
ERASMUS UNIVERSITY ROTTERDAM,
P.O. BOX 1738, ROTTERDAM, THE NETHERLANDS
ON NORM MAPS FOR ONE DIMENSIONAL
FORMAL GROUPS III

MICHEIL HAZEWINKEL

1. Introduction

The main purpose of the present note is to give a more elementary and
conceptual and less computational proof of the main theorem of [4]. At the
same time we generalize the theorem.

Let K be a local field, L/K a finite galois extension. Let A be the ring of
integers of K and $F(X, Y)$ a (commutative one dimensional) formal group
(law) over A, i.e. $F(X, Y)$ is a formal power series in two variables over A
of the form $F(X, Y) = X + Y + \sum a_{ij} X^i Y^j$ such that $a_{ij} = a_{ji}$ and
$F(F(X, Y), Z) = F(X, F(Y, Z))$. Let m_L be the maximal ideal of $A(L)$, the
ring of integers of L. The group recipe $F(X, Y)$ can be used to define a new
abelian group structure on the set m_L, viz. $x + \rho y = F(x, y)$ where $x, y \in m_L$.
This group is denoted $F(L)$. There is a natural norm map

(1.1.) $F - \text{Norm}_{L/K} : F(L) \to F(K), \quad x \mapsto \sigma_1 x + \rho \sigma_2 x + \rho + \cdots + \rho \sigma_n x$

where $\{\sigma_1, \cdots, \sigma_n\} = \text{Gal} (L/K)$. The general problem is to describe the
image (or the cokernel) of the maps $F - \text{Norm}_{L/K}$. For example if F is the
multiplicative group $\hat{G}_m(X, Y) = X + Y + XY$, then $F - \text{Norm}$ becomes the
ordinary norm map

(1.2) $N_{L/K} : U^1(L) \to U^1(K)$

where $U^1(L) = \{x \in U(L) = A(L)^* \mid x \equiv 1 \mod m_L\}$. The study of Coker
$N_{L/K}$ is what a not inconsiderable part of local class field theory is about.

Let K_n/K be an infinite galois extension of Galois group isomorphic to \mathbb{Z}_p,
the p-adic integers. Such an extension is called a \mathbb{Z}_p-extension or a Γ-extension.
Let K_n be the invariant field of the closed subgroup $p^n \mathbb{Z}_p$, $n = 0, 1, 2, \cdots$,
where we write $K_0 = K$.

The abelian group $F(K)$ carries a natural filtration $F(K) = F^1(K) \supset F^2(K) \supset \cdots \supset F^n(K) \supset \cdots$ where $F^n(K) = \{x \in F(K) \mid x \in m_k^n\}$.

We write $F - \text{Norm}_{n/K}$ for $F - \text{Norm}_{n_0/K}$. The main theorem of this paper
is now.

1.3. Theorem. Let K_n/K be a totally ramified \mathbb{Z}_p-extension of an absolutely
unramified mixed characteristic local field K with perfect residue field k of characte-
ristic $p > 2$. Let $F(X, Y)$ be a formal group over A of height $h \geq 2$. Then we

Received December 9, 1975. Revision received October 7, 1976.

305
have

\begin{equation}
(1.3.1) \quad \text{Im} (F - \text{Norm}_{\alpha_n}) = F^{\alpha_n}(K)
\end{equation}

with \(\alpha_n \) given by \(\alpha_n = n - [h^{-1}(n - 1)] \), where \([r]\) for \(r \in \mathbb{R} \) denotes the integral part of \(r \), i.e. \([r]\) is the smallest integer \(\leq r \).

For a definition of the height of a formal group (law) \(F(X, Y) \) cf. [1], cf. also 2.1. below.

If \(h = \infty \), the theorem holds with \(\alpha_n = n \) which fits naturally. If \(h = 1 \) then the statement of the theorem holds if \(k \) is algebraically closed but is false if \(k \) is finite. Indeed, taking \(F(X, Y) = G_m(X, Y) = X + Y + XY \) and taking \(K_\alpha/K \) to be the cyclotomic \(\mathbb{Z}_p \)-extension the statement of the theorem says that \(N_{\eta/0} : U^1(K_\alpha) \to U^1(K) \) is surjective which is false by local field theory which says that \(\text{Coker}(N_{\eta/0}) \) is isomorphic to \(\text{Gal}(K_\alpha/K) \) in this case.

The main theorem of [4] dealt with the case: \(K \) local field of characteristic zero with finite residue field and \(K_{\alpha}/K \) the cyclotomic \(\mathbb{Z}_p \)-extension.

As isomorphic formal group laws have the same height the result above is really one about isomorphism classes of formal group laws i.e. about formal groups. For that matter the whole problem of studying \(F\text{-Norm}_{L/K} \) is a problem about formal groups rather than formal group laws as an isomorphism \(\beta(X) : F(X, Y) \to G(X, Y) \) of formal group laws over \(A \) induces filtration preserving isomorphisms \(F(L) \to G(L) \) compatible with norm maps.

Let \(k = A/m_k \). By reducing the coefficients of the formal group law \(F(X, Y) \) modulo \(m_k \) we obtain a formal group law over \(k \), denoted \(F^*(X, Y) \). It is reasonable to expect (as suggested to me by B. Mazur) that if \(K \) is of mixed characteristic and absolutely unramified, i.e. \(m_k = pA(K) \), then \(\text{Coker}(F\text{-Norm}_{L/K}) \) depends (up to isomorphism) only on the isomorphism class of \(F^*(X, Y) \) and \(L/K \).

The result above gives some positive evidence for this. Indeed, provided one restricts attention to extensions \(L/K \) of the form \(K_{\alpha}/K \) where \(K_{\alpha} \) is a finite level of some \(\mathbb{Z}_p \)-extension, the result 1.3 above says that \(\text{Coker}(F\text{-Norm}_{L/K}) \) depends only on the height of \(F^*(X, Y) \) and \(L/K \).

As to the motivation why one would want to study cokernels of norm maps for formal groups: basically the goal is to look for a class field type theory for other algebraic groups than just \(G_m \), the multiplicative group. In [7] §4, such a theory is developed for \(A \) an abelian variety with non degenerate reduction and invertible Hasse matrix, and the results obtained play an important role in the remainder of [7]. The development of the theory goes via \(\hat{A} \) the formal group obtained by completing \(A \) along the identity and relies heavily (as does local class field theory) on the fact that \(\hat{A}(L) \xrightarrow{\text{norm}} \hat{A}(K) \) is surjective if \(L/K \) is an extension of a local field \(K \) with algebraically closed residue field. One consequence of theorem 1.3. is that this fails if \(h(\hat{E}) \geq 2 \), i.e. it fails for elliptic curves in the supersingular case (cf. also [7], §1, d1).

In local class field theory, in the theory developed in [7] and also in [10] the \(\mathbb{Z}_p \)-extensions play an especially distinguished role which may be seen as motivation for paying particular attention to \(\mathbb{Z}_p \)-extensions.
Of course, from the point of a class field theory associated to an algebraic
group in general, a weak consequence of theorem 1.3 is an analogue of that
well known theorem of class field theory which says that the subgroup of uni-
versal norms is trivial. We have: if height \((F(X, Y)) \geq 2 \) then

\[
\bigcap_{L/K} F^{-}\text{Norm}_{L/K}(F(L)) = \{0\}.
\]

All formal groups in this paper will be commutative and one dimensional.
The notation introduced above will remain in force throughout this paper. In
addition we use \(A \) for the ring of integers of \(K \), \(v \) for the normalized exponential
valuation of \(K \), \(\pi \) for a uniformizing element of \(K \), i.e. \(v_0(\pi) = 1 \) and \(\text{Tr}_{n/0} \)
is the trace map from \(K \) to \(K_0 \). We write \(\pi \) and \(v \) instead of \(\pi_0 \) and \(v_0 \).

If \(K \) is absolutely unramified one can of course take \(\pi = p \). (Cf., however,
4.6 below). Finally \(\mathbb{N} = \{1, 2, 3, \cdots \} \) denotes the natural numbers, \(\mathbb{Q} \) the
rational numbers, \(\mathbb{Q}_p \) the \(p \)-adic numbers, and \(\mathbb{R} \) the real numbers.

2. Prerequisites from formal group theory

In this section we discuss the material form formal group theory needed
for the proof of theorem 1.3.

2.1. Generalities. Let \(A \) be the ring of integers of an absolutely unramified
mixed characteristic local field \(K \) with residue field \(k \).

Let \(F(X, Y) \) be a formal group law over \(A \) and let \(p \) be the characteristic
of \(k \). Inductively one defines for all \(n \in \mathbb{N} = \{1, 2, 3, \cdots \} \), \([n]_r(X) = F(X, [n-1]_r(X)) \), \([1]_r(X) = X \). Now consider \([p]_r(X) \). If \([p]_r(X) \equiv 0 \mod m_K \) then \(F(X, Y) \) is said to be of infinite height. If \([p]_r(X) \not\equiv 0 \mod m_K \) then the first power of \(X \) whose coefficient is not \(0 \mod m_K \) is necessarily
of the form \(X^h \) for some \(h \in \mathbb{N} \). Then \(F(X, Y) \) is said to have height \(h \).

Two formal groups \(F(X, Y), G(X, Y) \) over \(A \) are said to be strictly isomorphic
if there exists a power series \(\beta(X) = X + c_2X^2 + \cdots c_i \in A \) such that
\(\beta(F(X, Y)) = G(\beta(X), \beta(Y)) \). Note that the power series \(\beta(X) \) induces iso-
morphisms \(F(L) \to G(L) \) which preserve the filtration and which are compatible
with the norm maps.

2.2. Honda's method of constructing formal group laws over rings of integers
of absolutely unramified local fields. Now let \(K \) be absolutely unramified. Choose
elements \(t_1, t_2, \cdots \in A \) and let \(f_i(X) \) be the power series

\[
f_i(X) = \sum_{i=0}^{n} a_iX^{\sigma^i}
\]

where \(\sigma \) is the Frobenius endomorphism of \(K \) (characterized by \(\sigma(a) = a^p \mod m_K \) for all \(a \in A \)).

Now let

\[
f_i(X, Y) = f_i^{-1}(f_i(X) + f_i(Y))
\]
where \(f_i^{-1}(X) \) is the inverse power series of \(f_i(X) \) i.e. \(f_i^{-1}(f_i(X)) = X \). Then according to [6], theorem 4, and proposition 3.5, one has

2.3. **Proposition.** Every formal group \(F(X, Y) \) over \(A \) is strictly isomorphic to a formal group of the form \(F_i(X, Y) \). If height \((F(X, Y)) = \infty \) then \(t_i \in m_K = pA \) for all \(i \) and if height \((F(X, Y)) = h \in \mathbb{N} \) then \(t_1, \cdots, t_{h-1} \in m_K = pA \) and \(t_h \) is a unit of \(A \).

We remark that the hypothesis "\(K \) is absolutely unramified" is necessary for this proposition.

2.4. Let \(A, K \) be as before and let

\[t_1, \cdots, t_{h-1} \in m_K, t_h \in U(K), t_{h+1}, t_{h+2}, \cdots \in A \]

and let \(f_i(X) \) be as in (2.2.1.). We then have

Lemma.

(i) \(v(a_n) = -r \) for all \(r \in \mathbb{N} \cup \{0\} \)

(ii) \(v(a_n) \geq -r + 1 \) for all \((r - 1)h < n < rh, r, n \in \mathbb{N} \).

Proof. By induction. For \(n = 0 \) we have \(a_0 = 1 \) and \(v(a_0) = 0 \). Now let \(0 < n < h \). We have

\[a_n = p^{-1}a_{n-1}t_i^{s-1} + \cdots + p^{-1}a_{n-1}t_i^{s} + p^{-1}t_n \]

and assuming with induction that \(v(a_i) \geq 0 \) for \(0 \leq i < n < h \) we find \(v(a_n) \geq i \) as \(v(t_i) \geq 1 \) for \(i \leq h - 1 \). Now take \(n = h \). Then

\[a_h = p^{-1}a_{h-1}t_i^{s-1} + \cdots + p^{-1}a_{h-1}t_i^{s} + p^{-1}t_h \]

All terms in this expression have valuation \(\geq 0 \) except \(p^{-1}t_h \) which has valuation \(-1 \). Thus \(v(a_h) = -1 \). Now let \(n = rh + s, 1 \leq s \leq h - 1, r \geq 1 \). Then

\[a_n = p^{-1}a_{n-1}t_i^{s-1} + \cdots + p^{-1}a_{n-1}t_i^{s} + p^{-1}a_{n-1}t_i^{s+1} + \cdots + p^{-1}a_{n-1}t_{i+1}^{s+1} + \cdots + p^{-1}a_{n-1}t_{i+r-1}^{s+r-1} + \cdots + p^{-1}a_{n-1}t_{i+r-1}^{s+r-1} + p^{-1} \]

Now by induction \(v(a_{n-i}) \geq -r \) and \(v(t_i) \geq 1 \) for \(i = 1, \cdots, s \) and \(v(a_{n-i}) \); \(-r + 1 \) (and \(v(t_i) \geq 0 \)) for \(j = s + 1, \cdots, n \). So that \(v(a_n) \geq -r \).

Finally let \(n = rh, r \geq 2 \). Then

\[a_n = p^{-1}a_{n-1}t_i^{s-1} + \cdots + p^{-1}a_{n-1}t_{i+1}^{s+1} + \cdots + p^{-1}a_{n-1}t_{h-1}^{s-h} + p^{-1}a_{n-1}t_{h-1}^{s-h} + \cdots + p^{-1}a_{n-1}t_{h-1}^{s-h} + \cdots + p^{-1}a_{n-1}t_{h-1}^{s-h} + \cdots + p^{-1}a_{n-1}t_{h-1}^{s-h} + \cdots + p^{-1}a_{n-1}t_{h-1}^{s-h} + p^{-1} \]

By induction hypothesis we have (using \(v(t_i) \geq 1 \) for \(i = 1, \cdots, h - 1, v(t_h) = v(t_i) \geq 0 \) for \(j > h \)) that \(v(p^{-1}a_{n-i}t_i^{s-r}) \geq -r + 1 \) for \(i = 1, \cdots, h - v(p^{-1}a_{n-i}t_i^{s-r}) = -r, v(p^{-1}a_{n-i}t_i^{s-r}) \geq -r + 1 \) for \(j \geq h + 1 \). Hence \(v(a_n) = -r \) if \(n = rh \).

2.5. **Lemma.** Let \(A, K \) be as before \(t_i \in pA = m_K \) for all \(i \). Then \(a_i \in A \) for all \(i \in \mathbb{N} \).

Proof. This follows from 2.2.1. because \(p^{-1}t_i \in A \) for all \(i \) in this case.
3. Prerequisites from local class field theory

In this section we discuss the information we need from local field theory and local class field theory.

3.1. The integer \(m(L/K) \). Let \(L/K \) be a totally ramified galois extension of prime degree \(p = \text{char} (k) \). Then there is a natural number \(m(L/K) \) such that

\[
(3.1.1) \quad Tr_{L/K}(m_L) = m_K
\]

where \(s \) depends on \(r \) according to the formula.

\[
(3.1.2) \quad s = \left[\frac{(m(L/K) + 1)(p - 1) + r}{p} \right]
\]

The number \(m(L/K) \) is uniquely determined by (3.1.1), (3.1.2). Cf. [8], Ch V, §3 or [2] section 2.6.

3.2. Upper ramification groups. Let \(L/K \) be a finite galois extension. Then one can define upper ramification subgroups \(\text{Gal}(L/K)^i \subset \text{Gal}(L/K), i = -1, 0, 1, 2, \ldots \). For a definition, cf [8], Ch IV. These upper ramification subgroups behave nicely with respect to quotients. If \(M/K \) is a subgalois extension of \(L/K \) then \(\text{Gal}(M/K)^i \) is equal to the image of \(\text{Gal}(L/K)^i \) in \(\text{Gal}(M/K) \) under the natural projection \(\text{Gal}(L/K) \to \text{Gal}(M/K) \).

3.3. Proposition. Let \(K_{\omega} / K \) be a totally ramified \(\mathbb{Z}_p \)-extension of a mixed characteristic totally unramified local field \(K \) of residue characteristic \(p \). Then the upper ramification groups are equal to

\[
(3.3.1) \quad \text{Gal}(K_{\omega}/K)^i = p^{i-1} \mathbb{Z}_p \subset \mathbb{Z}_p = \text{Gal}(K_{\omega}/K), \quad i = 1, 2, \ldots
\]

Proof. Let \(K_{\omega} \) be the maximal abelian extension of \(K \). Because \(K_{\omega}/K \) is totally ramified and because \(\text{Gal}(K_{\omega}/K) \) is a pro-\(p \)-group we have that \(\text{Gal}(K_{\omega}/K) = \text{Gal}(K_{\omega}/K)^0 = \text{Gal}(K_{\omega}/K)^1 \). We have therefore a natural epimorphism

\[
(3.3.2) \quad \phi : \text{Gal}(K_{\omega}/K)^i \to \text{Gal}(K_{\omega}/K) = \mathbb{Z}_p
\]

Now by local class field theory \(\text{Gal}(K_{\omega}/K)^i = p(U_{K^i}) \) where \(U_{K^i} \) is the pro-algebraic group associated (via the Greenberg construction) to the group of 1-units of \(A \) and where \(p(U_{K^i}) \) is the maximal constant quotient of \(\pi_1(U_{K^i}) \) the first homotopy group of \(U_{K^i} \). Furthermore \(\text{Gal}(K_{\omega}/K)^i = \text{image of } p(U_{K^i}) \text{ in } p(U_{K^i}) \text{ under the map induced by the inclusion } U_{K^i} \to U_{K^i} \). Cf. [2] Ch. II for all this. Cf. also [9] in the case that \(k \) is algebraically closed. Now, because \(K \) is absolutely unramified and \(p > 2 \) the map \(p^i : U_{K} \to U_{K} \) (= raising to the power \(p^i \)) induces an isomorphism \(U_{K} \cong U_{K}^{i+1} \). Cf. [9] n° 1.7, Cor 1 or [2] section 2.3, cf. also [3] lemma 5.7. It follows that the image of \(p^i : p(U_{K^i}) \to p(U_{K^i}) \) is equal to the image of \(p(U_{K^{i+1}}) \) in \(p(U_{K^i}) \). We therefore have

\[
\text{Gal}(K_{\omega}/K)^i = \phi(\text{Gal}(K_{\omega}/K)^i) = \phi(\text{Im } p(U_{K^i})) \to p(U_{K^i})
\]

\[
= \phi(p^{i-1} p(U_{K^i})) = p^{i-1} \phi(p(U_{K^i})) = p^{i-1} \mathbb{Z}_p
\]
Remarks.
1. If \(k \) is finite one has \(p(U_\chi') = U_\chi(K) \) canonically, cf. [3] no. 7.4 or [2] no. 9.2 which somewhat simplifies the proof in this case.
2. The proof above is the only place where the hypothesis \(p > 2 \) is used.

3.4. Corollary. Let \(K_m/K \) be as above in 3.3. Let \(m_n = m(K_n/K_{n-1}) \), \(n = 1, 2, \ldots \) then we have that \(m_n = 1 + p + \cdots + p^{n-1} \).

Proof. This follows from the relation \(\text{Gal}(L/K)^{\psi(1)} = \text{Gal}(L/K)_i \), where \(\psi \) is the Herbrand \(\psi \)-function, and the definition of the \(\text{Gal}(L/K)_i \). Cf. [8], Ch. IV, Ch. V.

Finally we need one not difficult result from local field theory, viz.

3.5. Trace Lemma ([5] Proposition 4.1). Let \(L/K \) be a totally ramified galois extension of degree \(p = \text{char } (k) \); let

\[
m = m(L/K) \quad \text{and} \quad r = [p^{-1}((m + 1)(p - 1) + 1)].
\]

Let \(\pi_L \) be a uniformizing element of \(L \) and \(\pi_K = (-1)^{p-1}N_{L/K}(\pi_L) \). Then we have for all \(l \in \mathbb{N} \),

\[
(3.5.1) \quad \text{Tr}_{L/K}(\pi_L^{ip}) \equiv p\pi_K^l \mod \pi_K^{2r+1}.
\]

4. Proof of Theorem 1.3

4.1. We have now all we need to prove theorem 1.3. Because of proposition 2.3 we can assume that \(F(X, Y) \) is a formal group (law) of the type \(F_i(X, Y) = f_i^{-1}(f_i(X) + f_i(Y)) \) where \(f_i(X) \) is as in 2.2.1. Now because \(K \) is absolutely unramified we have by lemmas 2.4 and 2.5 that \(a, x^{p^i} \in \pi A \) for all \(x \in \pi A \) and that the series \(\sum a, x^{p^i} \) converges in \(\pi A \).

\(\text{(NB the series} \sum a, x^{p^i} \text{is also convergent for} x \in \pi A, \text{but the values of these series will in general not be in} \pi A) \). It follows that

\[
(4.1.1) \quad f_i : F_i(K) \to \pi A, \quad x \mapsto f_i(x)
\]

is an isomorphism of \(F_i(K) \) with (the additive group) \(\pi A \), which takes \(F_i^{\ast}(K) \) isomorphically onto \(\pi^{\ast} A \).

Because \(F_i(X, Y) = f_i^{-1}(f_i(X) + f_i(Y)) \) we have a commutative diagram

\[
\begin{array}{ccc}
F_i(K_n) & \xrightarrow{f_i} & K_n \\
\downarrow F_i^{\ast}\text{Norm}_{n/0} & & \downarrow \text{Tr}_{n/0} \\
F_i(K) & \sim & \pi A \subset K \\
\downarrow f_i & & \\
\end{array}
\]

4.2. The functions \(\lambda_{n/0}(t) \). For each \(n \in \mathbb{N} \) define the function \(\lambda_{n/0} \) by

\[
(4.2.1) \quad \lambda_{n/0}(t) = [p^{-1}((m_n + 1)(p - 1) + t)]
\]
where \(m_n = m(K_n/K_{n-1}) = 1 + p + \cdots + p^{n-1} \). Now define \(\lambda_{n/0} \) inductively by

\[
\lambda_{n/0}(t) = \lambda_{n-1/0}(\lambda_{n/n-1}(t))
\]

It is then clear from 3.1 that

\[
\lambda_{n/0}(t) = \left(p^{n-t} + n + 1 - p^n - p^{n-1} \right)
\]

Substituting \(a_n = (p-1)(m_n+1) = p^n-1+p-1 \) one finds that

so that

\[
\lambda_{n/0}(t) = n \quad \text{for} \quad 1 \leq t \leq (p-1)^{-1}(p^n-1)
\]

\[
\lambda_{n/0}(t) = 1 + t + n \quad \text{if} \quad \begin{cases} t \geq 1 + lp^n + (p-1)^{-1}(p^n-1), \\ t \leq (l+1)p^n + (p-1)^{-1}(p^n-1) \end{cases}
\]

4.3. Proof that \(\text{Im} \ (F\text{-Norm}_{n/0}) \subset F^{*n}(K) \) holds in the case \(h = \infty \). Let \(h = \infty \). From now on we write \(F \) for \(F_i \). Because of 4.1 it suffices to prove that \(\text{Tr}_{n/0}(f_i(x)) \subset \pi^*A \) for all \(x \in \pi_nA_n \). According to lemma 2.5 we have that \(a_i \in A \) for \(i = 1, 2, \ldots \) in the case \(h = \infty \). Hence by (4.2.3) and (4.2.4) \(\text{Tr}_{n/0}(a_i x^{s_i}) \subset \pi^*A \) for all \(i = 1, 2, \ldots \). One easily checks (using (4.2.3) and (4.2.4) again) that the series \(\sum_i \text{Tr}_{n/0}(a_i x^{s_i}) \) converges. It follows that \(\text{Tr}_{n/0}(f_i(x)) \subset \pi^*A \) for all \(x \in \pi_nA_n \).

4.4. Proof that \(\text{Im} \ (F\text{-Norm}_{n/0}) \supset F^{*n}(K) \) holds in the case \(h = \infty \). To prove this we have to show that \(\pi^*A \subset \text{Im} \ (\text{Tr}_{n/0} \circ f_i) \). Let \(t \in \mathbb{N} \) be such that \(\lambda_{n/0}(t+1) > \lambda_{n/0}(t) \). It follows from (4.2.3) that then

\[
\nu(\text{Tr}_{n/0}(\pi_n^{s_i})) = \lambda_{n/0}(t)
\]

For each \(l = 0, 1, 2, \ldots \) let \(s_l = (p-1)^{-1}(p^n-1) + lp^n \). Then we have using (4.4.1), (4.2.3) and (4.2.4)

\[
\text{Tr}_{n/0}(f_i(y \pi_n^{s_i})) = \text{Tr}_{n/0}(y \pi_n^{s_i}) = y \text{Tr}_{n/0}(\pi_n^{s_i}) \mod \pi^{s_i+1}
\]

Using this and (4.4.1) we see that the maps

\[
\text{Tr}_{n/0} \circ f_i : F^{s_i}(K_n) \rightarrow \pi^{s_i+1}A/\pi^{s_i+1}A
\]

are surjective for all \(l = 0, 1, 2, \ldots \). Because the groups \(F(K_n) \) and \(\pi^*A \) are complete and Hausdorff it follows that

\[
\text{Tr}_{n/0} \circ f_i : F(K_n) \rightarrow \pi^*A
\]

4.5. Proof that \(\text{Im} (F-\text{Norm}_{n/0}) \subset F^\ast (K) \) holds in case \(h < \infty \). Now let \(2 \leq h < \infty \). Because of 4.1 it suffices to prove that

\[
(4.5.1) \quad \text{Tr}_{n/0}(f, (x)) \subset \pi^a A, \quad x \in \pi_n A_n
\]

We have that \(\alpha_n = n - [h^{-1}(n-1)] \), and that

\[
(4.5.2) \quad v(\text{Tr}_{n/0}(a, x^n)) \geq \lambda_{n/0}(p^{i}v_n(x)) + v(a_i)
\]

Write \(n = lh + r \), with \(0 \leq r \leq h \). Then \(\alpha_n = n - l \). If \(i < n \) then \(v(a_i) \geq -l \) by lemma 2.4 and \(\lambda_{n/0}(p^{i}v_n(x)) \geq n \). Hence

\[
(4.5.3) \quad v(\text{Tr}_{n/0}(a, x^n)) \geq \alpha_n \quad \text{for} \quad i < n
\]

If \(i = n \), then \(\lambda_{n/0}(p^{i}v_n(x)) \geq n + 1 \) by (4.2.4) and \(v(a_i) \geq -l - 1 \) so that also

\[
(4.5.4) \quad v(\text{Tr}_{n/0}(a, x^n)) \geq \alpha_n
\]

Finally if \(i > n \), then \(p^i \geq (p - 1)^{-1}(p^n - 1) + (p^{i-n} - 1)p^n + 1 \) and \(v(a_i) \geq -l - 1 - (i - n) \), hence

\[
(4.5.5) \quad v(\text{Tr}_{n/0}(a, x^n)) \geq \alpha_n \quad \text{for} \quad i > n
\]

because \(\lambda_{n/0}(p^{i}v_n(x)) \geq \lambda_{n/0}(p^{i}) \geq n + p^{i-n} \) and \(p^{i-n} \geq (i - n) + 1 \) if \(i > n \)

The series \(\sum \text{Tr}_{n/0}(a_i x^{n_i}) \) converges. The inclusion (4.5.1) now follows from (4.5.3)-(4.5.5).

4.6. Proof that \(F^\ast (K) \subset \text{Im} (F-\text{Norm}_{n/0}) \) holds in case \(h < \infty \). Choose uniformizing elements \(\pi_1 \in A_1 \) such that \(N_{1/1-1}(\pi_1) = (-1)^{s-1} \pi_1^{-1} \) for \(l = 1, \ldots, n \).

Let \(n = lh + r \), \(1 \leq r \leq h \). For each \(s \) such that \(n - l \leq s < n \) let

\[
(4.6.1) \quad t_s = (p - 1)^{-1}(p^{a} - (n-s)^{-1} - 1)
\]

We try to calculate \(\text{Tr}_{n/0}(a, (\pi_n^{s-1})^p) \). To this end we first prove that for \(a \leq r < n \).

\[
(4.6.2) \quad \text{Tr}_{n/0}(a, (\pi_n^{s-1})^p) = \pi_{n-a}^{p^{s-a}} p^a \mod p^{a+1} \pi_{n-a} p^{s-a+1}^{-1}
\]

This is done by induction. The case \(a = 1 \) is the trace lemma 3.5 above. Assuming the result for all \(b < a \), we have

\[
(4.6.3) \quad \text{Tr}_{n/0}(a, (\pi_{n-a}^{s-1})^p) = \pi_{n-a}^{p^{s-a+1}} p^{a-1} \mod p^{a+1} \pi_{n-a} p^{s-a+1}^{-1}
\]

It therefore suffices to show that

\[
\lambda_{n-a+1/n-a}(p^{s-a+1} + p^{s-a+1} - 1) \geq (a + 1)p^{s-a} + p^{s-a} - 1
\]

which is easily checked. Cf. (4.2.1). Now write \(j_s = (n - s)h \). Then by (4.6.2)

\[
\text{Tr}_{n/0}(a, (\pi_n^{s-1})^p) = \pi_{n-j_s}^{p^{s-a+1}} p^{a-1} \mod p^{a+1} \pi_{n-j_s} p^{s-a+1}^{-1}
\]

But

\[
\lambda_{n-j_s}(t_s + 1) > \lambda_{n-j_s}(t_s) \quad \text{and} \quad (p^{s-a+1})(j_s + 1) + t_s - 1 > p^{s-a}(j_s + t_s)
\]
It follows that

\[(4.6.4) \quad v(\text{Tr}_{n/0}(\pi_n^{i\cdot p^i})) = j_i + \lambda_{n-i/0}(t_i) = n \]

and as

\[v(a_{i_0}) = v(a_{(n-i)_0}) = -(n - s)\]

by lemma 2.4, we have that

\[(4.6.5) \quad v(\text{Tr}_{n/0}(a_i \pi_n^{i\cdot p^i})) \geq s \quad n - l \leq s < n\]

If \(i < j\), then \(\lambda_{n/0}(\pi_n^{i\cdot p^i}) \geq n\) and \(v(a_i) > -(n - s)\), hence

\[(4.6.6) \quad v(\text{Tr}_{n/0}(a_i \pi_n^{i\cdot p^i})) > s \quad n - l \leq s < n, \quad i < j\]

If \(i = j + 1\), then because \(h \geq 2\) we have that

\[(4.6.7) \quad v(a_i) \geq s - n \quad i = j + 1\]

and because \(p^{i\cdot p^i} \geq (p - 1)^{-1}(p^n - 1) + 1\) we have that

\[(4.6.8) \quad v(\text{Tr}_{n/0}(a_{i+1} \pi_n^{i\cdot p^i})) > s\]

Finally if \(i \geq j + 2\), then because \(h \geq 2\) we have that

\[(4.6.9) \quad v(a_i) \geq s - n - \frac{1}{2}(i - j_i)\]

and

\[(4.6.10) \quad p^{i\cdot p^i} \geq (p - 1)^{-1}(p^n - 1) + \frac{1}{2}(i - j_i)p^n + 1\]

(To see that (4.6.10) holds, use \(j_i < n\)). It follows that

\[(4.6.11) \quad v(\text{Tr}_{n/0}(a_i \pi_n^{i\cdot p^i})) > s \quad \text{for} \quad i \geq j + 2\]

The series \(\sum \text{Tr}_{n/0}(a_i \pi_n^{i\cdot p^i} y^n)\) converges for all \(y \in A\). It then follows from (4.6.5), (4.6.6), (4.6.8) and (4.6.11) that

\[(4.6.12) \quad \text{Tr}_{n/0}(f_i(y \pi_n^{i\cdot p^i})) \equiv y^{i\cdot p^i}b_i \mod \pi^{i\cdot p^i}\]

where \(b_i \in A\) is an element of valuation \(s\). Because \(k\) is perfect it follows that

\[(4.6.13) \quad \text{Tr}_{n/0} \circ f_i : F^i(K_n) \rightarrow \pi^i A/\pi^{i+1} A\]

is surjective for \(\alpha_n = n - l \leq s < n\). Now suppose that \(s \geq n\). For these \(s\) let

\[(4.6.14) \quad t_s = (p - 1)^{-1}(p^n - 1) + (s - n)p^n\]

Then \(\lambda_{n/0}(t_s) = s\) and \(\lambda_{n/0}(t_s + 1) = s + 1\). It follows that

\[(4.6.15) \quad v(\text{Tr}_{n/0}(a_0 \pi_n^{i\cdot p^i})) = s \quad s \geq n\]

Because \(h \geq 2\), \(v(a_i) \geq 0\), hence

\[(4.6.16) \quad v(\text{Tr}_{n/0}(a_1 \pi_n^{n\cdot p^i})) > s \quad s \geq n\]

because \(pt_s \geq t_s + 1\).
Finally for \(i \geq 2 \), we have \(v(a_i) \geq -\frac{1}{2}i \) if \(i \) is even and \(v(a_i) \geq -\frac{1}{2}i + \frac{1}{2} \) if \(i \) is odd and \(p^t_i \geq t_i + (\frac{1}{2}i)p^n + 1 \). Hence
\[
(4.6.17) \quad v(\text{Tr}_{n/0}(a_i, \pi_n^{s^{i+1}})) > s \quad s \geq n, \quad i \geq 2
\]
It follows from (4.6.15)-(4.6.17) that
\[
(4.6.18) \quad \text{Tr}_{n/0}(f_i(y; \pi_n)) = b_iy \mod \pi^{s+1}, \quad s \geq n
\]
where \(b_i \) is an element of \(A \) of valuation \(s \). Hence
\[
(4.6.19) \quad \text{Tr}_{n/0} \circ f_i : F^s(K_n) \to \pi^sA/\pi^{s+1}A
\]
is surjective for \(s \geq n \). Combining (4.6.13), (4.5) and (4.6.19) and using that \(F(K_n) \) and \(\pi^{\infty}A \) are complete Hausdorff filtered (topological) groups we see that the image of \(\text{Tr}_{n/0} \circ f_i \) is equal to \(\pi^{\infty}A \). According to (4.1) this implies that the image of \(F\text{-Norm}_{n/0} \) is equal to \(F^\infty(K) \) which is what we set out to prove.

References

Department of Mathematics, Erasmus University, Rotterdam, The Netherlands