (In,x).
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(ii) By definition (F,G,H) € Lp C[R) implies that rank G. = min(m,n)
So if m = n we have rank(G) = n, which says that L m,n pGR) in
2
this case is contained in U, where B is the nice selection

B
g = {(0,1),(0,2), ..., (0,n)}.

3.1.5. Duality_.

The assignment

S : (F,G,H)m> (F',H',G")

defines a homeomorphism Lm,n,pGR) > Lp’n’m(lR). The map § is not
GLn(]R)—invariant but it does have the property that two triples
(F,G,H), (F,G,H) € L m,n,p 2T° GL_ (R) equivalent if and only if
the trlples §(F,G,H) and §(F,G H) are GL CtR)—equ:.valent. Note also
that cS = id. The duality S halves the work we have to do to prove

theorems like 1.7. This is proved by the following lemma
3.1.6. Lemma.

Let L' be a GL_(@R)-invariant subspace of L @), then S§(L'")
n m,n,p

is a GLnC[R) invariant subspace of Lp,n’mClR) and there 1s a continuous
canonical form on S§(L') iff there is a continuous canonical form on L'.
Proof. The lemma is proved by: if c: L' - L' is a continuous
canonical form on L', then § c' 6”1 is a ocntinuous canonical form

on S(L'"), and if c¢': S(L') - &8(L') is a continuous canonical form

on §(L') then 6—1 c¢' 8§is a continuous canonical form on L'. These

last two statements follow immediately from the definition of continuous

canonical form (cf. 1.5) and the remarks made above in 3.1.5.

3.1.7. Corollary.

If p = 1 there is a continuous canonical form on LIn n pClR).
b
If p = n there is a continuous canonical form on ° ®R).
m,n,p
Proof. These statements follow from 3.1.4 and 3 1.6 because
p
d§ L
ss m n’pCIR)) GR)) and 6§( C‘R)) p,n mGR).

3.2. Examples.

In this section we construct a number of examples of G,F and H
matrices which will be useful in our continuous canonical form

investigations.




3.2.1. The Matrices G (t>s)
n,m
These n x m matrices are as follows

(3.2.2) 1f n =1, m > 2 G1 m(t,s) =(ts0... 0)

t s 10 eva O
(3.2.3) If n > 2, 2 <m<n G _(t,s) =1 1{0 e+ 0
n,m .
2l s
2 1

where B is an (n—2) x (m-2) matrix independant of t,s such that
the columns of B and the columnvector (1,1,..,,1)' span afm - 1)
dimensional subspace ofiRp—z. Note that such a B exists because

2 <m< n.

t S
1 1
(3.2.4) If n > 2, m = 2 G 2(t,s) =
o, 2 1
2 1
t s 0 0 0 0 ... 0
1 1 1 QO 2+ 0 3 ¢
(3.2.5) If n> 2, m>n G (tys)=(0 o0 o', "+ I
- n,m . . 3 e 2
: . » .‘.0 e ]
0 0 0¢c+=01 0 -0
L - . v J
n~1 m-n-1

(3.2.6) If n =m) 2 Gn n(t,s) = | 2 1 ' :

3.2.7. The Matrices Fn

These n X n matrices are as follows

(3.2.8) F =

=}
© -+ 0O
5B O
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3.2.9. The matrices H (t) and H (s).
p,n pP,n

2

To define these matrices we need a number of nonalgebraic functions of
t and s. We shall take

t for |t <1

(3.2.10) y (0 =y _
t  for [t| > 1
2
(3.2.11) ¥, (t) = exp(-t )
1 for |s] <1
(3.2.]2) xl(s) = ___2
s ~ for |s| > 1
s—lexp(-s_z) for s # 0
(3.2.13) XZ(S) =
0 for s = 0
Note that for s # 0
-1, -1 -1, -1
(3.2.14) x;(s) = s 'y (s )5 x,(8) =5 "y,(s ")

The precise form of these functions is not important provided they
are continuous,satisfy conditions (3.2.14) for s # 0,and are such

that y2(t) # 0 for all t and x](s) # 0 for all s. It is perfectly
possible to find C -functions satisfying these conditions (simply
smooth the corners in these functions) but thete are no polynomials

in t,s which satisfy these conditions. _

We can now define the matrices Hp,n(t) and H n(s). Below we only give

»

the H (t). In each case H n(s) is obtained from Hp n(t) by
>

replagizg yl(t) with x](s) zgd yz(t) with xz(s).
¥, ()
¥, (t)

(3.2.15) Ifn=1,pp2 Hy () =| 0
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y (8) 1 0. ..0 \
yo(t) 10 . 0
0 1 ...0 1
(3.2.16) I1fn>2,p>n Hp’n(t) = ? ? N\\\\\‘ : ?n_l
. o
0 0----0 1 |
0 -------0
] r
: :/P-ﬁ-l
0 - - - -=~--0

&0 1 0. .0
vty 1 ¢ '

_ _ 0 0 '
(3.2.17) If n > 2, p=n Hp,n(t)_ ' ,
. ¥
. ' ! * p—2
. ] i 2
0 0 0...0
—— ——
n-2
y;(8) 1 p2...2
Yz(t) 1 1. . .1
(3.2.18) If n > 2, 2 <p<n H (t) = 0-.--0
p,0 \ .
[} t C
' H
0-+.-0

" where C is an (p-2) x (n~-2) matrix independent of t such that the

rows of C and the rowvector (1,...,1) E]Rn—2 span a (p-1) dimensional

subspace of ]Rn_?'. (Such a C exists because 2 < p < n).

| (3.2.19) If n >2, p = 2 Hp’n(t’) =(

3.3. An embedding P’ (R) — M¥?°°(R)

m,n,p
We now use the matrices defined in 3.2 above to define an embedding
1 cr
; S R}
an’m,p.ll? ®) —*Mm’n,PCIR) for all (n,m,p) such that m > 1 and p > 1.

~where T (R) is one dimensional real projective space (which is
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homeomorphic to the circle).

Let m > 1, p > 1. We define

(3.3.1) on,m’p: R - Lm’n,p(JR), t> (Fn’Gn,m(t’J)’Hp,n(t)’
(3.3.2) Gn,m,p::R - Lm’n’PGR), s (Fn,Gn’m(l,s),HP’n(s))

Let o be the nice selection o = {(0,2),(1,2), ..., (n-1,2} and

{(O,l), (]’1)3 L) (n-—l,l)}.

let B be the nice selection B

One easily checks that

CO = co
(3.3.3) on,m’PGR) c Uoc R Gn,m,p c UB
Let T(s) be the n x n matrix

s o .. 0
T
(3.3.4) T(s) = | * o
0 -~ - 0 1
then we see that
_ | T(s) _ =
(3.3.5) ts = 1 =»On,m’p(t) = On,m,p(s)

To see this use the relations (3.2.14)). Thus the composed

continuous maps

[9)
n,m cr,cCco cr,co
R —22MsP, 7 €L > MCT>
m:n’PGR) mansPGR)

o
R —D2MP, Lcr’COGR) » MCE»co
m’n’p m’n’P

®)

combine to define a continuous map

1 cr,Cco
T : P > M?
n,m,p GR) msn’PGR)

3.3.6. Remark. One easily checks that (Fn’Gn,m(t’])’Hp n(t)) and

>

(Fn’Gn,m(]’S)’Hp,n(s)) are GLnGR) equivalent if and only if ts = 1.
It follows that T is in fact an embedding.
b4 b
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3.4. Some Remarks on Principal QEnGR)—bundles.

Let 7: E > B be a principal GLnGR)—bundle. Such a bundle can be

described by giving an open covering {Va} of B and transition functions

‘3'4'1) ¢ab : Va n Vb > GLnGR)
which satisfy
4.2 =
3 ) Ppe(X)o  (x) = ¢ (x), x €V_ NV, N v,

Cf. Steenrod [4], 2.3 and 3.2

3.4.3. Induced Bundles. Now let f: B' - B be a continuous map.

=1

Let V; = f (Va). One now defines transition functions ¢;b as the
composite

£ ¢ab
(3.4.4) V' n Vé — V n Vb — GL GR)

These functions satisfy (of course) the analogue of (3 4. 2) and hence
define a pr1nc1pa1 (1ocally trivial) GL (R)-bundle f T f° E > B! over B'.
We remark that f m: £° E + B' is tr1v1al (i.e. isomorphic to the product
bundle GLnGR) X B' > B') if m: E > B is trivial.

3.4.5. A second construction which we shall use is the following. The
composed maps

¢ b det
(3.4.6) v, nv 22, aL J®) — 6L ®)

b
define a set of trénsition functions with values in GLIGR) on B. These
define a locally trivial principal GLIOR) bundle over B which is of

course trivial if the original bundle was trivial.

3.4.7. Example of a Nontrivial Locally Trivial Principal EEIGR)-Bundle.

ConsiderZPIGR) { (t: s)| t # 0, s % 0}. Let V = {(t:1)} =R and
V2 = {(l:5)} =R. Then vV, U V -iP (R). We now define a transition

function



o
5]

$: Vl n V2 > GLlGR}, (T8 tsvi

One checks easily that this bundle is non trivial (By showing that

there is no continuous section).

3.5. On the Nonexistence of Continuous Canonical Forms.

We consider the continucus map T : PIORB-* M (BR) constructed

' _ >3, P m,n,p
in section 3.3 above. Let o and £ be the selections defined just

above (3.3.3), and let Vl and V, be as in 3.4.7. Then we have from
(3.3.3) that

(3.5.1) T Y

'
n,m,p 1) < VCt » T

p(Vz) cV

'

8

n,m,

The transition function Ua n UB - GLnGR) of the bundle

cr cr . .
m,n,pGR) > Mm,n,pGR) is {according to (2.6.5)

(3.5.2) o = RE, W' @), 6 0T )]

By the definition of w& (cf. 2.5.5) we see that R(F&($&-1(X)),G_(*"

a Yy
can be calculated as follows. Take any (F,G,H) € Ua such that

m(F,G,H) = x. Then (cf. also (2.6.4))
(3.5.3) R, G0, 6 07 ) = a0 'R,

We now construct a GLl-bundle over PlGR) by first pulling back

cr cr .
Lm,n,pGR) - Mm,n,paR) by means of Tn,m,p (cf. 3.4.3) and then using

determinants as in 3.4.6. It now follows from (3.5.3),(3.5.2) and

L)

(3.5.1) that the resulting bundle is given by the transition function

v, nv, > GLIGR)

31
(3.5.4) (t:1)m> det(R(Fn’Gn,m(t’])B ) det R(Fn,Gn m(t’l))a

b

An easy calculation shows that we find

— - b -
(3.5.5) V, NV, > 6L R), (t:iD)Ft it n=1,(t:1) » 270271

n > 2.

if
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This is a nontrivial bundle. In fact the bundle defined by this

transition function is isomorphic to the bundle defined in 3.4.7.

3.5.6. Corollary. The principal GLnGR)—bundle L;fn,pGR) - M;fn,pak)

is nentrivial.
3.5.7. In fact the examples show more: if L' is any GLn—invariant
subspace of L and M' = (L") and T GP]GR)) c M', then we

n,m,p o' m,n,p
have that the induced bundle L' —— M' is nontrivial.

W w . .
Let Mm,n,pGR) = W(Lm’n’pGR)) where w is one of the following groups

of symbols
(3.5.8) Cr Cr,CcO0 CIr,CO,A o P,A

Then one easily checks from (3.2.2) - (3.2.6), (3.2.8), (3.2.15) -
(3.2.19) and (3.2.11), (3.2.12) that:

3.5.9. Lemma.

. 1 W . .
(1) Tm,n,pGP ®)) < Mm’n’pClR) for all w from the list (3.5.8) if
m# l,n and p # 1,n.
.. 1 Cr,co,A .
(ii) Tm,n,pGP ®R)) < Mm’n’p ®R)) ifm# 1 and p # 1.

3.5.10. Corollary.

The principal GL ~bundles LY + MY are nontrivial
principal GL_ () o p® M ®)

for all w from the list 3.5.8 if m # l,n and p # 1,n. The principal
cr,co, A cr,co,A cr,co cr,co

bundles L 72777 > M7 and L7? - M7 are
m’n’p GR.) m’nip m) m,n’pGR') m,n’pGR))

nontrivial if m # 1 and p # 1.

3.5.11. Proof of Theorem !.7.

The only if parts of (i), (iii), (iv), (v), (vi) follow from corollaries
35,6 and 3.8.00 combined with lemma 3.1.2.

The only if part of (ii) follows from the only if part of (i) by
duality. Cf. 3.1.5 and 3.1.6. The if parts of (i), (ii) and (v) are
proved by 3.1.4 and 3.1.7. The if parts of (iii), (iv), (vi) follow

from these because we have the inclusions

Ccr

¢ Lm n,p
co,Ccr,A co,cr >
L bl b m C L b ] GR

m,n,p ) m,n,p ) -

®)

LCO GR)

m’n,p
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Pt ®) e’ @)

m,n,p m,n,p

4. FAMILIES OF LINEAR DYNAMICAL SYSTEMS AND THE FINE MODULI SPACE

MCE ®).

m,n,p

We have seen that as a rule continuous canonical forms cannot exist
. P,A
even on such a relatively small subspace as L (R) of L ®).
y p m,n,p ) m,n,p
This section is devoted to showing that the next best thing is true:
cr
m,n,
of linear dynamical systems'.

pGR) is a fine moduli space for a suitable notion of "families

4.1. Families of Linear Dynamical Systems.

4.1.1. Definitions. A Family of Linear Dynamical Systems of Dimensions

(n,m,p) over a Topological Space S

consists of

(1) an n—-dimensional vector bundle p: E + S over S.
(ii) a vectorbundle endomorphism F: E -+ E
(iii) a vectorbundle homomorphism G: SR -+ E

(iv) a vectorbundle homomorphism H: E - ssRP

4.1.2. The Canonical Map Associated to a Family with Trivial Underlying
Bundle.

Let v = (E,F,G,H) be a family of dynamical systems over S such that
E is isomorphic to the trivial vectorbundle over S. Then we can find

continuous sections €5 ++.» € 1 S F such that {el(s), ceas en(s)}

is a basis for ES = p—l(s) for all s € S. Let e!, ..., eé: S » S:R™;
els «oe, e;: s » S¥RP be the obvious "basis vector sections' of the
trivial bundles S¥R™ and S¥RP. The vectorbundle homomorphisms F,G,H
induce homomorphisms Gs: sxR™ ES, FS: ES - ES, HS: ES > sxRP. Let
G(s,e), F(s,e), H(s,e) denote the matrices of these homomorphisms
relative the bases {e;(s), ey e&(s)}, {el(s), cees en(s)},

{e?(s), cees e;(s)}. Then because the sections e!, ..., e&; €5 +ees €3
eY, ey e; are all continuous we find a continuous map

(4.1.3) S+ L @), s (F(s,e), G(s,e), H(s,e))

m’n’p
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which (obviously) depends on the choice of the sections €5 -vs €.

- - n
If €ls ~ens e is a different set of n sections of E (and if we keep
ei, eg as before) then the continuous map s+ (F(s,e), G(s,&), H(s,&))

is such that
(F,(s,e), G(s,e), H(s,e)) is GLnGR)—equivalent to (F(s,&), G(s,&), H(s,2))
for all s € S.

This means that the composite map

(4.1.4) f.: S~ L
m

. np® M @)

> m,n,p

is independent of the choice of the sections {e], cees en}. We denote

this continuous map with fZ‘ Informally we can say

4.1.5. Description of fZ' The family (E,F,G,H) = L defines a '"linear-
n

dynamical-system—up-to-GLnGR)—equivalence (ES,FS,GS,HS) over every

s € S; £ maps s € S to the point of Mm,n,pGR) corresponding to this

orbit.

4.1.6. The Canonical Map Associated to a Family.

Now let ¥ = (E,F,G,H) be any family over S. There is an open covering
{Ua} of S such that E|Ua is trivial for all a. Thus by 4.1.2 we have

continuous maps associated to the families Zan = (E[Ua,F(Ua,G[Ua,H[Ua)

(4.1.7) £, 0~ Mm,n,pGR)
. which satisfy the description 4.1.5. It follows that

fa[Ua nu_ = fban N U_ so that the maps f combine to define a continuous

b b

map

f2 : S > Mm,n’pGR)

which also satisfies the description 4.1.5.

4.1.8. Definition. The family L = (E,F,G,H) is said to be completely

. cr
reachable 1iff fZ(S) c Mm,n,pGR)'

This simply means that the 1inear—dynamical—systems—up—to—GLnGR)-

equivalence (ES,FS,GS,HS) are all completely reachable.

" 4.1.9. Remark. Using the construction of 4.1.2 above we see that a

family of linear dynamical systems I can be defined by giving



(1) a covering {Ua} of S

.. . . ) LU
{ii1) continuous maps v, La m a, pGR)

T e o . " o o . 7 9
{(i11) continuous maps I La n bb - CLnGR)

such that the following conditions are satisfied

(iv) @bc(x)wab(x) = ¢ac(x) for all x € Ua n Ub n UC

®p (%)
(v) w (x) = wb(x) for all x € U n Ub
A family is completely reachable iff w (x) € Lm 0 GR) for all a and aft
?
x € Ua‘ So, informally, a family is locally a continuous map of §

into L .
m:nsPGR)

4.2. Description of Families of Linear Dynamical Systems by

Transition Functions.

Let (E,F,G,H) = L be a family of linear dynamical systems over S.
The bundle E can be described by an open covering {Va} of s and

b~ GLnGR) satisfying @bc(x)¢ab(x) =
@ac(x) for all x € Va nv, n Vc' Cf. Steenred [4]. The family I is

b
now defined by giving in addition vectorbundle homomorphisms

transition functions ¢ ,: V. NV
ab a

(4.2.1) F : VR ~ VR G: VR > VR, H: VR >V RP
a a a a a a a a a

such that the following diagram of induced vectorbundle homomorphisms

commutes
F
v _RY «——9 v _R"
b ab H
” / - P
(&- . 2 - a.) V \ l&ab l&bab\% vab}ﬂR
V ﬂR ————9 \Y bﬂR Hb
where Vap = v, n vV, and ¢ab(x,v) = (X,¢ab(X)V)‘

4.3. The Universal Family I" over M°* (R)
m’n’p

We are now going to comnstruct a certain very special completely

reachable family % over Mt (R). This family has the property

k] b
that the induced 1inear—system—up-to—GLnGR)—equivalence over

x € M;rn pOR) "is" the point x. To define the universal family e
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we view M;rn pGR) as obtained by glueing together the pieces
3 >

Va = RERTOP by means of the isomorphisms ¢a8 of 2.5 above. That is

we identify Va with V' for each a by means of the w&.
o

4.3.1. The Local Families Za'

. mn+i n
Let & be a nice selection. For each a let vV, =R p’ E, = Vo xR

and let Pyt B, Va be the obvious projection. Let wa be the
isomorphism wa: Vu =W of section 2.4.5 above. We write

LA
b, () = (Fa(x),Gu(x),Ha(x}). We now define the family

Za = (Ea’Fa’Ga’Ha) as follows

(4.3.2) F i E, >~ E, (x, V) (%,F (x)v)
(4.3.3) Ga: VQXRm = Eg» (x,u) > (X,GG(X)U)
(4.3.4) H,: B~ vaxmp, (x,v) = (x,H_ (x)v)

This defines a completely reachable family over Va for all a. The

MET ,@®) is the embedding Y}

associated continuous map f. : V_ -
z o m,n,

of lemma 2.5.5. @

4.3.5. The (global) Family IY.

Now let B be a second nice selection. Let VQB VBa and ¢a8 be

. . n n
.5. Let E =V = .
as in section 2.5 e a8 a8 xR, EBG VBG x R". We now

define an isomorphism of vectorbundles ¢a8: EaB -> EB& as follows
(4.3.6) §a0nv) = (9,,(x), R(F,(x),6, (x))5'v)
T ag*™? op ? o > o B

% h - 3 -
It is obvious that @QB induces an isomorphism of vectorspaces in each

fibre and that the diagram

(4.3.7) i 1
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commutes. Also one readily checks that for all

X € VOLBY = {x € Va‘det(R(Fu(x),Ga(x))B) # 0 and det(R(Fu(x),Ga(x))Y) # 0}
(4.3.8) $ay Byg(xav) = 8. o)

and that for all x € VQB

(4.3.9) Sup(Fy (xsv)) = Fo @ o (x,v))

(4.3.10) 8,5(6, (x,1)) = Gglx,u)

(4.3.11) Hy (3o (x,v)) = B (x,v)

Now let E” - M;r (R) be the n-vectorbundle obtained by glueing

E Bt}

together the Ea by means of the %aB. Relations (4.3.9) - (4.3.11) then
mean that the Fa’Ha’Ga combine to define an endomorphism U gY - Y

. u, ,Cr m u u, _u cr P
and homomorphisms G : Mm,n,pGR) xR =+ E and H: E =~ Mm,n,paR) x RY,
so that we have defined a completely reachable family ¥ over

M;rn pCIR). This family has the property: "the induced linear—-system-—
> > cr
M

-to-GL - ival
up-to nGR) equivalence over x € o0,

this is true for the local families Za'

pGR) is the point x" because

4.3.12. Remark.

From 4.3:6 (cf. also (3.5.3)) we see that EY is the n-vectorbundle

. . cr cr
associated to the principal GLnGR) bundle Lm,n,pGR) - Mm,n,pGR)

4.4. The Functor o o . of Isomorphism Classes of Families of Linear

E et ]
Systems.

Two families f,T' over a topological space S are said to be isomorphic

if there exists an isomorphism of vectorbundles ¢: E +~ E' such that
(4.4.1) ¢F = F'¢ , ¢G = G', H=H'¢

For each topological space S we let ¢§rm p(S) denote the set of

2 s
isomorphism classes of completely reachable families of linear systems

(of dimensions (n,m,p)) over S. Now let f: S' »+ S be a continuous map.
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By pulling everything back along f we obtain a family

\] .

£'% = (f!E,f!F,f!G,f!H) over S' which is complet?ly reachable if and
only if I is completely reachable. Informally f£°Z is the family
which induces over s' € §' the same linear system as I induces over

T
f(s') € S. More precisely f'L is defined as follows

(4.4.2) £'E = {(s',e) € S' x E |£(s') = p(e)]
(4.4.3) £'F: £°E > £'E, (s',e)r (s',F(e))

(4.4.4) £'e: 5" xRS > £°E, (s',u) > (s',G(£6Y,u)
(4.4.5) flu: £°8 > s xRP, (s',e) ~ (s',qH(e))

where q: S xR’ > S is the natural proj ectlon onto the first factor.
If Z,L' over S are isomorphic families then f° Z and f£° Z' over S'
are isomorphic. It follows that the pullback construction and the
definition of q);fn,p(Sj combine to define a functor

cr ; opp
(4.4.6) Qn,m,p' Top -+ Set

where Top is the category of topological spaces and Set the category

of sets.

or (space)
4.4.7. Remark. <I> o p(pt), where pt is the one pointYis naturally

>

the same as the underlylng point set of MoT @®).
m,n,p

4.4.8. Let I and E be two families of linear dynamical systems over

S defined relative the same covering {V } of s by tranSLtlon functlons

bap Pap and local vectorbundle homomorphlsms Fa’Fa’G G H H . Cf. 4.2

-~

Then I and I are isomorphic families if and only if there exist

continuous maps 0,: V_ ~+ GL _(R) such that for all a,b and x €V_NV
a b

~

v(4.4.9) Pp (X0 (x) = Op ()¢ (x)

and moreover the following diagram commutes for all a
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where Oa(x,v) = (x,Oa(x)v).

4.4.11. Let L be a family over a topological space S and let

f: S'" > S be a continuous map. Suppose L is given by means of

a covering {Va} and local data ¢ab’ F ., G, H as in 4.2 above.
Let {V'} be any covering of S' which is finer than the covering
{f (V )}. For each o,B select an a,b such that f(V YoV 2

f(VB) < V.. Then the pullback family f° Z can be descrlbed by the

b’
following data

(4.4.12) &B : v& n Vé - GLnGR), X > ¢a8(f(x))

. vl vl
(4.4.13) . Fa. VaXR - VuﬁR , (x,v)r— (X’Fa,f(x)(v))

(4.6.14) Gy VORD > VIRT, (0 (66, (@)
. Ul o yleP
(4.4.15) H : VISR VIR, (x,v) = (X’Ha,f(x)(v))

where Fa,s’Ga,s’Ha,s for s € Va are defined by Fa(s,v) = (S’Fa,s(v))’

Ga(s,U) = (S’Ga,s(u))’ Ha(s,V) = (s,Ha’S(V))

. . cr
4.5. The Fine Moduli Space Mm,n,pGR)

4.5.1. Definition.

A fine moduli space for the functor @;rb . consists of a topological
> b

space M and an isomorphism of functors U : @;rn > - Top(—,M).
bl s —

I.e. M represents the functor @
’n’p
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4.5.2. Theorem.

MeT (R) is a fine moduli space for the functor o . More
m’n’p b b

precisely the assignment I+ fZ induces a functorial isomorphism

M ocT (s) ~» Top(S MCr (R). The inverse isomorphism to U assigns
m,n,p m,n,p

to g: S~ Mm 0 GR) the isomorphism class of the family g Z
,

Proof. One checks easily that fZ depends only on the isomorphism
class of X and that I+ fZ is functorial in the sense that

f, = fZ° g. This is most easily seen by using the description
gl

1
of g°2 given in 4.4.11. We must now prove two things
lau
(1) If 2 = g'Z , then fZ =g

(i1) féZu and I are isomorphic families of linear systems.
To prove (i) it suffices to remark that

(1i1) the system~up—to—GL (R)-equivalence Z over s € S is the
system—up—to-GL R)-equivalence iy 2 (s ) (cf 4.4)

(iv) the system—up~to—GL ®)- equlvalence iy 2(s) "is" the point
g(s) € Mm n,pGR) (cf. 4. 3 just above 4 3.12).

(v) f (s) is the point of M GR) representing the system-up-to-
GLnGR) equivalence ZS

Alternatively one proves (i) by remarking that £ w id (by (iv))

and by applying the formula £ 'y = fZ° g.

It remains to prove (ii). Let Z be given by local data

¢ab’F G H relative a covering {V } of S. By reflnlng this covering
if necessary we can assume that {V } is finer than {fZ (V )}. For
each a,b,c let a,B8,Y, be such that f 4 ) c V , fZ(V ) c VB

fZ(Vc) c V!. Write f for fZ Then the pullback family £° Z is given

Y
by the local data

-~

(4.5.3) Uy () = RO, (EG), G (EG!
(4.5.4) Fo(x,v) = G6,F (£G)))
(4.5.5) G, Gew) = (x,6 (£Gx))u)

(4.5.6) ﬁa(x,v) = (x,Hu(f(x))v)
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Here we have identified V' < M (R) and V_ via y', so that
a m,n,p o a
(Fu(x),Ga(x),Ha(x)) for x € V& is the unique element in
cr .
W& c Lm,n,pGR) which T maps to x.

Let the family I be given by the local data wab’Fa’Ga’Ha' Then

by the definition of f. = f we know that the triples (F_ ,G_ ,H
X a,s’ a,s’ a,s

and (Fa(f(s)), Ga(f(s)), Ha(f(s)) are GLnGR)—equivalent.
This means that

Ta(s)

(4.5.7) (F, 58y By ) ° = (F,(£(5),G,(£(s)),H (£(s))

for a certain Ta(s) € GLnGR). In particular we have

(4.5.8) TR, (16, ) = R(F,(£(5)),6,(£()))

s S

so that we must have

-1
(4.5.9) Ta(s) = R(Fa,s’Ga,s)a

G has nonzero
,s’ a,s)a

determinant). This defines a continuous map

(Note that (4.5.8) inplies that R(Fa
-1

: >
(4.5.10) ot V, > 6L R), s R(Fa,s’ca;s)a

The local data wab’Fa’Ha’Ga defining Z are related by the

commutativity of the diagram 4.2.2 which in particular mean that

(4.5.11) wab(s)R(Fa,S,Ga,S) = R<Fb,s’Gb,s)

We shall now show that

A

(4.5.12) U, ()0, (s) = 0, ()W, (s)

‘ Indeéd, we have using (4.5.8) - (4.5.10) and (4.5.3)
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N

Vb (OLIRE, (6, ) = R(F,(£()),G6, (£ () R(F, (£(5)),6, (£ ()

On the other hand using (4.5.11) and (4.5.8) - (4.5.10)
0 (W (IR(E, L6, ) = O (R(E, 6 ) = R(F(E()),64(E(5)))

which is equal to R(Fa(f(s)),Ga(f(s)))élR(Fa(f(s)),Ga(f(s))) by the
definition of the Fa’Ga’FB’GB’ This proves (4.5.2) because

R(Fa,s’Ga,s) has rank n (cf. 4.5,8). The commutativity of the
diagram corresponding to (4.4.10) follows directly from (4.5,7)

1
so that (by 4.4) the O, do indeed define an isomorphism I - fiZu.

4.6. Remarks.

4.6.1. The underlying bundle E" of I" is the associated R" bundle

of the principal GLnGR) bundle L;rn ®) + Mt (R). So in

sP m,n,p °
particular it is nontrivial if m # 1. (Cf. Steenrod [4] 8.2-8.4).
Also the restrictions of E” to various subspaces are often nontrivial.
Cf. 3.5.10.
One can also use the fine moduli space property of M;f ,pGR)’ i
to show that there exists a continuous canonical form on a suitable
subspace L' « L;rn (R) iff the bundle E" restricted to M' = m(L")

2

is trivial. Cf. [2] Thm 6.1.
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