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Some years ago C. S. MEIJER ([1], p. 127, formula (G); [3], p. 355, 
formula (113)) published a formula for generalized hypergeometric 
functions, which contains many known formulae on special functions. 
Meijer's formula is 

~ n. (y1, .. ., Yk• 1X1, ... , cxp; ) _ 
p+k~q+l -

f31, .. ., {Jq, 01, ... , 01; ilC 
( l) I ~ I ""' (-r, yr, ... , yk; ) ( ) ( ) ( '")r ""' (°'l +r, ... , O<p+r; ) ..::.., - k+l~l 0<1 r· · · CXp r - <,, p~q . 

r-or! 01, ... ,01;.A. f31+r, ... ,{Jq+r;C 

Here we use the following notation: 

(cx)r ~ ~ cx(cx+ 1) ··~ (x+r-l) if r is a positive integer, 

if r = 0. 

If p and q are non-negative integers, and p < q + 1 or for some i(l .;;;:i < p) 
ext is a non-positive integer, then 

p<l>q (.Xi, ... ' 1Xp; ) 

{31, .•. , {Jq; c 
is the analytic function of C defined in a neighbourhood of !; = 0 by 

pr/Jq (<Xl, • · •, Xp; ) = ! (0:1)n • ·· (o:p)n t;n. 
R {3 • r 0 n! I'(fli+n) ... I'(f3q+n) {Jl, .. ., q, <,, n= 

(2) 

The series on the right of (2) has a finite radius of convergence only in 
the case that p = q + l and no .xi( i = 1, .. ., p) is equal to a non-positive 
integer. The analytic continuation for this case will not be described 
here. It can be found in [2], § 2 and in [4]. For our purpose it is sufficient 
to know, that 0, 1, oo are the only singularities (branchpoints in general). 
Hence, if C is any simple curve connecting l and oo and 0 ef= C, there 
exists a unique analytic function on the complement of C, which has the 
power series representation (2) in a neighbourhood of C=O. The curve C 
will not be mentioned explicitly in the sequel, but is assumed to be 
suitably chosen. (Meijer uses the rays (I, l+ioo) and (1, 1-i oo)). 

1) The author wishes to express his gratitude to Prof. MEIJER for his clarifying 
criticism of an earlier vereion of thie paper. 
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In this paper (I) is proved in a new and simple way. The conditions 
for the validity of (1) given by MEIJER ([1], p. 127; [3], p. 355) will 
be deduced anew. Finally a relation for generalized Heine series is given, 
which is analogous to (I). 

Formula (1) is valid in each of the following eight cases la, ... , Ie, 
Ila, IIb, III: 

I. None of the numbers y1, ... , yk, 1X1, ••• , e<.p is equal to 0, - I, - 2, ... , 
and 

a. p<q+I and p+k<q+l+I, for all values of A and C. 
b. p<q+ I, p+k=q+l+ 1, for j..1CI < 1. 

c. p=q+I, k<l, for Re C<! and all values of ..1. 
d. p=q+I, k=l=O, for C#I and /(..1-l)C/<IC-IJ. 
e. p=q+I, k=l>O, for Re C<t and j(..1-I)Cl<IC-IJ. 

II. k > 1 and at least one of the numbers yi, ... , yk, but none of the 
numbers 0<:1, ••• , °'P is equal to 0, - 1, - 2, ... , and 

a. p<q+ 1, for all values of A and C. 
b. p=q+ 1, for Re C <i and all values of A. 

III. p > I and at least one of the numbers 0<:1 , •• ., °'P is equal to 
0, -1, - 2, .. ., for all values of A and (;. 

Proof. By (2) the right-hand member of (1) can be formally written as 

.! .!. ± (-r)n (y1)n ... (yk)n ,1n 1 (a1)r+m 00 • (ap)r+m (- l)T cm+r = 
r=O r!,._0 n! I'(o1+n) ... I'(o1+n) m=O m! I'(/h+r+m) ... I'(pg+r+m) 

1 _! 1 (yi)n .. · (yk)n (a1)r+m ... (ap)r+m (- I y+n A_n Cm+r = 
n=O m=O r=n n! I'(o1+n) ... I'(o1+n) I'(P1+r+m) ... I'((Jq+r+m) m! (r-n)! 

I I 
1 

(y1)n ... (J.1k)n (a1)1 ... (ap)! A.n Ci . I (- ~)1.+n 
1

• 

n-o i=n n. I'(o1 + n) ... I'(o1+ n) I'((J1 +J) ... I'(Pq+J) r=n (r-n). (7 -r). 

Now using 
i (-Iy+n (1-1)1-n ~ 0 if j>n 
,2 (r-n)! (i-r)! = (f-n)! = I if ·-r-n J-n, 

we see that (3) equals the left-hand member of (1). 
In each of the cases Ia, b, Ila and III the absolute convergence of (3) 

can be shown by estimates of the type 

(4) 

Hence, in the following we may restrict ourselves to the case p=q+I, 
where none of the numbers 0<.1, ... , e<.p is equal to 0, -1, -2, .... In this 
case we can again prove by (4) the absolute convergence of (3), but only 
for small values of JCI and J..1J, provided that k<l or that one of the 
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numbers yi, ... , y1c is equal to 0, - 1, - 2, . . . Next we shall show that ( 1) 
has a larger region of validity. We need two lemmas. 

Lemma I. If C *I, then 

• \ (- C)r (ix1)r ... (ixa+1)r <I> (IXl + r' .. ., <Xg+l + r ;) 1~ = 1-'-I 
limsup r' g+l fJ R • r C-l · 

r-.oo · /31 +r, ... , l'a+r,.,, 

Proof. The function 

""' (<Xl' .•• ' lXg+l; ) j(w) = g+i<vg 
/31, ... , f3a; C(l-w) 

is analytic in w for JwJ < J1-c-1 J. Using (2) we can easily derive that 

[ dr J ""' (<Xl +r, ... , <Xg+l +r;) 
"(ft j(w) = (ix1)r .. · (<Xg+l)r ( - C)' g+l<vg R R • r 
w w-o f'l +r, ... , l'a+r,,,. 

for jCJ <I. Both members being analytic in C (if C *l), the equality is 
valid in the cut C-plane. Hence, the Taylor expansion off (w) in powers 

of w is 

f ) ~ (-C)r(ix1)r ... (£Xg+i)r .rn. (°'1+r, ... ,oi:g+1+r;) 
(w = k wr ' g+l""<J • 

r-o r. /31 +r, ... , f311+r; C 

As f (w) is analytic for lw] < 11-c-1 ], the radius of convergence of the 
Taylor series is equal to J1-c-11. Lemma 1 expresses this fact in a 
different way. 

Lemma 2. Ifnoneofthenumbersy1, ... ,y1cisequaltoO, -1, -2, ... , 
then 

limsup 1c+i<l>i r= max (1, 11-.A.i} if k=l>O, I . 11 l 1 if k < l, . (-r,yi, ... ,y:t, )- . 

r-oo 61, ... ,dz;.A. 11-.A.I ifk=l=O. 

However, if one of the numbers yi, •.. , y1c is equal to 0, -1, -2, ... , 
the lim sup equals I in all cases. 

Proof. The proof runs along the same lines as that of lemma I. The 
starting point is now 

(5) 1 <l> (I, y1, ... , y1c; ) ~ <l> (-r, yi, .. ., y;t; ). r=- lc+l l J..w = k wr lc+l z • 
w Q1, ... , dz; w- l r-o di, ... , dz; it 

This formula is the special case p= 1, q= 0, ix1=0, C=w(w- I)-1 of (1). 
Hence, it is valid for small values of ]A.I and lwl. If Ji. is fixed, the function 
g(w) on the left of (5) has a Taylor expansion in powers of w. It is easily 
seen that the coefficient of wr in that expansion is an analytic function 
of .A.. From these considerations it is clear that for each .A. the expansion 
(5) holds in a certain neighbourhood of w=O. Now g(w) has a singularity 
in W=l if k<l, in 1 and (l-.il)-1 if k=l>O, and in (l-.il)-1 if k=l=O. 
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This yields the first part of lemma 2. If one of the numbers yi, ... , Yk 
is equal to 0, - l, - 2 .... , then g( w) has a singularity at w = 1. This 
completes the proof. 

From lemma 1 and lemma 2 it follows that the series on the right of 
(1) converges absolutely in the cases le, d, e and IIb. Moreover, the 
convergence is uniform, if A. and C are restricted to compact sets. Hence, 
this series represents a function which is analytic in A and in C. As ( l) 
holds for small values of IA.I and /<'.."!, the validity of (1) is also proved in 
the cases le, d, e and Ilb. 

The above-mentioned generalization of ( 1) to Heine series (for definition 
and properties of Heine or basic series see [5], eh. VIII) is 

(6) 
~ p (y1, ... , Yk, ix1, ... ,exp; )- ~ [a1]r ... [ap]r~' . 

k+p l+s - L., [ -r] [fl J [{J ] 01, ... , flz, ()z, ... , (J8 ; A.C r=O q r 1 r ••• • r 

I 
where O<q< 1, 

[ix]r = ~ (1-a) (l-1Xq) ... (l-c:xqr-1) if r;;;,: 1, 
( 1 if r = 0, 

and 

(6) is always valid if /Cl< l and IA./< l. A proof and a more precise 
discussion of the validity of (6) can be given in a similar way as was 
done for formula (1). 

Mathematisoh Oentrum, Amsterdam 
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