Bull. Cal. Math. Soc., 70, 359-369 (1978}

ON THE NONEXISTENCE OF CONTINUOUS CANONICAL FORMS
FOR LINEAR DYNAMICAL SYSTEMS

MricHIEL HAZEWINKEL

(Received 5 March 1976)

Abstract. A real linear dynamical system % = Fz--Gu, ¥ = Hois thought of as being represented
by the triple of matrices (F, G, H). A base change in state space changes the triple to (SFS-1, SQ, HS-1)

for a certain § ¢ GLy(R). In this paper we discuss existence and nonexistence of canonical forms for this
action of GL,(R).

1. Introduction and statement of results. A real linear, constant, finite
dimensional dynamical system is thought of as being represented by a triple of real matrices
(F, G, H) where F is an nxn matrix, G an nXm matrix and H an pXn matrix; ie., there
are m inputs, p outputs and the state space dimension is #n. The dynamical system itself
is then

2 = Fa+GQu, y = Hx (1.1)
in the continuous case, or

2(t-+1) = Falt)+Gul(t), y(t) = Hault) (1.2)

in the discrete case. A change of coordinates in state space changes the triple of matrices
(F, @, H) into the triple (SFS-1, SG, HS-1). We are interested in continuous canonical
forms for this action of GL,(R), the group of real invertible # X7 matrices. Cf. 3.3 below
for a precise definition of what a canonical form is.

The triple (F, G, H) is completely reachable if the matrix
R(F, Q) = (GFG ... FrQ@) (1.8)
consisting of all the columns of the matrices Fi@, ¢ =0, ...,n has rank n. The triple
(F, @, H) is completely observable if the matrix
QF, H) = (HTFTHT ... (FT)"HT)
where the upper T' denotes transposes, has rank n. Cf. (Kalman 1969) for these notations.
Let & & K (R) denote the space of all triples of matrices (F, @, H), F & K (R)er

the subspace of all completely reachable triples and & & A (R)er, co the subspace of all
triples which are completely observable and completely reachable.

In (Hazewinkel and Kalman 1975a,b) we studied pairs of completely reachable
matrices (F, @) e &F Qe (over arbitrary fields) by algebraic geometric methods and proved
that there are no algebraic continuous canonical forms on & Ger if m > 2. We can embed
F Gor into F & Her by means of the GL, invariant map.

F, 6) - (F, &, 0) | (1.4)
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So this result implies the nonexistence of algebraic continuous canonical forms on & G A,y
(and &F G A (C)er) but gives at first sight no information on the existence of canonical forms
on &F G A (R)er, co. Firstly, because the results of (Hazewinkel and Kalman 1975a, b) as
stated there do not rule out the existence of nonalgebraic continuous canonical forms on
FERe) and F&(Cer), and secondly because there scems to be no GL,R) invariant
embedding & G R)er > F & A R)er, co-

So that the results of Hazewinkel and Kalman (1975a,b) leave it open whether
F & HR)er, o admits a canonical form or not. In fact, this had better be the case because
there does exist an (algebraic) continuous canonical form on & .& AR)er, co if P = 1.

We have :.

1.5. THEOREM. There does not exits a continuous canonical form on F & MR, co
it and only if m > 2 and p > 2. 4 fortiore there are mo continuous canonical forms an
FENHNR), FE HMR)er, FG& MR)eo if m >2 and p > 2.

In this paper we show how one can use results on the nonexistence of canonical forms
on F & (R)r to deduce results on the nonexistence of canonical forms on &F.& AR)ersco
for suitable p. We are thus able to prove theorem 1.5 for the case m > 2, p > 27 and we
mndicate a shmilar proof for the cases » > 2, m > 2n and p,m > n. Tor the general case’
of. (Hazewinkel). The basic idea of the proof presented here is very simple. The Gramm-
Schmidt orthonormalization process shows that there exists a continuous GL,[R) canonical
form on & GR)er (resp. F .G AR)erseo) if and only if there exists an 0,R) canonical
form on F GR)FM (vesp. F & MR)ZW9) where the superscript “ortho’” means that we
consider only those pairs (resp. triplos) such that R(F, &) has orthonormal row vectors,
and where O,(R) is the group of orthogonal » X % matrices.

This trick is useful Dbecause there doos exist an 0,R) invariant embedding
FER)FH > F & NR)FH for suitable p, viz.

(F, &) — (F, G, R(F, &)T) (L.6)
where R(F, @) is the matrix

R(F, G) = (G FG ... Fr-Y(@) (1.7)

and the upper I' indicates trangposes.

However, Gramm-Schmidt orthonormalization is essentially nonalgebraic which
is one more reason why we cannot use the results of Hazewinkel and Kalman (1975a, b) as
they stand, but have to extend them to prove nonexistence of continuous (possibly non-
algebraic) canonical forms on & & (R)g. This is done in section 2 below. The methods
are the same as those of (Hazewinkel and Kalman, 1975a, b) : the quotient & & (R)er/GL,R)
is shown to exist and to admit a universal family of completely reachable pairs over it. Then
we need a new proof that the underlying bundle of the universal family is nontrivial if
m > 2, because a priori there is no reason why the bundle of R-points E(R) — B(R) of a
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nontrivial algebraic bundle & — B should be nontrivial. The rest of the nonexistence proof
is then as in (Hazewinkel a,ndlKa,lma.n, 1975b), 6.1., Section 3 containg the orthonormaliza-
tion trick alluded to above and in section 4 theorem 1.5 is proved for suitable m, n, p.

2. A fine moduli space for continuous families of real linear dynamical
systems. In this section we consider completely reachable pairs of real matrices
(F, G) of size n X n and m X » respectively. Asusual R(F, G) is the matrix (G FG F?@ ... FnG)
with columns Figy, j =1, ...,m; 1 =0, ..., n where gy is the j-th column of @ We number
the columns of R(F, @) by means of the pairs (4, j) ordered lexicographically. Let J be this
set of indices.

2.1. Nice Selections and Sucessor Indices. A nice selection is a subset a of J
with the property that (¢,5) e == (¢',j) eaforall ¢’ < ¢ A successor index k = (1,4) of
& nice selection « is an element (4,j) eJ such that (¢/,4) e for all 4  ¢. Note that
there is precisely one successor index of the form (7,4) for a for every j =1, ..., m. This
Successor index is denoted s(a, §).

2.2 Construction of the Differentiable Manifold M, »(R). For each nice
selection @ let U, =Rmn For xe U, with components wz k=1,...,mn, let (),
i =1, ..., m denote the columnvector with entries x(i); = Ty_yynyss J =1, ..., m. (Le. we
write x as an nXm array). For cach ze U, = R"” there is a unique pair of real matrices
(F, @) ¢ FGR)er such that

R(F: G)a = In (221)

where R(F, (), is the matrix congisting of the columng of R(F, () with indices in o (in their
original order), and such that

B(F, stos 5y = %), J=1-,m (2.22)

where R(F, s 7y is the column of R(F, @) with index s(e, j), the j-th successor index of «.
For a proof of (Hazewinkel and Kalman 1975b) sections 3.4, 3.5. This pair of matrices
is denoted ¥, (x).
TFor each ordered pair of nice selections a and £ we define
Uz = {x e U, | (RF,(2))s is nonsingular} (2.2.3)
and we identify U,, and U, by means of the correspondence

€ >y & (B, ()5 YBY,(x)) = Bifg () (2.24)

These identifications define a differentiable manifold denoted fm,(R) which is covered by
the coordinate patches U, = R®", o a nice seloction.

There is a natural map

7 F &Ry —> Mna(R) (2.2.5)
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which is defined as follows. For each (F, @) e F & (R)¢ there is a nice selection o such
that R(F, @), is nongingular (Hazewinkel and Kalman 1975a, lemma 2.4.1). We now map
(F, @) to the point ze U, C Mn,R) determined by

7n(F, Q) =xe U, C Mn, \R) &S ¥,(x) = BF, @), *R(F, G) (2.2.6)

This is independent of the choice of & because of the identifications (2.2.4). The map 7 is
surjective because myf, () = x for x ¢ U,, and we have for ¢ U,

mYz) = {(SFS, 8¢| 8 e GL,R)} if (F, Q) = (). (2.2.7)

In other words Mm,,R) is the quotient of & & (R)er under the action of GL,MR). Cf
(Hazewinkel and Kalman (1975a), 3.3 and (Hazewinkel and Kalman 1975b), 3.5~-3.7 for
proofs.

2.3. Continuous Families of Gonipletely Reachable Pairs. Let X be a
topological space. A continuous fomily of pairs over X is an n-dimensional real vector
bundle B over X together with a vectorbundle endomorphism F : E — E and m sections
91, 9m: X —> E. For each xeX we have an endomorphism F(z): E(z) = R? — E(x)
and m vectors ¢y(x), ..., gm(x) € E(x) = Rn.  After a choice of bagis in E(x) these vectors
and this endomorphism define a pair of matrices, i.e., an element of & GMR). Note that
the element so defined is welldefined up to the action of GL,R) (= change of basis). The
family (E, F, ¢y, ..., gm) is said to be completely roachable if all these elements of & & (R)
are in fact in & G (R)er.

Two continuous families over X, (&, F, gy, ..., gm), (B, F', ¢'y, ---, g'm) are said to be
isomorphic if there is a vectorbundle isomorphism ¢ : B — E’ such that

¢F =F¢ (2.3.1)
=gt i=1..m. (2.3.2)

For every space X let A(X) be the set of isomorphism classes of continuous families of com-
pletely reachable pairs over X. By means of the pullback construction which associates
to a continuous map f:Y —> X and a family (B, F,g,, ....,gm) over X, the family
( f'E, flgl, oo f’gm) over Y, we can turn 4 into a contravariant functor from the category

of topological spaces to the category of sets. Cf. (Hugemoller 1966) for background material
on vectorbundles and pullback.

2.4. The Canonical Map Associated to a Completely Reachable Family.
Let Z = (&, F,qy, ..., 9m) be a family of completely reachable pairgs over X. For each
zeX we then have a completely reachable pair F(x), G(z) over z (cf. 2.8 above) which
is determined up to a choice of bagis in F(x). This means that #(F(z), g(z)) it welldefined.
(Cf. (2.2.5), (2.2.6) above for the definition of 7). Associated to & we have thus defined a

continuous map f(Z) : X - Mm,,(R). Note that isomorphic families give rigse to the same
maps X = Hn,nR).
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2.5. Definition of the Uuiversal Family. Ior each nice selection « let £, = U,
zR” be the trivial vectorbundle over U, We define the bundle endomorphism
Fq: B, > E, and the sections ¢y, ..., gme : Ug —> B, as follows. For xe U, write

Pola) = (Fo(@), Gufx)) 25.1)
We then define ‘

Fa(x: v) = (:E, Fa(x)”) (25.2)

Gie(%) = (%, G@) t=1,...,m (2.5.3)

where G,(x); is the 4-th column of G,(x).

A We now construct a family 2% = (8%, F'%, g;%, ..., gm¥) over Mm, ,(R) by patching
together the partial families (Z,, Fy, 9yar ---> Jma)- This is done as follows. Let
B3 ={x v)eB,| 2zeU,} and let ¢,5: Up, — Up, be the diffeomorphism defined in
(2.2.4) above. We now define the isomorphism.

Gop * Hog = Bpe ‘ 2.5.4)
by the formula

Pap(@, V) = (Bap (@), (BY(2))5~™0) 2.5.5)

It is easy to check that these isomorphisms are compatible with the endomorphisms F,, Fj
and the sections gy, gup, ¢ = 1, ..., m, so that these identifications yield a family X% such
that the restriction of =% to U, is isomorphic to the family (&,, Fy, 014, --+» 9me) for all nice
selections «. :

It follows that
f(Z#) = identity on «#m, n(R) (2.5.6)
(Cf. 2.4 and (2.2.7)).

2.6. THEOREM fm,(R) is a fine moduli space for the punctor A.

This means the following. Let Top(X, Y) be the set of continuous maps from the
topological space X to the topological space Y. Then theorem 2.6 says that the map
% — f(Z) of section 2.4 above induces a bijection from A(X) to Top (X, Mm, R)) for all
topological spaces X. More precisely theorem 2.6 says that: (i) For every f ¢ Top(X, AMm, »(R))
there is a family =7 such that f(5f) =f. (N.B. The family f'S¢\is such a family), and
(ii) for every family of completely reachable pairs Z over a space X there is a unique
map f: X — My, oR) such that f'3% iz isomorphic to . This map is of course
fZ) 1 X Mm, R) and what is left to prove is that f(2)! Z¢ and T are isomorphic families.
This is done exactly as in (Hazewinkel and Kalman 1975a), 3.6.

2.7. An Embedding S'— fm, o(R). The next thing we want to do is to show
that the bundle % underlying the universal family 2% over #lm, ,(R) is not the trivial
bundle if m > 2. (If m = 1 there is only one nice selection and it follows that the bundle is
trivial in that case).. To this end we first construct an explicit embedding ¢ : §* = P}R)—>
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Sm.n®R) for m,n > 2 where S' is the circle and PY(R) is one-dimensional real projective
space. This is done as follows. Define a continuous map

¢ : R > FE Ry, t—o(F(t, 1), G 1)) ‘ (2.7.1)
where F(i, 1) is equal to the matrix consisting of the columnvectors
P, 1), = e, F(t, 1)y == ey-+ey, F(t, 1) = g4y for i =3,...,n—1 (27.2)
F(t, 1), = 2e; if n >3,

where e; is the j-th unit columnvector. The matrix G(t, 1) consists of the columnvectors

G(t, 1), = teg, G(t,1)y = 6,46, G, 1) =0 if 3> 3 (2.7.8)
if =2,
and
G, 1), = te,+e,, G, 1), = e,+ey, G, 1)y=0 if i >3 (2.7.4)
if » > 3.

Note that B(¢(t)), is nongingular for all ¢ for the nice selection

o ={0,1), ..., (n—3,1), 0, 2), (1, 2)} (2.7.5)

We also define a continuous map

¢y R > FGR)er, s (F(s, 2), G(s, 2) (2.1.6)
with
F(s,2); = e, Fs, 2), = se,+e,, F(s,2)g = €5, fori =3, ...,n—1 (2.7.7)
F(s,2), =2e ifn>3,
and with '
G(s,2), = e, G(s, 2)y = se;+6,, G(s,2); =0 fori>3 (2.7.8)
if n = 2, and
G(s, 2); = e;+e;, G(s,2), = se;+e€5, (1(s,2); =0 for s >3 (2.7.9)
ifa>3 '

Note that R(gs(s)) is nonsingular for all s for the nice selection
A ={0,1),..,(n—2,1),(0,2)} (2.7.10)

The pairs of matrices ¢(t) and @y(s) are equivalent pairs if £ £ 0, s 7 0 and ts = 1. The
matrix transforming the pair ¢,(t) into @y(s) is then equal to

.............................................
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This means that the composed maps
7T¢1 : R.-) \‘?Q(R%r d me, n(R)
and
gy i R> &* GR)er ~ A, +R)
combine to define a continuous map
¢ 8t =PYR) = My, ,(R) (2.7.11)
Let (¢ : s) be homogeneous coordinates for PY(R). Then
pt:s)elU, if s£0
(2.7.12)

Blt:s)eU, ift£0

where o and £ are the nice selections given by (2.7.5) and (2.7.10) above. It remains to
construct an embedding plR) = Am, ,R) in the case n = 1. Thisis done as follows.
We define

¢ R FGR)y, t—(F(, 1), Gt 1))
where G(£,1); =, (¢, 1),=1, G, 1) =0 1>3 and F(t,1) =0 and
$s R > FGR)er, s — (F(s,2), G(s,2))
where (4(s,2); =1, G(s,2)y =3¢, &s,2)i =0, i >3 and F(s,2)=0.
As above these two applications combine to define a continuous map
¢ : PLR) > M, (R).

. 2.8.  Proposition. The underlying vector bundle of the universal family Z* over
A, oR) s nontrivial iff m > 2.

Proof. The only if part is trivial as there is only one nice selection if m = 1.

There are several ways to prove the if part. One is by algebraic geometry as follows :
Mm, »(C) embeds naturally into the Grassmann variety of complex n-planes in complexe
(n+1)m spase which in turn is a closed subvariety of projective space of (complex) dimension
n+1 . -

N with N+1 equal to the binomial coeffieient <(—ni'—b—)—”}—) Cf. (Hazewinkel and Kalman
1975a) for details. The underlying bundle E* of Z* is the restriction to Mm, o(G) of the
canonical bundle over the Grassmann variety. The n-th exterior product of this bundle is
the restriction of the canonical line bundle & over PN(C) which is very ample. Now the
map ¢ defined above is defined by polynomials and defines an a,lgebraic geometric embedding
PYC) 'i M (C) S Grassma.nn—]) PY¥(G). It follows that (joieg) é; is very ample and
its real restriction to PL(C) is then also nontrivial. I.c., the n-th exterior product of @LE®

is nontrivial which proves that E* is nontrivial.



366 MICHIEL HAZEWINKEL

Alternatively one simply calculates the bundle K¢!E" explicitly. This line bundle
over IPY(R) is trivial over the pieces {(¢:s)[s = O} CPYR) and {(t,s) t 0} C PYR)
by (2.7.12) And if #» > 2 these trivial pieces are identified on the intersection {(t, s)|¢ # 0,
s # 0} by means of multiplication with the number

t-1s 0

det 0 1 =t

........................

Similarly if » = 1 these pieces are also identified by multiplication with the number ¢-1s.

This defines a nontrivial bundle over P*(R), which proves that the bundle E* was
also nontrivial.

3. The Gramm-Schmidt orthonormalization process and canonical forms.
In this section we discuss the equivalence given by the Gramm-Schmidt orthonormalization
process between the existence of GL,(R) canonical forms for all pairs and triples of matrices
and the existence of 0,(R) canonical forms for orthonormal pairs and triples of matrices.

3.1. The Space & GR)%™, F & MR)er, co and FG AR,

We define & & (R)%™ as the space of all pairs of matrices (F, @) such that the rows
of R(¥, G) are a set of orthonormal vectors (in R#+m),

Note that & & (R)%™" C F & R)or

We define & & A(R) as the space of all triples of real matrices F, @, H of sizes
nXN, WX, PXn, and F & K (Rers co is the subspace of all completely observable and
completely reachable triples. Te. (F, @, H)e F & K (Rer, co iff the matrices R(F, G)
= (G FG ... Fn@) and Q(F, H) = (HTFTHT ... (FT)sHT) are both of rank n. Here HT, FT
are the transposes of H, F. Cf. (Kalman 1969) for more details about these notions. Finally
we define & & HR)I as the subspace of F & AMR)er, co consisting of the triples of
madtrices in & & MR )er, co sSuch, that moreover the rows of R(F, @) are orthnormal.

3.2. Lewmma. Let 4, B be two nxr matrices of rank n, where r > n. Then we have

(3) If the rows of A are orthonormal and U e O,(R) is an orthagonal nXn mairiz,
then the rows of UA are orthonarmal,

(1) If the rows of A and the rows of B are both orthonormal and if the rows of A and the
rows of B span the same subspace of R, then there is an orthonormal nXmn mabriz
UeO,R) such that B = UA.

Procf. Easy.
3.3. Canonical Forms. The group GL,(R) acts on & & (R)er and F & HR)er, co
respectively as follows :

(F, @p = (SFS-, 8G), (F, G, H)S — (SFS-L, 8G, HS-), S ¢ GL,(R) 33.1)
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Two pairs (resp. triples) of matrices (¥, G) and (F’, G") (resp. (F, G, H) and (F', &, H')) are
equivalent under G.L,(R) if there is an SeGL,R) such that (F, Q) = (F', ) (resp.
(F,G, H)S = (F',G', H')). We now define a canonical form for the action of GL,(R) on
&F & (R);r a3 a continuous map

; Y FL&R)r > F GR) - (83.2)
such that for every two pairs (F, G), (F", G') ¢ & & (R)sr we have
(F, G) is equivalent under GL,(R) to y(F, G) (8.3.3)
and -
(F, G), (F', &) are equivalent, under GL,(R) iff y(F, G) = y(F’, &). (3.34)

A canonical form on & & AHR)er, ¢, under GL,(R) is defined similarly. The group O,(R)
of real orthogonal n X matrices acts on & & (R} and & g H(R)Z% as follows

7,V =(UFU, UQ), (F,G, H)U =(UFU, UG, HUY). (3.3.5)

This follows from lemma 32(1). We now define a canonical form on & & MR)#% under
0.(R) as a continuous map

Y F G MR —» F G HR) (3..6)
such that for every two triples (¥, G, H), (£, G/, H') we have
v(F, G, H) is equivalent under 0,(R) to (F, G, H) (3.3.7)
and
(F, G, H) and (F', ', H') are equivalent under O,(R) iff y(F, @, H) = y(F', G, H'),
(8.3.8)

A canonical form on & & (R)&%° under O,(R) is defined similarly.

3.4. Gramm-Schmidt Orthonormalization. Let (F,G)e¢ F & R)y.- The
matrix R(¥, @) it then of rank n. Applying the Gramm-Schmidt Orthonormalization to
the rows of R(F, G) we find an n X (n-+1)m matrix B’ with orthonormal rows, whose rows
span the samne subspace of Rm+1m ag the rows of R(F,G). It follows that B' = SE(F, G) ..
for a certain unique S e GQL,R). It follows that R’ = R(SFS-, §G). Orthonormalization
is also continuous. It follows that orthonormalization defines continuous (well defined) maps

4 F G R)y > F QR (34.1)
v:F G HRers o> F & J{(R)z',','és (3.4.2) .

Note that u(F, G) and (F, @) and »(F, @, H) and (F, G, H), are cquivalent under GL,R).
The maps u, v take GL,R) equivalent elements into O,(R)equivalent elements. More
precisely we have

3.5. Lemma. Two pairs(F,G), (F', &) in & G Rer (resp. two triples (F, G, H),
(F, &, H") in &F & M(Rer, e0) are equivalent under GL,R) iff the pairs p(F, &), w(F', G)
(resp. the triples v(F, G, H), {(F', &, H')) are equivalent under O,(R).

Proof. This follows from lemma 3.2.
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3.6. Propositien. (i) There exists a canonical form on &F & (R)er under GL,(R) iff .
there exists @ canonical form on & G (R)r™ under 0,(R),

(22) There exists a canonical form on F G HRer; co umle; GL,R) sz there exzst8~
@ canonteal form on F G MR under 0,(R).

" Proof. Lot y:& 8GR > FER) be a GL,R) canonical form. Then
) H L% B
FERGW - F G Rlor — F GR)or > F & RGP -

wheére ¢ is the inclusion, is an 0,(R) canonical form on & & (R)%%0. (Note that two elements
of F&R)FM are 0,(R) equivalent iff they are GL,(R) equivalent; this follows from
lemma 3.2). Inversely if v : & QR)Z™ - & & (R) is an 0,(R) canonicel form then yo #
is a GL,(R) canonical form on & & (R)sy. Part (i) of the lemma is proved in the same way.

4. On the nonexistence of canonical forms. We¢ have now enough material
to prove the nonexistence of GQL,(R) canonical forms on & & MR )er, co for those dimensions
(m, n, p) for which p» > 2n, m > 2. The first step is the following theorem.

4.1. TeEOREM. There exists @ GL,(R) canonical form on F & (R)er iff the under-
lying” bundle B% of the universal family % is trivial.

Proof.  This is proved exactly as tho algebraiu guometric case in (Hazewinkel and
Kalman 1975b), 6.1.

4.2. Cororrary. There does not exist a GL,(R) canonical form on & & (R)er if '
m 2> 2, this follows from 4.1 together with 2.8.

43. An O,(R)—invariant embedding
" For each (F, Q)¢ F & Ry lot B(F,G) be the matrix .
BF, Q) =@ FG ... F @)

For all m, n we can now define an 0,(R) invariant embedding

, P F R — F G MR)AR (4.3.1)
as follows _
: (F, Q) - (F, @, R(F, ))T). (4.3.2)

This i O,(R) invariant because UT = U-1 for UeO,R) and E((F, HV) = UR(F, &
The triple (¥, G, R(F, A7) is completely observable because E(F, AT has rank 7.
4.4. TapormM. There does not exist a continuous canonical form wunder GL,(R) foir

completely reachable and completely observable linear dynamwal systems of dimension n with m
impacis and p outputs in the cases

(%) m>2 P> 2n
(%) 22> 2,m>2n
(#8) p, m > n.
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Proof. (i) We have 0,(R) invariant embeddings
F Gy, (R)TH - F G Sy, sn(R)I — F & A, 1, pR)ZH (44.1)

where the first embedding is the one defined in 4.3 above and the second one consists of adding
some zero columns to G (if m > 2) and some zero rows to H (if p > 2n). Now suppose
there existed a GL,(R) canonical form for & @ Amsn,nR)ers co then there would be an 0,(R)
canonical form on & & Himwmp(R)%% by 3.6 and by the 0,(R) invariant inclusions (4.4.1)
above an O,(R) canonical form on 7 .G,,,(R)Z%° which in turn would imply the existence
of an GL,(R) canonical form on & &,, ,(R)r (again by 3.6), which contradicts 4.2.

Part (i) of the theorem iy proved by dualizing this whole paper. ILe., instead of
completely reachable pairs (F, &) one studies completely observable pairs (F, H) etc. etc.

Part (i) of the theorem uses : 1°) the nonexisoence of a GL,(R) canonical form on
Awm, the space of all nXm matrices of rank # under the action 45 = 84, if m > n, and
2°) the 0,(R)-invariant embedding

AL > F @ AR
A4 (0,4, A7)

45. As was already stated in the introduction theorem 4.4 holds in greater genera-
lity : there exists a continuous GL,(R) canonical form for completely observable and com-
plotely reachable linear dynamical systems of dimension n with in inputs and p outputs if
and only if m =1 or p =1. Cf. Hazewinkel.

Of course the nonexistence of a GIL,(R) canonical form on & & Am,noR)ersco
implies & fortiori the nonexistence of such a form on the larger spaces & & Ao m» 2(R),
F G HR)e and & & H(R)co.

References

Grothendieck, A. and Dieudonné, J. (1961) : Elements de la Géometrie Algébrique Ch. II Publ..
Math. J.H.E.S., 8.
Hazewinkel, M. and Kalman, R. E. (1975a) : Moduli and Canonical Forms for Linear Dynamical
Systems. Report-7504, Econometric Inst., Erasmus Univ. Rotterdam.

Hazewinkel, M. and Kalman, R. E. (1075b) : On Invariants, Canonical Forms and Moduli for Linear,
Constant, Finite Dimensional Dynamical Systems. Proe. CNR-CISM Conference on Algebraic
System Theory, Udine. (To appear in Lecture Notes in Math., Springer).

Hazewinkel M. (In preparation).

Husemoller, D. (1966) : Theory of Fibre Bundles, McGraw-Hill.

Kalman, R. E. (1969) : Controllability and Observability. In: CIME Symposium 1968 on Con-
trollability and Observability, Edizione Cremonese, Roma,

Erasmus University Rotterdam
Econometric Institute, Dept. Math.
50, Burg. Oudlaan, Rotterdam,
The Netherlands,



