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by Michiel Hazewinkel 

1 . INTRODUCTION. 

We consider linear dynamical systems with constant coefficients 

( 1.1) x = Fx + Gu , x E 1R n, u E ]Rm 

y Hx t 

(continuous time), and systems 

( 1. 2) xt+l = Fx + u 
t' xt E :JR.n, u E 1Rm, t E 7l 

t t 

y = t Hxt yt E :JRP 

(discrete time) 

I.e. there are m inputs, p outputs and the state space dimension 

is n. A change of basis in state space changes the triple of 

matrices (F,G,H) as follows 

(l. 3) T 
(F ,G,H) H (F ,G,H) = (TFT-l, TG, HT- 1), TE GLOR) 

n 

where GL (IR) is the group of invertible n x n matrices. Motivated 
n 

by e.g. identification of systems theory, the question now arises 

whether there exist continuous canonical forms for this action of 

GL (IR) on the space of all triples (F,G,H). A precise definition 
n 

of this notion follows. Let L OR) denote the topological space 
· m,n,p 

of all triples of matrices (F,G,H) of sizes n x n, n x m, p x n 
. h -m (n+m+p )n 

respectively; L QR) is naturally identifiable wit = 
m,n,p 

and is given the corresponding topology. 

1.4. Definition. 

Two elements (F,G,H), (F,G,ll) EL QR) are called GL (IR) 
m,n,p . n 

equivalent if there is a TE GL QR) such that (F,G,H)T = (P,~,H). 
n 



We can now define a continuous canonical form as follows: 

I. 5. Definition. 

A continuous canonical form on a subspace L' c L (IR) is a m,n,p 
continuous map c: L' ~ L' such that 

(1.5.I) c(F,G,H) is GL (IR) equivalent to (F,G,H) for all 
n 

(F ,G,H) E LI, 

2 

(1.5.2) c(F,G,H) = c(F,G,H) if and only if (F,G,H),(F,G,H) EL' 

are GL OR) equivalent. 
n 

Of course one usually lets L' be a GL (IR) invariant subspace of 
n 

L , i.e. a subspace such that (F,G,H) EL' .. (F,G,H)T EL' for m,n,p 
all T E GLn OR) • 

One now remarks innnediately that, for trivial reasons, there is no 

continuous canonical form on all of L OR); more precisely because m,n,p 
there are socalled jump phenomena; that is there are families 

(Ft,Gt,Ht), t ElR, of elements in L (IR), depending continuously m,n,p 
on the parameter .t such that (Ft,Gt,Ht) and (Fs,Gs,Hs) are GLnOR)-

equivalent for all t # 0, s # 0 but such that (Ft,Gt,Ht) is not 

GL OR)-equivalent to (F ,G ,H ) for t # 0. One now easily checks that 
n o o o 

if L' contains such a family then no continuous canonical form on 

L' can exist. One example of such a family is obtained as follows. 

Let G1 be any nonzero matrix, F1 any matrix, HI = O. Now define 

Gt = tG 1, Rt= O, Ft =FI for all t ElR. 

So, for continuous canonical forms to exist we must first of all see 

to it that no jump phenomena can occur. One subspace of L OR) m,n,p 
for which this condition is satisfied is the subspace Lcr OR) of m,n,p 
all completely reachable triples (F,G,H). For a definition cf. 2.1 

below. 

This fits in rather well with the "identification of systems" point 

of view where one is mainly interested in systems which are completely 

reachable and completely observable because as far as input/output 

behaviour is concerned every linear system is equivalent to such a one. 

We denote with Lcr,coOR) the subspace of L (R) of completely 
m,n,p m,n,p . 

reachable and completely observable triples (F,G,H); cf 2.1 below for 
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a definition of completely observable. 
dd . . er, co tm} . In a 1t1on to L l,IL\- we consider m,n,p some more (GL (IR.)-invariant 

n 
snbspaces of L OR). A short list m,n,p of interesting subspaces might 

be the following: 

1.6. List of Subspaces. 

L cr . 
m,n,pOR). all triples (F,G,H) such that (F,G) is completely reachable. 

Leo OR): all triples (F,G,H) such that (F,H) is completely observable. m,n,p 
L er, co OR) = L er OR) 0 L co OR) • 
m,n,p m,n,p m,n,p 
>.. L (IR.): all triples (F,G,H) such that the eigenvalues of Fare all m,n,p 

real, distinct and different from zero. 

L er, co ,A. OR) = L er, co OR) n l OR) 
m,n,p m,n,p m,n,p 

Lp OR): all triples (F,G,H) such that (F,G) is completely reachable, m,n,p 
(F,H) is completely observable, rank(G) = min(n,m), 

rank H = min(n,p). 

r? OR) n L >.. OR) m,n,p m,n,p 

The following theorem then describes the main results of section 3 

below. 

1.7. Theorem. 

The following table lists necessary and sufficient conditions for the 

existence of a continuous canonical form on various GL ~ -invariant 
n 

subspaces L' of L OR) m,n,p 

space L' necessary and sufficient conditions for 
existence of a continuous canonical form 

(i) L er (IR) 
m,n,p m = 1 

(ii) L co (IR) 
m,n,p p = 1 

(iii) L co, er (IR) 
m,n,p m = 1 or p = 1 

(iv) L co, er, A. OR) m= 1 or p = 1 m,n,p 

(v) L~,n,p (JR.) m = 1 or p = l or n = m or n = p 

(vi) p A (R} ~:n,p m= 1 or p = 1 or n = m or n = p 
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I. 8. Corollary. 

(i) If L' is a GL OR) invariant subspace of L OR) such that n m,n,p 

Lco,cr,AOR) c L' c Lco,cr(IR) then there exists a canonical from 
m,n,p - - m,n,p 

on L' iff m = I or p = I. 

(ii) If L' is a GL OR) invariant subspace of L (IR) such that n m,n,p 

LP,A CIR) c L' c LP OR) then there exists a continuous canonical 
m,n,p - - m,n,p 

form on L' iff m = I or p = I or n =< m or n = p. 

There are many more theorems of this kind. The first step in proving 

such a theorem is to examine the orbit spaces L'/GL OR). If these 
n 

"quotient" spaces are not Hausdorff, continuous canonical forms cannot 

exist. (Jump phenomena again) .• Section 2 below is mainly concerned with 

the structure of Lcr OR)/GL OR) and the fibre bundle m,n,p n 

er er . L CIR) -+ L CIR) /GL CIR). In section 3 we then use these results m,n,p m,n,p n 
and some examples to prove the theorem 1.7 quoted above. 

1.8. Thu.s theorem 1.7 shows that as a rule one cannot expect continuous 

canonical forms to exist. However, the next best thing does exist: 

the quotient space M CIR) = L (IR) /GL OR) admits a fine moduli m,n,p m,n,p n 
space structure which very roughly means that it possible to define a 

"family of linear dynamical systems" over M OR) such that up to m,n,p 
GL OR)-equivalence every completely reachablesystem occurs exactly once in n 
this family and such that every family can be obtained from this 

(universal) one in precisely one way (by pullback). Section 4 below is 

concerned with these notions. 

l.9A The contents of the paper are 

I. Introduction and statement of some of the results 

2. The quotient manifold Mcr OR) 
m,n,p 

2. l . The quotient space M OR) m,n,p 
2.2. Completely reachable and completely observable systems 

2.3. Nice selections 

2. 4. The local quotients tfa/GL OR) 
n 

2.5. The differentiable manifolds Mcr OR) and Mcr,coCIR) 
m,n,p m,n,p 

2.6. The principal fibre bundle Lcr OR)~ Mcr OR) 
m,n,p m,n,p 

2.7. Remark on the local canonical forms ~· 
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3. Existence and nonexistence of continuous canonical forms 

3.1. Local canonical forms and local sections of Lcr (IR) + Mcr (R) 
m,n,p m,n,p 

3.2. Examples 

3. 3. An embedding ~ 1 (IR) -+ Mcr' co OR) 
m,n,p 

3.4. Some remarks on principal GL OR) bundles 
. n 

3~5. On the nonexistence of continuous canonical forms 

4~ Families of linear dynamical systems and the fine moduli space 

Mcr OR)• 
m,n,p 

4.1. Families of linear dynamical systems 

4.2. Description of families of linear dynamical systems by 

transition functions 
u er 4.3. The universal family L over M OR) m,n,p 

4.4, The functor ~ of isomorphism classes of linear dynamical m,n,p 
systems. 

4.5. The fine moduli space M OR) m,n,p 
4.6. Remarks. 

2. THE QUOTIENT MANIFOLD Mcr ()R). 
m,n,p 

In this section we study the action of GL OR) on L OR) and discuss n m,n,p 

the quotient spaces L'/GL OR) for various GL OR)-invariant subspaces L'. 
n n 

2.1. The Quotient Space M (IR). 
~- m,n,p 

We define M (IR) as the quotient m,n,p space of L (IR) under GL OR) m,n,p n 
equivalence as defined in 1.4. I.e. the points of M OR) are the m,n,p 
orbits of GL (IR) in L (IR) and its topology is the finest topology n m,n,p 
for which the natural projection TI : L QR) ~ M (IR) is continuous. m,n,p m,n,p 
The space M (IR) is never a Hausdorff space. (Because of the Jump m,n,p 
phenomena mentioned in the introduction above;or in other words, because 

not all orbits of GL (IR) in L OR) are closed subsets). 
n m,n,p 

2.2. Completely Reachable and Completely Observable Systems. 

Let (F,G,H) E L OR). The system (F,G,H) is said to be completely m,n,p 
reachable if the matrix R(F,G) has rank n, where R(F,G) is the matrix 

(2.2.1) R(F,G) = (G FG 
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i 
consisting of the columnvectors F G., i = 0, ..• , n~ 

J 
j = 1, ••. , m, where G., J = 

J 
J, ... , m is the j-th column of G. 

Dually the system (F,G,H) is said to be completely observable if 

the matrix Q(F,H) has rank n, where Q(F,H) is the matrix defined 

by 

(2.2.2) Q(F,H)' (H' F 'H 1 

where A' denotes the transposed matrix of a matrix A. 

Let 

(2.2.3) 

(2.2.4) 

(2.2.5) 

We define 

(2.2.6) 

L er OR) 
m,n,p 

L co OR) 
m,n,p 

1 er ,co OR) 
m,n,p 

MW OR) 
m,n,p 

{(F,G,H) EL OR)lrank (R(F,G)) = n} m,n,p 

{ (F ,G,H) E L OR) I rank(Q(F ,H)) = n} m,n,p 

= L er OR) n L co (IR) 
m,n,p m,n,p 

= TI(Lw OR)) 
m,n,p 

where w stands for er or co or cr,co. 

2.3. Nice Selections. 

We number the m(n+l) columns of R(F,G) by pairs of indices as follows 

01, ... , om; 11, •.. ,Im; . . . ' nl , .•. , run 

and use J to denote this ordered set. A nice selection a is now n,m 
defined as an ordered subset a c J of size n such that (i,j) E a 

n,m 
implies (i',j) Ea for all i' <i. If a is a nice selection we define 

s(a,j), j = 1, ••. ,mas that element (k,j) E J such that n,m 
(k',j) Ea for all 0 < k' < k. (If a contains no elements of the form 

(i,j) then s(a,j) = (O,j)). These s(a,j) are called the successor 

indices of a. There are precisely m of them; one for each j = 1, •.. , m. 

If a is any subset of J we denote with R(F,G) the matrix obtained 
n,m a 

from R(F,G) by removing all columns whose index is not in a. 



2 . 3 • I . Lemma . 

If (F,G,H) E Lcr (IR) then there is a nice selection a. such 
m,n,p 

that det(R(F,G) ) # 0. a. 

Proof. Cf. [I] lemma 2.4.1. 

2.4. The Local Quotients U /GL (IR). 
a. n 

Let a. be a nice selection. We define 

(2.4.l) 

(2.4.2) 

u a. {(F,G,H) EL (IR)i det R(F,G) + O} 
m,n,p a. 

{(F,G,H) EL OR)! R(F,G) =I } 
m,n,p a. n 
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where I is the n x n identity matrix. We claim that W is naturally 
n + a 

homeomorphic with:JR:ln np~o see this write x E lRmn as a sequence of 

m column vectors of length n as follows x = (x1 , .•• ,xm) where x 1 

consists of the first n coordinates of x, x 2 of the second n 

coordinates of x, etc. 

2.4.3. Lemma. 

For each x EEmn there is precisely one pair of matrices (F,G) 

of sizes n x n and n x m respectively such that 

(2.4.4) R(F,G) a. I,R(F,G) ( .)=x.,J=I, ... ,m 
n s c:t.,J J 

Proof. Cf. [I] lemma 2.3.3. 

2.4.5. Now let x = (y,z) E lRmn xlRnp we define 

~ (x) = (F (x),G (x),H (x)) as the unique triple of matrices such that 
a a. a a. 

(F (x),G (x)) is the unique pair corresponding toy ElRmn as in 
a a 

lemma 2.4.3 and such that Ha(x) is the p x n matrix corresponding to z. 

Lemma 2.4.3 now implies that I/Ja is a homeomorphism lRmn x ]Rnp + w. a 
2.4.6. Let X be any topological space. We let GL (IR) 

n act on 

GL OR) x x by multiplication on the left hand factor. n . 

There now is a natural GL OR)-invariant morphism t defined as follows 
n . a. 



(2.4.7} 

-l T (F,G,H)t-+ (T 1(F,G,H) ), where T = 

2.4.8. Lemma. 

t is a GL (IR)-invariant homeomorphism. a. n 

Proof. One obviously has for all TE GL QR}. 
n 

(2.4.9) R(TFT-1 ,TG) = TR(F,G) 

-1 R(F,G) . a 

8 

The GL (IR)-invariance of t follows innnediately from this. To see .n a 
that ta. is a homeomorphism observe that (T,(F,G,H))~ (F,G,H)T is an 

inverse map to t • a. 

2.5. The Differentiable Manifolds Mcr (IR} and Mcr,co(IR). 
m,n,p m,n,p 

By means of the results of 2.4 we can now obtain a local pieces and 

patching of the topological space Mcr QR). We see from 2.4.8 
+ m,n,p 

and 2.4.5 that U /GL OR) ~ JR.mn np. It remains to patch these local a n 
pieces together. 

We define for each pair of nice selections a,13 

-(2.S.l) V = JR.mn+np 
a. ' 

(2.5.2) 

(2.5.3) 

We now define homeomorphisms <Pas : Va.l3 + VSa. as follows 

(2.5.4) 

One easily checks that for all triples of nice selections a., 13, y r. :­

<f>ey<J>aS (x) = <Pa.y(x) whenever the left hand side is defined and that 
..h • d h h . ..h co co 'V vco 
'l' al3 i.n uce s omeomorp i.sms 'l' aS: V a.13 + (3a.° 
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2.5.5. Lemma. 

The topological space obtained by glueing together the Va by means 

of the$ Bis Mcr OR). More precisely we have 
a. m,n,p 

1jJ 
(i) V J w c U c L er QR) -+ Mcr QR) is injective. 

a. a a. m,n,p m,n,p 

(ii) 

(iii) 

Let 1/J' be this composite map. Then 
a. 

1/J~(x) = 1/JS(y) if and only if x E Va.B and $a.B(x) = y 

Mcr OR)= U ijJ'(V) where a. runs through all nice selections. 
m,n,p a. a. a. 

Proof (i): If (F,G,H), (F,G,H) E Wa. are GLn()R) equivalent. Then 

(cf. (2.4.9) we must have R(F,G) = TR(F,G) for some TE GL (IR). 
n 

Hence R(F,G)~ = TR(F,G) • But R(F,G) = R(F,G) = I : ...... a. a. a. n 
hence T = I • Part (ii) of the lemma follows directly from 

n 
the definition of ~a.B (cf. (2.5.4)), and part (iii) follows 

from lemma 2.3.1 and 2.4.8. 

2.5.6. Corollary. 

( ·) Mcr' co fro) i's the 1 · 1 b · d b 1 · h i VL" topo ogica space o taine y g ueing toget er m,n,p 

the Vco by means of the induced 
a. 

co 
(ii) The 1/J~(Va.) and 1/J~(Va ) are open 

respectively 

. co co co 
homeomorphisms $a.B: va.B + vsa.· 

subsets of Mcr (IR) and Mcr,coOR) 
m,n,p m,n,p 

er We now want to show that M (IR) is a Hausdorff space. To do this m,n,p 
we use the following lemma. 

2.5.7. Lemma. 

Let a,S be two nice selections and suppose that (G.,G.,H.), i EN is 
l. l. l. 

sequence of elements in U converging to (F,G,H) EU as i + oo and that 
- - - a. a. 

(Fi,Gi,Hi),i EN is a sequence of elements in u8 converging to (F,G,H) E u8. 
Suppose moreover that (F.,G.,H.) and (F. G. H.) are GL fro) equivalent i i i i' i' i. n"""' 
for all i EN. Then (F,G,H) and (F,G,H) are GL QR)-equivalent. 

n 

Proof. We have 

(2.5.8) 1 im R (F . , G • ) 
l. l. Cl 

= R(F ,G) 
a. 
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Now R(F. ,G.) and R(F ,G) are invertible for all i E lL This means 
1 l.a, a. 

that also 

(2.5.9) . -1 limR(F.,G.) 
• 1. 1.a, 
l. -+oo 

R(F,G)-l 
a. 

We also have that 

(2.5.10) lim R(F. ,G.) = R(F,G) 
• 1. l.a, a. 
H-00 

Now because (F.,G.,H.) and (F.,G.,H.) are both in Lcr (IR) they 
1. i 1 i i i m,n,p 

are GL OR) equivalent if and only if 
n 

T. 
(2.5.11) (F.,G.,H.) l. = (F.,G.,H.) with T. 

l. 1. 1 l. l. 1. l. 

- - -1 = R(F.,G.) R(F.,G.) 
]. l.a, 1 l.CX. 

This follows from the fact that T. must be such that T.R(F.,G.) = 
1 l. 1 1 

R(F.,G.) and that R(F.,G.) and R(F.,G.) both have rank n. By 
1 1 1 1 l. l. 

(2.5.9) and (2.5.10) we know that lim T. exists and is equal to 
i-+<xi 1 

R(F,G) R(F,G)-l = T and taking the limit for i -+oo in the 
a a. oo 

equality T.R(F.,G.) = R(F.,G.) we find 
1 1 1. 1 l. 

(2.5.12) T R(F,G) = R(F,G) 
00 

Both R(F,G) and R(F,G) are of rank n so that rank(T ) = n, i.e. T00 is 
00 

invertible so that 

(2.5.13) 

We already had 

(2.5.14) 

and 

(2.5.15) 

lim r-:- 1 = 
i-+oo l. 

lim T. = 
i-+oo 1 

T 

-1 
T 

00 

00 

-I 
F. = T.F.T. 

l. l.l.l. 
G. = T.G., H. 

1 1 l. 1 

-1 = H.T. 
1 l. 

Taking the limit for i ~''°of the equalities (2.5.15) now shows that 

T 
(2.5.16) CF ,c, tt) = (F,G,H) 

00 

which proves the lenuna. 
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2.5.17. Theorem. 

Mcr QR) is a differentiable manifold and Mcr,co(IR) is a differentiable m,n,p m,n,p 
submanifold. 

Proof. The patching functions ~aS and~~~ are n times differentiable 

for all n. In view of lemma's 2.5.5 and 2.5.6 it therefore 

suffices to prove that Mcr QR) is a Hausdorff space. This follows 
m,n,p 

from the fact that Mcr QR) is covered by the Hausdorff open 
+ m,n,p 

subsets V~ ~ lRmn np and lemma 2.5.7 above which says that a 

sequence in Va n VS cannot converge to two different points 

(one in Va. and one in v8) at the same time. (If M~:n,p(IR) were 

not Hausdorff such a sequence would exist). 

2.5.18. Remark. The manifold Mcr QR) is never a compact manifold. m,n,p 
'IT 

2.6. The principal fibre bundle. Lcr (IR) + Mcr (IR). 
m,n,p m,n,p 

From now on we shall occasionally talk about fibre bundles and 

principal fibre bundles over a topological space X. For these concepts 

and some elementary facts concerning them the reader is referred to 

[4]. All fibre bundles in this paper will be locally trivial and we 

shall often omit to mention this. 

According to lemmas 2.5.5 and 2.4.8 we have a commutative diagram 

(2.6.1) 

1 x:t/J 
"' a. GL QR)xv--~ n a 

v a 

GL (IR)xW 
n a 

1jJ' 
a 

-1 
t 

"' a. U~Lcr (IR) 
a. m,n,p 

1 
Mcr (IR) 

m,n,p 

where p2 is the projection onto the second factor. By lemma 2.5.5 

and corollary 2.5.6 we know that the V' = ijJ'(V) are open and form a a. a 
an open covering of Mcr (IR) where a. runs through all nice m,n,p 
selections. 

We now obtain from (2.6.1) a commutative diagram 



:2.6.2) 

~ 
GL OR)xV' -- u c_ --i-L er (.IR) 

n a a m,n,p 

!P2 
~ 

V' a 

: TT 

J. 

V, '--Mcr (.IR) 
a m,n,p 

vhe::re TTa. is the restriction of TI to Ua. and Xa is equal to 

(2. 6.3) 

-1 
..J'he::re 1 : GL (.IR) + GL OR) is the homeomorphism TH- T • 

n n 

12 

rhe homeomorphism v can be described as follows. Let x E V' c Mcr (.IR), 
_ 1 "et a m,n,p 

Let (F,G,H) E TT (x). Then we have 

(2. 6.4) 

Xa(ln,x) = (F,G,H)T with T 

--1 
(F,G,H)TT X (T,x) 

a 

= R(F,G)-l 
a 

~O'\N let (T,x) E GL OR) x (V' n V8>· Then we know (by the COI!DllUtativity 
n a r 

:>f (diagram (2.6.2) above) that Xs Xa. is well defined and of the form 

we a.re going to calculate Paa(x,T). 

-1 
Let x' = 1/J' (x). Then we have a: a. 

-I 
= (txl)- 1(lxl/J')(IX1/JB)-lt ((F (x'),G (x'),H (x'))T ) 

B Sa.a aa. a.a. 
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This shows that (cf. the definition oft$ (2.4.7)). 

R(T-lF (x:')T, T-IG (x')}-J 
= a. a a a. f3 

I.e. 

(2.6.5) 

We have now proved: 

2.6.6. Theorem. Lcr OR)+ Mmcrn p(IR) is a principal (locally trivial) 
m,n,p , , 

fibre bundle with group GLn(IR). 

Proof. This follows from 2.5.6, the coI!Dllutativity of (2.6.2) and 

(2.6.5); cf. Steenrod [4], 2.3 and 8.1. 

2.6.7. Corollary. 

The covering {V'} 
a. 

by (2.6.5) define 

2.6.8. Corollary. 

of Mcr OR) and the transition functions defined 
m,n,p er 

. d er OR) + M OR). the principal fibre bun le L m,n,p m,n,p 

Lcr,co(IR) + Mcr,coOR) is a (locally trivial) principal fibre bundle 
m,n,p m,n,p 

with group GL (JR.). It is the restriction of the bundle 
n 

L er (IR) + Mcr (IR) to the subspace Mcr' co (JR.). 
m,n,p m,n,p m,n,p 

2. 7. Remark on the local canonical forms ~a 

The constructions and calculations carried out in the sections above 

are very much related to certain (currently popular) local continuous 

canonical forms 

(2.7.l) C~: U + U 
/foJ. Cl Of. 

where a is a nice selection. These are defined as follows 

(2.7.2) C,v (a)(F,G,H) == (R(F,G)-IFR(F,G} , R(F,G)-1 G,HR(F,G)-l) 
,.,. a. a a a. 

The relation between the C1{ Cl and the various maps above is as follows 



( cf. ( 2 . 6 • 4) ) • 

(2.7.3) 

Cf. also diagram (2.6.2). If we define 

(2.7.4) 

then we have 

(2.7.5) 

v I -7 u ' x ~ y (I ,x) a. a. "''O. n 

1T s a. a 
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1.e. s~ is a local section of the bundle Lcr (IR)-+ Mcr (IR) and 
u m,n,p m,n,p 

the canonical forms cMa. are related to these sections by 

(2.7.6) = s 7T • a a. 

3. EXISTENCE AND NONEXISTENCE OF CONTINUOUS CANONICAL FORMS. 

We are now in a position to start investigating whether continuous 

canonical forms exist or not. 

3. 1. Local Canonical Forms and Local Sections of L er (IR) - m,n,p 

1T 
-+ Mcr 00.) 

m,n,p 
Let L' c L er (IR) be a 

m,n,p 
GL -invariant subset of Lcr (JR.) and n m,n,p 

let M' TI(L'). Then we have an (induced) principal GL (JR.) bundle 
n 

L' ~ M'. 

3.1.1. Lennna. Let~ : L'-+ Y be any continuous map such that~ is 

constant on the orbits of GL (JR.) in L'. Then there is a unique map 
n 

~ : M' -+ Y such that ~ ~TI'. 

Proof. Let U' a. 
diagram 

(3.l.2) 

L' n U V" = V' n M1 • Then we have a commutative a' a a 

GL (JR)xV" n a 

l 
V" n V" a 13 

n V" ~ f3 

cr' a 
GL (IR)xV"--+ n a 

1 
·-+ V" 

a V"4 M' a 



.. 
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where o' is a GL OR)-invariant homeomorphism, Vl.Z. the restriction to 
0. n 

-1 -I 
GL OR) x V" of t (lxlj! )(lxlj!') • Let <P be the restriction of $ to n a. a. a a a. 
u'. Then a. the middle conunutative square of 3. I • 2 shows that there l.S 

a unique ljJ : V" -+ Y such that l/; TI 1 = <P In fact we have 
a. -la. a. a. a.· 

1JI (x) = <P t I (I ,x). It follows that lj.J \\T" n V" 
a. a. a. n a. a B = '" · I v" n v" 't'B a. B ' 

so that the lj.J combine to define a continuous map 
a. 

lj.J : M' + Y such 

that lj.JTI' = cp. The map lj.J is unique because we must have 1jJ IV" = lj.J for a a. 
all nice selections a.. 

3 . l . 2 • Lennna. 

There exists a continuous form c' on L' if and only if there is a 

sections' of the bundle TI 1 : L' + M', i.e. a continuous map 

s': M' + L' such that TI's' JM,. 

Proof. Supposes': M' + L' is a section. Then s'TI': L' + L' is a 

continuous canonical form on L'. This follows immediately because 

TI's' = I , and because TI' induces a 1-1 onto correspondence between 
M 

the orbits of GL QR) in L' and the points of M'. Inversely suppose that 
n 

c': L' + L 1 is a continuous canonical form. Then c' is constant on 

the orbits of GL OR) in L', therefore by lennna 3. 1.1 there is an 
n 

induced maps': M' + L' such that s'n' = c'. One checks easily 

that s' is indeed a section. 

3.1.3. Remark. 

The induced principal GL OR) bundle L' + M' admits a section if and 
n 

only if it is (isomorphic to) the trivial principal GL (IR)-bundle over 
n 

M'. Cf. Steenrod [4], 8.3. Thus there are canonical forms on each 

of the U c: Lcr OR), a a nice selection. Cf. also section 2.7 above. 
a. m,n,p 

3.1.4. Corollary. 

( i) If m = there l.S a continuous canonical 

(ii) If m = n there is a continuous canonical 

Proof. 

(i) If "' = 1 there is only one nice selection 

a. = {(0,1), (1,1), . . . ' (n-1),1)}. So that in 

And.we know that the induced bundle U -+ V' a a 
-1 e.g. V' + U x~ t (I ,x). a a' a n 

form on L er OR) 
m,n,p 

form on L!,n,p OR) 

viz. 

this case 1 er (IR) = u 
m,n,p a 

= TI(U ) has a section, a 

. 
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(ii) By definition (F ,G,H) E L P OR.l implies that rank G.= min(m,n) 
m,n,p p 

So if m = n we have rank(G) = n, which says that L OR) in m,n,p 
this case is contained in u13 where 13 is the nice selection 

S = {(O,I),(0,2), ... , (O,n)}. 

3.1.5. Duality. 

The assignment 

6 : (F,G,H)t-+ (F',H',G') 

defines a homeomorphism L OR) -+ L OR) The map cS is not 
m,n,p p,n,m • 

GL OR)-invariant but it does have the property that two triples 
n 

- - - er 
(F ,G,H), (F ,G,H) E L are GL OR) equivalent i£ and only if 

m,n,p n 
the triples o(F ,G,H) and cS(F ,G,H) are GL OR)-equivalent. Note also 

n 
that cS 2 = id. The duality cS halves the work we have to do to prove 

theorems like I • 7. This is proved by the following 1 emma 

3.1.6. Lemma. 

Let L' be a GL OR)-invariant subspace of L (lR) ~ then o (L') 
n m,n,p 

is a GL OR) invariant subspace of L OR) and there is a continuous n p,n,m 
canonical form on o (L') iff there is a continuous canonical form on L'. 

Proof. The lemma is proved by: if c: L' -+ L' is a continuous 

• 1 f I h J: I .r:-l • • • 1 f canonica orm on L , t en v c v is a ocntinuous canonica orm 

on o (L'), and if c' : cS (L') + cS (L') is a continuous canonical form 

on cS(L') then 6-l c' cSis a continuous canonical form on L'. These 

last two statements follow immediately from the de£inition of continuous 

canonical form (cf. 1.5) and the remarks made above in 3.1.5. 

3.1.7. Corollary. 

If p 

If p 

there is a continuous canonical form on L co OR). 
m,n,p · 

= n there is a continuous canonical form on IP OR) 
m,n,p • 

Proof. These statements follow from 3,1.4 and 3.1.6 because 

6 (L er OR)) = L co OR)) and o (Lp OR)) = Lp OR) 
m,n,p p,n,m m,n,p p,n,m ·. 

3.2. Examples. 

In this section we construct a number of examples of G,F and H 

matrices which will be useful in our continuous canonical form 

investigations. 



3.2.1. The Matrices G (t,s) 
~- n,m 

These n x m matrices are as follows 

(3.2.2) If n = 1, m > 2 G1 (t,s) = (t s 0 ,m O) 

(3.2.3) If n > 2, 2 < m < n 

t s 0 •• • 0 

1 0 ... 0 G (t,s) = 1 n,m ~~-+-~~~ 

2 1 
• • • 

2 1 

B 

where B is an (n-2) x (m-2) matrix independant of t,s such that 

the columns of Band the columnvector (1,1, •. ,,1)' span ap - 1) 
n-2 dimensional subspace of lR • Note that such a B exists because 

2 < m < n. 

(3.2.4) If n > 2, m = 2 G 2{t,s) = 
n, 

(3.2.5) If n > 2, m > n G (t,s) = n,m 

t 

(3.2.6) If n = m~ 2 G (t,s) = 2 n,n 

2 

3.2.7. The Matrices F n 

These n x n matrices are as follows 

0 ... 0 
' 0 2 . . 

(3.2.8) F = 0 n 

0 . ; ' 0 n 

t 

0 

• 
• 
0 

s 

l 

J 

t s 

J 

2 

1 

1 

2 1 

s 

1 

0 

0 

0 

0 

0 0 0 

0 ••• 0 

0 
• 3 • 0 • • • 
0 • • • 0 I 
~ 

n-1 

••• 0 

. ' ' 0 

17 

0 ... 0 

~ 

0 0 
' • ) 

m-n-1 
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3.2.9. The matrices H (t) and H (s). 
p,n p,n 

To define these matrices we need a number of nonalgebraic functions of 

t and s. We shall take 

(3.2.10) 

(3.2.11) 

(3.2.12) 

(3.2.13) 

Note that for s 1- 0 

(3.2.14) 

= {t for 

t-l for 

2 
= exp(-t ) 

{' for 

-2 
s for 

It I > 1 

I sl < 

I si > I 

-1 -2 r :p(-s l for 

for 

s I:- 0 

s = 0 

The precise form of these functions is not important provided they 

are continuous, satisfy conditions (3.2.14) for s 1- O,and are such 

that y2 (t) -1 0 for all t and x 1 (s) 1- 0 for all s. It is perfectly 
00 

possible to find C -functions satisfying these conditions (simply 

smooth the corners in these functions) but the\Care no polynomials 

in t,s which satisfy these conditions. 

We can now define the matrices H (t) and H (s). Below we only 
_ p,n p,n 

the H (t). In each case H (s) is obtained from H (t) by 
p,n p,n p,n 

replacing y 1(t) with x 1(s) and y2(t) with x2(s). 

(3.2.15) If n 1, p ~ 2 H1 (t) ,n 

y 1 (t) 

y 2 (t) 

0 

0 

give 
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Y1 (t) 0 • 0 

y 2(t) 0 0 

0 0 • 0 

(3.2.16) If n ~ 2, p > n H (t) 0 0 .... 
p,n ' n-1 

.. 
' 

" 
' 

0 

0 0 0 

0 - . - - 0 

Jp-n-1 
0 .. . ... - 0 

(3.2.17) If n > 2' p H (t) = n p,n 

l(t) 0 0 

y 2(t) 

0 0 

0 0 0 0 
~ 

n-2 

2 • • • 2 

l . 

(3.2. 18) If n > 2, 2 < p < n H (t) = p,n 
0 • ~ • 0 

c 

p-2 

where C is an (p-2) x (n-2) matrix independent of t such that the 
n-2 

rows of C and the rowvector (1, ... ,1) EJR. span a (p-1) dimensional 
n-2 

subspace of JR. . (Such a C exists because 2 < p < n). 

(
y 1 (t) 

(3. 2. 1 9) If n > 2, p = 2 HP, n ( t) = y 2 ( t) 

. 1 er co 
3. 3. An embedding lP (IR) _,,. M ' OR) 

m,n,p 

2 . ~) 

We now use the matrices defined in 3.2 above to define an embedding 

:lP 1 OR) 
Tn,m,p 

er 
-+ M OR) for all (n,m, p) such that m > 1 and p > 1. 

m,n,p 
1 · where lP QR) is one dimensional real projective space (which is 



homeomorphic to the circle). 

Let m > l, p > 1. We define 

(3.3.l) a lR -+ Lm,n,p(JR), ti-r (F ,G (t ,J) ,H (t) 
n,m,p n n,m p,n 

(3.3.2) a : lR -+ L (IR) s i-r (F , G (1 , s) , H ( s)) 
n,m,p m,n,p ' n n,m p,n 

Let a be the nice selection a= {(0,2),(1,2), ..• , (n-1,~} and 

let B be the nice selection B {(O,l), (1,l), ... , (n-1,1)}. 

One easily checks that 

(3.3.3) 0 n m p (JR.) 
' ' 

UCO 
c ' a 

Let T(s) be the n x n matrix 

s 

0 

(3.3.4) T(s) 

0 

then we see that 

a c u~0 n,m,p µ 

0 0 

' 
0 

0 

(3.3.5) ts = ~ a (t) T(s) 
n,m,p 

a (s) 
n,m,p 

To see this use the relations (3.2.14)). Thus the composed 

continuous maps 

a 
JR. 

n,m,p 1 er, co (JR.) -+ Mcr, co (IR) 
m,n,p m,n,p 

a 
JR. n,m~J'-r 1 er, co (IR) -+ Mcr, co (IR) 

m,n,p m,n,p 

combine to define a continuous map 

T n,m,p 
1P l (IR) -+ Mcr, co (IR) 

m,n,p 

3.3.6. Remark. One easily checks that (F ,G (t,l),H (t)}and 
n n,m p,n 

20 

(Fn,Gn m(l,s),H (s)) are GL (JR.) equivalent if and only if ts =I. 
, p,n n 

It follows that T is in fact an embedding. 
n,m,p 



3.4. Some Remarks on Principal GL (IR.)-bundles. 
~~ ~ ~n ~~~~~ 

Let TI: E + B be a principal GL OR.)-bundle. Such a bundle can be 
n 
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described by giving an open covering {V } of B and transition functions a 

(3.4.1) <Pab 

which satisfy 

(3.4.2) <Pbc(x)<Pab(x) <P (x), x E v n vb n v ac a c 

Cf. Steenrod [4], 2.3 and 3.2 

3.4.3. Induced Bundles. Now let f: B' + B be a continuous map. 

Let V~ = f- 1 (Va). One now defines transition functions <P~b as the 

composite 

(3.4.4) V' n V' 
a b GL OR.) 

n 

These functions satisfy (of course) the analogue of (3.4.2) and hence 
I I 

define a principal (locally trivial) GL (IR)-bundle f"TI :f"E + B' over B'. 
' ' n We remark that f"TI f"E + B' is trivial (i.e. isomorphic to the product 

bundle GLn(IR) x B' + B') if TI: E + B is trivial. 

3.4.5. A second construction which we shall use is the following. The 

composed maps 

(3.4.6) 
det 
-+ GL 1 (IR) 

define a set of transition functions with values in GL10R) on B. These 

define a lo~ally trivial principal GL 10R.) bundle over B which is of 

course trivial if the original bundle was trivial. 

3.4.7. Example of a Nontrivial Locally Trivial Principal GL 1(IR)-Bundle. 

Consider1P 1()R) ={(t:s)j t ::f 0, s ::f O}. Let v 1 = {(t:l)} =lR and 
I v2 = { (1 :s)} = lR. Then V1 U V2 = lP (IR). We now define a transition 

function 



t: )!--.. t 

One checks easi that s bund rn:m tri hat 

there is no sect ion) . 

3.5. On the 

We consider the cont map r : F true n,t!l,p 
in section 3.3 above. Let a and S be the 

above (3.3.3), and let v1 and v2 ht: as in 

.3.3) that 

. 5. I 1 n m p(Vl) c ~ c: • . " • • n,m, ,:,. 

The function u n U,, ... of a fj er Mcr (R) is {according .6. Lm,n,p(R) 
_,.. to m,n,p 

(3.5.2) (x) R(F (ip'-l ) ' 
,-l 

G a. a a a 

By the definition of I (cf. 2.5.5) we see 

the bt~nd 

-l 
j)," 

;::i 

that R 

can be calculated as follows. Take any ,G, E 

1r(F ~G. "' x. Then (cf. also . 6. ) 

(3.5.3) 

) ) ' 
such that 

I We now construct a GL 1-bundle over :IP (R) by first pull back 
er er L CR) -+ M OR) bv means of T (cf. 3.4. and then m,n,p m,n,p • n,m,p 

determinants as in 3.4.6. It now follows from (3.5.3),(3.5.2) and 

! -l 

(3.5. I) that the resulting bundle is given by the transition function 

(3.5.4) I 
(t:l)....+det(R(F ,G (t,l S•) det R(Fn, n n,m t,l) 

An easy calculation shows that we find 

(3. 5. -I -n+? -I v nv -+GL,(R), {t:t)i-t ifn=l,(t:l)-,.2 -t if 
j 2 A 

n > 2. 

) 
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This is a nontrivial bundle. In fact the bundle defined by this 

transition function is isomorphic to the bundle defined in 3.4.7. 

3.5.6. Corollary. The principal GL (IR)-bundle Lcr (IR) + Mcr (IR) 
n m,n,p m,n,p 

is nontrivial. 

3.5.7. In fact the examples show more: if L' is any GL -invariant 
1 n 

subspace of L and M' = n(L') and n,m,p , T (lP OR) ) c M' , then we m,n,p 
have that the induced bundle L' .I!:...+ M' is nontrivial. 

Let Mw (IR) 
m,n,p rr(L:,n,p(IR)) where w is one of the following groups 

of symbols 

(3.5.8) er cr,co cr,co,.A p p,.A 

Then one easily checks from (3.2.2) - (3.2.6), (3.2.3), (3.2.15) -

(3.2.19) and (3.2.ll), (3.2.12) that: 

3.5.9. Lemma. 

( i) 'T QP 1 (JR)) c Mw Im) for all w from the list (3.S:9) if m,n,p m,n,p~' 

m I- l , n and p of l , n. 

(ii) Tm,n,p(IP 1 (1R)) c M~~~~;';\(IR)) if m of land p I I. 

3.5.JO. Corollary. 

The principal GL (IR)-bundles Lw QR) + Mw (IR) are nontrivial n m,n,p m,n,p 

for all w from the list 3.5.8 if m I 1,n and p I l,n. The principal 
bundles L er' co' /..OR) -+ Mcr' co' A (lR.) and L er' co (IR) + Mcr' co (IR)) are 

m,n,p m,n,p m,n,p m,n,p 
nontrivial if m ~ I and p of 1. 

3.5.11. Proof of Theorem 1.7. 

The only if parts of (i), (iii), (iv), (v), (vi) follow from corollaries 

3S.b and 3.S:IOcombined with lemma 3.1.2. 

The only if part of (ii) follows from the only if part of (i) by 

duality. Cf. 3.1.5 and 3.1.6. The if parts of (i), (ii) and (v) are 

proved by 3.1.4 and 3.1.7. The if parts of (iii), (iv), (vi) follow 

from these because we have the inclusions 

1 co,cr,>..(IR) c 
m,n,p 

1 co, er (IR) 
m,n,p 

1 er (IR) 
(,,, m,n,p 

" L co (IR) 
m,n,p 
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Lp ,A (IR) Lp (IR) 
m,n,p c m,n,p 

4. FAMILIES OF LINEAR DYNAMICAL SYSTEMS AND THE FINE MODULI SPACE 

Mcr (IR). 
m,n,p 

We have seen that as a rule continuous canonical forms cannot exist 

even on such a relatively small subspace as Lp,A (IR) of L (IR). m,n,p m,n,p 
This section is devoted to showing that the next best thing is true: 

Mcr OR) is a fine moduli space for a suitable notion of "families m,n,p 
of linear dynamical systems". 

4.1. Families of Linear Dynamical Systems. 

4.1.l. Definitions.!_ Family of Linear Dynamical Systems of Dimensions 

(n,m,p) ~ ~ Topological Space S 

consists of 

(i) an n-dimensional vector bundle p: E + S over S. 

(ii) a vectorbundle endomorphism F: E + E 

(iii) a vectorbundle homomorphism G: SxlR.m + E 

(iv) a vectorbundle homomorphism H: E + SJdR.p 

4.1.2. The Canonical Map Associated to~ Family with Triv~al Underlying 

Bundle. 

Let~ = (E,F,G,H) be a family of dynamical systems over S such that 

E is isomorphic to the trivial vectorbundle over S. Then we can find 

continuous sections e 1, •.. , en: S + E such that {e1(s), ..• , en(s)} 

is a basis for Es= p-1 (s) for alls ES. Let ej, ••. , e~: s + Sx1R.m; 

e'1', ... , e~: S + SXIRP be the obvious "basis vector sections" of the 

trivial bundles SXIR.m and SXIR.P. The vectorbundle homomorphisms F,G,H 

induce homomorphisms G : s:XIR.m + E , F : E + E , H : E + sx1R.P. Let s s s s s s s 
G(s,e), F(s,e), H(s,e) denote the matrices of these homomorphisms 

relative the bases {e;(s), .•. , e~(s)}, {e1(s), ••• , en(s)}, 

{e'j(s), ..• , e~(s)}. Then because the sections ej, ... , e~; e 1, .•• , 

e}, ... , e~ are all continuous we find a continuous map 

(4. I. 3) S + L (IR), sl-t (F(s,e), G(s,e), H(s,e)) m,n,p 

e . 
n' 
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which (obviously) depends on the choice of the sections e 1, ••• , en. 

is a different set of n sections of E (and if we keep 

then the continuous map st-+ (F(s,e), G(s,e), H(s,e)) 

u e1• 

e!, e~ as before) 
l. J 

is such that 

(F,(s,e), G(s,e), H(s,e)) is GL OR)-equivalent to (F(s,e), G(s,e), H(s,e)) 
n 

for all s E S. 

This means that the composite map 

(4.I.4) f . s + L (JR) + M OR) E · m,n,p m,n,p 

is independent of the choice of the sections {e 1 , ••• , 

this continuous map with fE. Informally we can say 

e }. We denote 
n 

4.l.5. Description of fl:. The family (E,F,G,H) =I: defines a "linear-
" dynamical-system.-up-to-GL OR)-equivalence (E ,F ,G ,H ) over every n s s s s 

s E S; f maps s E S to the point of M OR) corresponding to this m,n,p 
orbit. 

4.1.6. The Canonical Map Associated to~ Family. 

Now let 2: = (E,F,G,H) be any family over S. There is an open covering 

{U} of S such that EjU is trivial for all a. Thus by 4.1.2 we have 
a a 

continuous maps associated to the families r:ju = (EjU ,Flu ,GIU ,HjU ) a a a a a 

(4.1.7) f a U a + Mm,n,p (JR) 

which satisfy the description 4.1.5. It follows that 

falua n ub = fblua n ub so that the maps fa combine to define a continuous 

map 

f'I' : S + M (IR) 
1.. m,n,p 

which also satisfies the description 4.1.5. 

4.1.8. Definition. The family E = (E,F,G,H) is said to be completely 

reachable iff f'l'(s) c Mcr (IR). 
1.. m,n, p 

This simply means that the linear-dynamical-systems-up-to-GL ()R)­
n 

equivalence (E ,F ,G ,H ) are all completely reachable. 
s s s s 

4.1.9. Remark. Using the construction of 4.1.2 above we see that a 

family of linear dynamical systems E can be defined by giving 
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(i) a covering {U } of s a 
(ii) continuous maps lJ; : a 

U .. L (R) 
a m,n,p 

(iii) continuous maps qiab: u n uh _,. GL CR> a n 

such that the following conditions are satisfied 

(v) for all x E Ua n Ub 

A family is completely reachable iff ~ (x) E Lcr (R) for all a and ctt a m,n,p 
x E U • So, informally, a family a 
into L (R) m n p • ' ' 

is locally a continuous map of S 

4.2. Description of Families of Linear Dynamical Systems Ez_ 

Transition Functions. 

Let (E,F,G,H) = E be a family of linear dynamical systems over S. 

The bundle E can be described by an open covering {V } of s and 
a 

transition functions $ b: V fl Vb + GL (R) satisfying 9b (x)$ b(x) = a a n c a 
~ (x) for all x E V ac a fl Vb n Ve. Cf. Steenrod [4]. The family E is 

now defined by giving in addition vectorbundle homomorphisms 

(4.2.1) F : V :i<Rn + V :xlln, G : V :XIRm + V :dln, H : V :XIRn + V :XRP 
a a a a a a a a a 

such that the following diagram of induced vectorbundle homomorphisms 

commutes 

(4.2.2) 

G 

V :i<Rm~ 
ab 

~ 

4.3. The Universal Family tu ever Mcr (R) 
~- -~- m,n,p 

We are now going to construct a certain very special completely 

reachable family Eu over Mcr (R). This family has the property 
m,n,p 

that the induced linear-system-up-to-GL (R)-equivalence over 
n 

x E Mcr (R) "is" the point x. To define the universal family Eu m,n,p 



we view Mcr 
m,n,p a.ined 
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glueing together the pieces 

V = 1Rnm+np 
Cl. by 

we identify 

means the i 

with V' for each 

isms ~aS of 2.5 above. That is 

a by means of the ~~· 

4.3.l. The Local 

Let a be a nice select h 1 V 1Rmn+nti E = V • For eac a. et = , a a a 
and let p : E ~ V a et 
isomorphism 

l/Ja.(x) = (Fa(x), 

l:a = (E ,F ,G , 
Cl. a a 

(4.3.2) 

(4.3.3) 

(4.3.4) 

\' 

be the obvious projection. Let ~ be the 
Cl. 

v 

of section 2.4.5 above. We write 

. We now define the family 

follows 

, (x,v)J->- (x,F (x)v) 
et 

-~ E (x,u) r-r (x,G (x)u) a' a 

V :X!RP, (x,v)i-+ (x,H (x)v) 
~ a 

This defines a completely reachable family over V for all a. The a 
associated continuous map V ~ Mcr (JR.) is the embedding ~' a m,n,p a 
of lemma 2.5.5. 

4.3.5. The (global) Family 

Now let B be a second nice selection. Let Va.S v8a and ~aB be 

as in section 2.5. Let = V x lR.n E0 N = V0 ,..,, x JRn. We now aS ' µu. µu. 

define an isomorphism of vectorbundles ~aS: EaB ~ EBa as follows 

(4.3.6) 

It is obvious that 

fibre and that the 

(4.3.7) 

(x,v 

l 
v 

induces an isomorphism of vectorspaces in each 

$ Ctp 
E6et 

l 
IP a.S 

VBa. 
--·-·"--+ 



commutes. Also one readily checks that for all 

x E 

(4.3.8) 

and that for all x E Va.S 

(4.3.9) 

(4.3.10) 

(4.3.11) 

'V 
cp Q(F (x,v)) a.µ a 

"' qi (x, v) a.y 

"' F13 (cpa.6(x,v)) 
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,G (x)) ) :f O} 
o. I 

Now let Eu + Mcr (IR) be the n-vectorbundle obtained by glueing m,n,p 
together the E by means of the~ 0 • Relations (4.3.9) - (4.3.ll) then a. Cl.µ 

mean that the F ,H .G combine to define an endomorphism Fu: Eu + Eu a a. a 
. u er ) m u u u er p and homomorphisms G : M (lR x JR. + E and H : E -+ M OR) x JR. 

m,n,p m,n,p ' 

so that we have defined a completely reachable family tu over 

Mcr OR). This family has the property: "the induced linear-system­m,n,p 
up-to-GL (IR.)-equivalence over x E Mcr (IR) is the point x" because n m,n,p 
this is true for the local families L • a. 

4.3.12. Remark. 

From 4.).6 (cf. also (3.5.3)) we see that Eu is the n-vectorbundle 

associated to the principal GL (IR) bundle Lcr (IR) + Mcr (IR) 
n m,n,p m,n,p 

4.4. The Functor ~ of Isomorphism Classes of Families of Linear n,m,p 
Sys terns. 

Two families E,E' over a topological space S are said to be isomorphic 

if there exists an isomorphism of vectorbundles <P= E-+ E' such that 

(4.4.l) FI qi , <j)G G', H = H'<ji 

For each topological space S we let @er (S) denote the set of 
n,m,p 

isomorphism classes of completely reachable families of linear systems 

(of dimensions (n,m,p)) over S. Now let f: S' + S be a continuous map. 
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By pulling everything back along £ we obtain a family 

I I I I I • 1 h bl if d f'I: = (f"E f"F f'G f"H) overs' which is complete y reac a e an 
' ' ' t 

only if I: is completely reachable. Informally f"L is the family 

which induces over s' E s' the same 1 inear sys tern as L: induces over 

' f (s') E S. More precisely f" l:: is defined as follows 

' jf(s') = p(e)} (4.4.2) f'E {(s',e) E s I x E 

I I ' (s' ,F(e)) (4.4.3) f'F: f"E + f'E, (s' ,e)~ 

I ' ( s 1 , G ( f (S ') , u)) (4.4.4) f'G: s' x ]Rm+ f'E, (s', u) + 

' ' x lRP, (4.4.5) f'H: f"E + s I (s' ,e) + (s' ,qH(e)) 

where q: S x JRP + S is the natural project ion onto the first factor. 
' ' 

If L:,L:' over Sare isomorphic families then f'L: and f'.L' over S' 

are isomorphic. It follows that the pullback construction and the 

definition of Qcr (Sj combine to define a functor 
m,n,p 

(4.4.6) <Per 
n,m,p 

Top0 PP + Set 

where !gg is the category of topological spaces and Set the category 

of sets. 

er 
4.4.7. Remark. ~ (pt), where 

n,m,p 
the same as the underlying point 

4.4.8. Let .L and L be two families of linear dynamical systems over 

S defined relative the same covering {V } of S by transition functions 
a - ,,,... -

<Pab' <Pab and local vectorbundle homomorphisms F F G G H H ·. Cf. 4. 2 
a' a' a' a' a' a 

Then 2: and 2: are isomorphic families if and only if there exist 

continuous maps cra: Va-+ GLnQR) such that for all a,b and x E Van Vb 

(4.4.9) 

and moreover the following diagram commutes for all a 



(4.4.10) 

where a (x,v) 
a 

(x,cr (x)v). a 

v 2fil\p 
a 

4.4.ll. Let I be a family over a topological space Sand let 

f: S' -+ S be a continuous map. Suppose E is given by means of 

a covering {V } 
a 

Let {V'} be any 
Cl 

and local data ~ F G , H as in 4.2 above . ..,.,ab' a' a a 
covering of S' which is finer than the covering 

-I 
{f (V )}. For each a,S select a 

' 
an a,b such that f(V') c V , a a 

f(VS) c Vb. Then the pullback family f 0L can be described by the 

following data 

(4.4.12) <P~s : V' n V' -+ GL OR), xt-+ <P s(f(x)) 
Cl s n a 

(4.4.13) F : V'2illln -+ V'2illln (x,v)t-+ (x,Fa,f(x)(v)) Cl Cl Cl ' 

(4.4.14) G : Vr2fil\m-+ V' 2fil\n (x,u)i-+ (x,Ga,f(x)(u)) O'. Cl Cl ' 

(4.4.15) H : V'2illln -+ V'XIRP (x,v)t-4 (x,Ha,f(x)(v)) Cl Cl Cl ' 
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where F ,G ,H for s E V are defined by F (s,v) a,s a,s a,s a a (s,F (v)), a,s 
G (s,u) = (s,G (u)), H (s,v) = (s,H (v)) a a,s a a,s 

4.5. The Fine Moduli Space Mcr OR) 
~- -~- m,n,p 

4.5.I. Definition. 

er A fine moduli space for the functor ~ b consists of a topological m, , p 
space Mand an isomorphism. of functorsµ : ~er -+ Top(-,M). 

I.e. M represents the functor ~er 
m,n,p 

m,n,p 
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4.5.2. Theorem. 

Mcr QR) is a fine moduli space for the functor Q?cr More 
m,n,p m,n,p 

precisely the assignment Ii--+ fL induces a functorial isomorphism 

"'cr (S) ~ Top(S,Mcr llD). Th ' . h' . µ: ~ ~ ...... ~ e inverse isomorp ism to µ assigns m,n,p ===== m,n,p 
I 

to g: S -+ Mcr QR) the isomorphism class of the family g'Eu m,n,p 

Proof. One 

class of E 

checks easily that fE depends only on the isomorphism 

and that Ei-+ fI is functorial in the sense that 

f ' = g. This is most easily seen by using the description 
g'E 

I 

of g"E given in 4.4.11. We must now prove two things 

(i) If E 
I U = g"E , then fI = g 

I 

(ii) f~Eu and E are isomorphic families of linear systems. 

To prove (i) it suffices to remark that 

(iii) the system-up-to-GL QR)-equivalence E over s E S is the n s 
system-up-to-GL QR)-equivalence Eu( ) (cf. 4.4) 

(iv) 
n g s 

the system-up-to-GL QR)-equivalence Eu( ) "is" the point n g s 
g(s) E Mcr QR) (cf. 4.3 just above 4.3.12). 

m,n,p 
(v) f~(s) is the point of Mcr QR) representing the system-up-to-

t.. m,n, p 
GLnQR)-equivalence Es. 

Alternatively one proves (i) by remarking that f 

and by applying the formula f , = f~o g. 
g· I t.. 

EU 
id (by (iv)) 

It remains to prove (ii). Let Ebe given by local data 

~ b'F ,G ,H relative a covering {V } of S. By refining this covering a a a a a _ 1 
if necessary we can assume that {V } is finer than {f~ (V')}. For a /.. a 
each a,b,c let a,S,y, be such that fI(Va) c V~, fE(Vb)

1
c VB, 

fE. Then the pullback family f'Iu is given fI(Vc) c V~. Write f for 

by the local data 

(4.5.3) l/Jab (x) = 

(4.5.4) Fa(x,v) 

,.., 
(4.5.5) G (x,u) a 

(4.5.6) H (x,v) 
a 

-1 
R(F a (f (x)), Ga (f (x)))S 

= (x,Fa(f(x))v) 

= (x, Ga (f (x))u) 

= (x,H (f(x))v) a 



er Here we have identified V' c M OR) and V via~', so that a m,n,p a a 
(F (x),G (x),H (x)) for a a a x E V' is the unique element in 

a 
W c L er QR) which TI maps to x. 
a m,n,p 

Let the family I be given by the local data ~ b'F ,G ,H . Then a a a a 
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by the definition of f~ = f we know that the triples (F ,G ,H ) 
1.., a,s a,s a,s 

and (F (f(s)), G (f(s)), H (f(s)) are GL OR)-equivalent. a a a n 
This means that 

(4.5.7) 
T (s) 

(Fa,s'Ga,s'Ha,s) a = (Fa(f(s),Ga(f(s)),Ha(f(s)) 

for a certain T (s) EGL QR). In particular we have a n 

(4.5.8) T (s)R(F ,G ) a a,s a,s 

so that we must have 

(4.5.9) 

(Note that (4.5.8) inplies that R(F ,G ) has nonzero a,s a,s a 
determinant). This defines a continuous map 

(4.5.10) a : V -+ GL QR) , s ~ R (F , G ) - I 
a a n a,s a;s a 

The local data W b'F ,H ,G defining I are related by the a a a a 
connnutativity of the diagram 4.2.2 which in particular mean that 

(4.5.11) W b(s)R(F ,G ) a a,s a,s R(Fb ,Gb ) , s 's 

We shall now show that 

.I\ 

(4.5.12) ~ b(s)o (s) a a 

Indeed, we have using (4.5.8) - (4.5.10) and (4.5.3) 
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I\ 
"l/J b ( s) a ( s) R (F , G ) = a a a,s a,s R(Fa(f(s)),G (f(s)»: 1R(F (f(s)),G (f(s))) a. µ Cl. Cl. 

On the other hand using (4.5.11) and (4.5.8) - (4.5.10) 

which is equal to R(F (f(s)),G (f(s)))-B 1R(F (f(s)),G (f(s))) by the 
Ci. Cl. Cl. Cl. 

definition of the Fa,Ga,FB,GB. This proves (4.5.2) because 

R(F ,G ) has rank n (cf. 4.5,8). The commutativity of the a,s a,s 
diagram corresponding to (4.4.10) follows directly from (4.5,7) 

' u so that (by 4.4) the cra do indeed define an isomorphism E -+ fiL . 

4.6. Remarks. 

4.6.1. The underlying bundle Eu of Lu is the associatedJR.n bundle 

of the principal GL QR) bundle L er OR) -+ Mcr OR). So in 
n m,n,p m,n,p 

particular it is nontrivial if m # 1. (Cf. Steenrod [4] 8.2-8.4). 

Also the restrictions of Eu to various subspaces are often nontrivial. 

Cf. 3. 5. 1 O. 

One can also use the fine moduli space 

to show that there exists a continuous 

subspace L' c Lcr QR) iff the bundle 
m,n,p 

is trivial. Cf. [2] Thm 6.1. 
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