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ON FORMAL GROUPS, NORM MAPS .AND 'll p -EXTENSIONS. 

by Michiel Hazewinkel 

l, INTRODUCTION, 

The main purpose of the present note is to give a more elementary 

and conceptual and less computational proof of the main theorem of 

[4]. At the same time we generalize the theorem.. 

Let K be a local field, L/K a finite galois extension. Let A be 

the ring of integers of A and F(X,Y) a (commutative one dimensional 

formal group (law) over A, i.e. F(X,Y) is a formal power series 
i j_ 

in two variables over A of the form F(X,Y) = X + Y + E a .. X Y 
i,j>1 iJ 

such that a .. = a .. and F(F(X,Y),Z) = F(X,F(Y,Z)). Let mL be 
iJ Ji 

the maximal ideal of A(L), the ring of integers of L. The group 

recipe F(X,Y) can be used to define a new abelian group structure 

on the set lTt.L' viz. x +Fy = F(x,y) where x, y E ~· This group 

is denoted F(L), There is a natural norm map 

(J.J,) 

where {cr 1, .•. ,crn} = Gal(L/K). The general problem is to describe 

the image (or the cokernel) of the maps F-Norni./K' For example if 

F is the multiplicative group G (X,Y) = X + Y + XY, then F-Norm 
m 

becomes the ordinary norm map 

] * where U (L) = {x E U(L) = A(L) l x = 1 mod~}, The study of Coker 

NL/K is what a not inconsiderable part of local class field theory 

is about, 

Let k =A/~, By reducing the coefficients of the formal group 

* F(X,Y) mod 'Tliz we obtain a formal group over k, denoted F (X,Y). A 

general conjecture now states that if K is of mixed characteristic 

and absolutely un;amified i.e. 11'\<. = pA(K), then Coker(F-No~/K) 

depends only on F (X,Y) and L/K. 

Let K /K be an infinite galois extension of Galois group isomorphic 
co 

to 'lL , the p-adic integers. Such an extension is called a 'll -extension 
p p 
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or a r-extension. Let K be the invariant field of the closed subgroup 
n n 

p 7l • 
p 

The abelian group F(K) carries a natural filtration F(K) 1 2 
= F (K} :J F (K)::> ••• 

n n n 
::::> F (K) ::::>, •• where F (K) = {x E F (K) Ix E 1".K}. 

We write F-Normn/o for F-No~ /K' The main theorem of this paper is 
n 

1.3. Theorem. 

now. 

Let K /K be a totally ramified Zl -extension of an absolutely unramified 
00 p 

mixed characteristic local field K with perfect residue field k of 

characteristic p > 2. Let F(X)) be a formal group over A of height 

h > 2. Then we have 

(1.3.1) 
a 

n Im(F-Norm I } = F (K) n o 

with an given by an 

entier of r. 

= n-[h ""1 (n-1)], where [r] for r E lR denotes the 

If h 

If h = 
oo then the theorem holds with a = n, which fits naturally. 

n 
then the statement of the theorem hoi'ds if k is algebraically 

closed and is false if k is finite. 

The main theorem of [4] dealt with the case: K local field with finite 

residue field and K /K the cyclotomic Zl -extension. 
00 p 

For a definition of the height of F(X,Y) cf. [I], cf also 2.1 below. 

For some motivation as to why one would want to study cokernels of 

norm maps of formal groups and, more especially, why one is interested 

in this problem in the case of Zl -extensions, cf [7], cf. also [10]. 
p ·, 

All formal groups in this paper will be commutative and one dimensional. 

The notation introduced above will remain in force throughout this paper. 

In addition we use A for the ring of integers of K , v for the n n n 
normalized exponential valuation of K , ~ for a uniformizing element n n 
of K , i. e.~ v (~ ) = 1 and Tr I is the trace map from K to K = K • 

n n n no n o 
FinallyE = {I,2,3, ..• } denotes the natural numbers,~ the rational 

numbers, ~ - the p-adic numbers, and lR the real numbers. 
p 



2. PREREQUISITES FROM FORMAL GROUP THEORY. 

In this section we discuss the material from formal group theory 

needed for the proof of theorem l ;.3. 

2.1. The Formal Group !.v(X,Y). 

3 

Choose a prime number p. Let ~IV], Zl IV] be short for :Q[V 1 , V 2 , •.. ] , 

7l [V 1 ,v2 , .•• ]. We define polynomials ai(V) E:Q[V] by the following 

recursion formula 

(2.1.1) 

Further define 

(2.1.2) 

pa (V) 
n 

n n-k 
1: a -k(V)Vpk 

k=J n 

00 l. 

1: a. (V)Xp 
• l. i=o 

, a (V) = 1 
0 

where f;1 (X) is the inverse power series of fv(X), i.e. f~hvCX)) X. 

Then we have according to [6] that FV(X,Y) is a power series in X,Y 

with its coefficients in 7l [V]. Therefore FV(X,Y) is a formal group 

over Zl [VJ. 

Now let A be the ring of integers of a local field K of residue 

characteristic p (same pas above). Two formal groups F(X,Y), G(X,Y) 

over A are said to be strictly isomorphic over A if there exists 

a power series a(X) = X + c2x2+ •• ,, ci EA such that a(F(X,Y)) = G(a(X),a(Y)) 

Let t 1 , t 2 , ... be a sequence of elements of A. We denote with Ft(X,Y) 

the formal group over A obtained by substituting t. for v., i = J, 2, ... 
l. l. 

in FV(X,Y). Leth be the smallest number n inlN such that t 0 E U(A}, 

the units of A, then his the height of Ft(X,Y), cf [6]. If tn E 11'tK for all n 

then the height of Ft(X,Y) is oo. 

According to [6] we have 

2.2. Proposition. 

Every formal group over the ring of integers A of a local field K of 

residue characteristic p is strictly isomorphic to a formal group of 

the form Ft(X,Y). 

2.3. Let K be an totally unramified mixed characteristic local field of 

residue characteristic p. Let t 1, ... , th-l E 'lltK' th E U(K), 

th+ 1, th+2, ... E A. Let ai E K be the element obtained from ai (V) by 



substituting t for V, n = 1, 2, ... 
n n 

We then have 

Lemma. 

(i) 

(ii) 

v(arh) = -r for all r E JN U :[O}. 

v(a ) > -r+l if (r-1 )h <_ n < rh, r, n E JN. 
n - -

4 

Proof. By induction. For n = 0 we have a = l, and therefore v(a) = O. 
0 0 

Now let D < n <h. By induction we can assume v(as) ~ 0 for s ::._ n-1. 

According to (2.1 .1) we have 

(2.3.1) + •.. + 

Because n <hand because K is absolutely unramified, i.e. v(p) = 1, 

n-1 
-1 p 

we have that v(p t. ) 
l 

> O, as v(t.) > I for 1 
- 1. 

Now let n > h. According to (2.1.1) we have 

(2.3.2) a 
n 

Suppose that 

(2.3.3) 

We have for i = 

n-1 
-I p 

an-1 (p tl )+ • ' • + 

( r-1) h ::._ n < rh, r > 1 

l , ... , h~ 1, that 

< 1 < h. Hence v(a ) > 0. 
n 

(2.3.4) 
n-i 

-1 p 
v(a ·Pt. )>v(a .)-J+p>-r+2 

n-1 i - n-1 

by induction. For i h we have 

(2.3.5) v(a h) - 1 n-

And for i = h+l, .•. , n we have 

(2.3.5) 
n-1 {-r+l i. f (r-1 }h < n < rh -I p 

v (a . p t. ) > v (a . ) - J > 
n-i i - n-i - -r+2 if n = (r-l)h 

The lemma now follows by induction from (2.3.2) - (2.3.5). 
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2.4. Lemma. 

Let K be as above in 2.3. Let tJ, t 2 , .. , E ~and let ai EK be the 

element obtained from ai(V) by substituting tn for Vn' n = J, 2, ... 

Then ai EA for all i = 0, 1, 2, 
n-i 

-J p 
Proof. This follows by induction from 2.3.J because p t. E A 

]. 

for all i = I, 2, ..• in this case. 

3. PREREQUISITES FROM LOCAL CLASS FIELD 

THEORY. 

In this section we discuss the information we need from local 

field theory and local class field theory. 

3.1. The Integer m(L/K). 

Let L/K be a totally ramified galois extension of prime degree 

p = char(k). Then there is a natural number m(L/K) such that 

(3.1.1) 

where s is equal to 

(3.1.2) s = [(m(L/K)+l)(p-l)+t] 
p 

The number m(L/K) is uniquely determined by (3.1.1), (3.1.2). 

Cf. [8] , Ch V, §3 or [2] section 2.6. 

3.2. Upper Ramification Groups. 

Let' L/K be a finite galois extension. Then one can define upper 

ramification subgroups Gal(L/K)i c Gal(L/K), i = -1,0,J,2, .... 

For a definition, cf [8], Ch. IV. These upper ramification subgroups 

behave nicely with respect to quotients. If M/K is a subgalois 

extension of L/K then Gal(M/K)i is equal to the image of Gal(L/K)i 

in Gal (M/K) under the natural proj1ection Gal (L/K) -+ Gal (M/K). 

3.3. Proposition. 

Let K /K be a totally ramified 7l -extension of a mixed characteristic 
00 p 

totally unramified local field K of residue characteristic p. Then 

the upper ramification groups are equal to 
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C3.3.I) GalCK /K)i 
00 

i-1 
p 7l c2'Z 

p p 
= Gal(K /K), i = 

00 
J , 2' ... 

Proof. Let Kab be the maximal abelian extension of K. Because K00/K 

is totally ramified and because GalCK /K) is a pro-p-group we have 
00 

that Gal CK /K) = Gal(K /K) 0 = Gal(K /K) 1 • We have therefore a natural 
00 00 00 

epimorphism 

(3.3.2) Gal(K /K) 1 + Gal(K /K) = 7l 
00 00 p 

Now by local class field theory Gal(Kab/K) 1 = @<U~) where U~ is the 

proalgebraic group associated (via the Greenberg construction) to the 

group of I-units of A and where @CU~) is the maximal constant quotient 

of n 1 (U~) the first homotopy group of ui. Furthermore Gal(Kab/K)n = 

image of @CU~) in @Cui) under the map induced by the inclusion 
n 1 UK+ UK. Cf. [2] Ch. II for all this. Cf. also [9] in the case that 

K is algebraically closed. Now, because ~ is totally unramified the 
i . . h i 1 pl. 1 . d . h. map p = raising to t e power p : UK --r UK in uces an isomorp ism 

1 i+l 
UK~ UK . Cf. [9] or [2], [3]. It follows that the image of 

pi: @CU~) +@<ui) is equal to the image of @CU~+l) in @Cui). 

We therefore have 

GalCK /K)i 
00 

Remark. If k is finite one has @CU~) = Ui(K) canonically, which 

somewhat simplifies the proof in this case. 

3.4. Corollary. 

Let K /K be as above in 3.3. Let m = mCK /K 1), n =I, 2, ... 
oo n n n-

n-1 
then we have that m =I+ p + ..• + p 

n 

Proof. This follows from the relation Gal(L/K)~(i) = GalCL/K). 
1., 

where~ is the Herbrand ~-function and the definition of the GalCL/K) .. 
i 

Cf. [8], Ch.IV, Ch. V. 
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Finally we need one not difficult result from local field theory, 

viz. 

3.4. Trace Lemma ([S] Proposition 4.1). 

Let L/K be a totally ramified galois extension of degree p = char(k); 

let m = m(L/K) and r = [p-1 ((m+l)(p-l)+l]. Let TIL be a uniformizing 
p-1 element of Land TIK = (-1) NL/K(TI1 ). Then we have for all~ ElN. 

(3.4.1) 

4. PROOF OF THEOREM 1.3. 

We have now all we need to prove theorem 1.3. Because of proposition 2 

we can assume that F(X,Y) is a formal group of the type Ft(X,Y) for 

certain t 1, t 2 , .•• E A. Let Ka/K be as in theorem 1. 3. 

4.1. Let ft(X) be the power series obtained from fV(X) by substituting 

()() i 
t. for V., i = l, 2, ... I.e. ft(X)= E a.xP , Now because K is 

1 1 . 1 
i=o 

totally unramified we have (because of lelDllla 2,3, 2,4) that 
1 

a.xP E TIA for all x E TIA and that the 
1 

(NB This is not true for x E TI A). It 
n n 

(4.1.1) 

i 
series Eaixp 

follows that 

converges in TIA. 

is an isomorphism of Ft(K) with (the additive group) TIA, which takes 

F~(K) isomorphically into nnA. 

Because Ft(X,Y) = £~ 1 (ft(X) + ft(Y)) we have a commutative diagram 

(4.l.2) 

Ft (K} 

4.2. The Functions A I (t). 
- no 

ft 
---~ 

1 
Tr I n o 

TIA c K 

For each n ElN define the function An/n-lby 
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(4.2.I) A.n/n-1 (t) = [p-J((m +l)(p-l)+t)] 
n 

where mn = m(Kn/Kn-J) 

by 

n-J 
= 1 + p + · .•• + p Now define A. I inductively 

n o 

(4.2.2) 

It is then clear from 3.1 that 

(4.2.3) 
A. I (t) 

Tr I (ntA ) = TI n ° A 
n o n n 

It is not difficult to calculate A. I (t). The result is 
n o 

(4.2.4) A. I (t) = n for n o 
-J n 

I~t~(p-1) (p-,J) 

A. I (t) = I + t + n for n o 
-1 n n -1 n n 

(p-1) . (p -J )+tp +J < t < (p-1) (p -l)+(t+l )p 

I). 

4.3. Proof of Im(F-Norm /o) c F n(K) in the case h = oo, 

Let h = 00 • From now on we write F for Ft. Because of 4.1 it suffices 

to prove that Tr I (ft(x)) c nnA for all x E TI A , According to lemma 2.4 
no n n 

we have that a.EA for i = J,.2, .•. in the case h = 00 • Hence by 
i pi n . 

(4.2.3) and (4.2.4) Tr I (a.x ) E TI A for all 1 =I, 2, .,. One easily 
n o 1 

checks (using (4.2.3) and (4.2.4) again) that the series 
1 

L:Tr I (a.xP 
. n o 1 
1 

x E TI A . 
nn 

n 
converges. It follows that Tr I (f (x)) E TI A for all n o t 

4.4. Proof of Im(F-Norm /o) :::::> F n(K) in the case h = oo. 

n 
To prove this we have to show that ;r A :::> Im(Tr I o f ) . Let t E JN 

n o t 
be such that A. I (t+l) > A. I (t}. It follows from (4.2,3) that then 

n o n o 

(4.4.1) v(Tr I (;rt)) = A. I (t) no n no 

For each i = O, 1, 2, ... let si = 

using (4.4.1), (4.2.3) and (4.2.4) 

-1 n n (p-1) (p -1) + tp • Then we have 
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(4.4.2} 
St 

== y Tr I ( ir ) no n 
n+t+J 

mod 1T 

Using this and (4.4.2) we see that the maps 

are surjective for all t == 0,1,2, ... Because the groups F(K) 
n 

n 
and 1T A are complete and Hausdorff it follows that 

n 
Tr I o ft: F(K ) + ir A n o n 

is surjective. Cf. [4] lemma 3.2 or [8] Ch. V, §1, lemma 2. 
a 

4.5. Proof of Im(F-Norm /o) c F n(K) in case~· 

Now let 2 < h < oo. Because of 4.1 it suffices to prove that 

(4.5.1) 

We have that a == n - [h-1 (n-l)], and that 
n 

l. 
(4.5.2) v(Tr I (a.xp )) > A I (pl.v (x)) + v(a.) 

no l. - no n 1 

Write n = th + r, with 1 < r < h. Then a = n - 2. If i < n then 
- - . n 

l. 
v(a.) > -.Q, by lemma 2.3 and A. I (p v (x)) > n. Hence 

i. n o n -

l. 
(4.5.3) v(Tr I (a.xp )) > a for l. < n 

no 1 - n 

If i = n, then A I (pl.v (x)) > n+l by (4.2.4) and v(a.) > -2-l 
n o n 1 

so that also 

(4.5.4) 
n 

v(Tr I (a xp ) > a 
no n - n 

i ( )-1( n ) (pi-n_l)pn + 1 Finally if i > n, then p ~ p-1 p -1 + 

and v(a.) > -2-1-(i-n), hence 
1 

1 

(4.5.5) v(Trn/o(aixp ) ~an for i > n 

1 > n 
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l. 

The series L: Tr I (a.xp )corverges. The inclusion (4.5.1) now follows 
n o 1 

from (4.5.3) - (4.5.5). 
a 

n 4.6. Proof of F (K) c Im(F-Norm /o) ~case h < oo. 

Choose uniformizing elements ni E Ai such that Ni/i-J(ni) = (-l)p-ln 2_1 

for i = 1 , ••• , n. 

Let n 2h+r, 1 < r < h. For each s such that n-2 < s < n let 

(4.6.1) t 
s 

t i an+l 
We try to calculate Tr I (a.(n s)p ) mod(n ). To this end we first 

n o 1 n 
prove that for a < r < n 

(4.6.2) 
r.Q, 

Tr I (np ) _ 
n n-a n 

r-a r-a 
p £ a mod a+ 1 p 2-1 

nn-a P p nn-a 

This is done by induction. The case a = 1 is the trace lemma 3.4 above. 

Assuming the lemma for all b < a. We have 

r.Q, 
Tr I + 1 (np ) n n-a n 

r-a+l 0 J P ,,, a-
- Tin-a+l p 

r-a+J.R. 1 
mod a p -

p nn-a+l 

(4.6.3) 

r-a+l 
Tr (TIP ipa+J) 

n-a+l/n-a n-a+1 · -

r-a r-a 
p 2 a mod a+l p £-1 

nn-a p p nn-a 

It therefore suffices to show that A (ap(n-a+l}+pr-a+l Q,-1) 
n-a+l/n-a 

~ (a+l)pn-a + pr-ai-1 which is easily checked. Cf. (4.2.4). 

Now write j = (n-s)h. Then by (4.6.2) 
s 

But 

j +1 t -1 
s s mod p ·rr n-j 

s 

A • I ( t + 1 ) > A • I . ( t ) and (p n-J,) (j + 1 ) + t - 1 > p n-J Sj + t 
n-J o s n-J o s s s s s 

s s 

It follows that 



(4.6.4) 

and as 

js 
t p 

v(Tr I (TI s )) = 
no n 

v(a. ) = v(a( )h) 
J n-s 

s 

= n 

- (n-s) 

by lemma 2,3, we have that 

(4.6.5) 

JS 
t p 

v(Tr I (a. TI s )) 
n o J n 

s 
= s n-.t < s < n 

t l. 
sp 

If i < Js' then An/o(nn ) > n and v(ai) > -(n-s), hence 

(4.6.6) 

t i 
sp 

v(Tr I (a.n )) > s 
n o i n 

n-,Q, < s < n, i < ]0 

s 

If i js + I, then because h > 2 we have that 

(4.6.7) v(a.) > s-n 
l. 

j +I 
and because p 8 t 

s 
-I n 

> (p-1) (p -1) 
j +l 

t s 
sp 

+ I we have that 

(4.6.8) v(Tr I (a. JTI ) 
n o J + n 

s 
> s 

Finally if i > J0 + 2, then because h > 2 we have that 
- s 

(4.6.9) 

and 

(4.6.10) 

(To see that 

(4.6.11) 

v(a.) > s - n - ~(i-j ) 
l. s 

l. -1 n n 
> (p-1) (p -1) + Hi-j )p +I 

s p t 
s 

(4.6.10) holds, 

t p s 
v(Tr I (a.TI n o 1 n 

use 

l. 

) > 

js < n). It follows that 

for i > j +2 s - s 

t i i 
sp p 

The series E Tr I (a.TI y ) converges for all y E A. 
n o i n 

It then follows from (4.6.5), (4.6.6), (4.6.8) and (4.6.11) that 

11 



t 
(4.6.12) Tr I (ft(y11 s)) no n 

s+l mod 1f 

where bs E A is an element of valuation s. 

Because k is perfect it follows that 

(4.6.13) 

is surjective for a = n-i < s < n 
n 

Now suppose that s > n. For these s let 

(4.6.14) -1 n n 
t = (p-1) (p -1) + (s-n)p 

s 

Then >- I (t ) = n o s sand A I (t +l) = s+l. It follows that 
n o s 

(4.6.15) 
t 

s 
v(Tr I (a TI )) = s no on 

Because h.::_ 2, v(a1) .::_ 0, hence 

(4.6.16) 
pt 

v(Tr I (a111 8 )) > s 
n o n 

because pt > t + 1 
s - s 

s > n 

s > n 

12 

Finally for i > 2, we have v(a.) > -~i if i is even and v(a.) > -~i+~ 
. 1 - 1 

if i is odd and p1 t > t + (~i)pn + 1. 
s s 

Hence 

it 

(4.6.17) v(Tr I (a.TIP s)) > s 
n o 1 n 

s .::_ n, 1 > 2 

It follows from (4.6.15) - (4.6.17) that 

t 

(4.6.18) Tr I (ft(yTI 8 )) = b y mod 
n o n s 

s+l 
11 

where b is an element of A of valuation s, Hence 
s 

t 

( F s(K ) + ~sA~rrs+lA 
4.6.19) Trn/o& ft: n " r' 

s > n 

is surjective for s > n. Combining (4.6.13), (4.5) and (4.6.19) and 
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a 
using that F(Kn) and n nA are complete Hausdorf filtered (topological) 

an 
groups we see that the image of Trn/oo ft is equal ton A. 

According to (4.1) this implies that the image of F-Norm I is equal 
a no 

to F n(K) which is what we set out to prove. 
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LIST OF SYMBOLS 

Latin lower case a,x,y,n,k,p,h,r,v,f,c,t,s,i,j,m,o,l,b,d,e 

Latin upper case K,L,F,X,Y,Z,A,U,V,G,N,T,I,C,M 

Latin lower case as sub or superscript p,i,j ,n,m,k,t,h,r,s,a,b,l 

Latin upper case as sub or superscript L,K,F,V 

Latin upper case boldface 7l, ~.JR., JN, G 

Latin lower case script p 

Greek lower case a ,a,cp,l/!,TI ,>. 

Greek upper case r 

Greek lower case as sub or superscript a, TI, I/!_,>. 

Greek upper case as sub or superscript 

German lower case 

Numerals 0,1,2,3,4,5,6,7,8,9 

Numerals as sub or superscript 0' J '2 

'\, 

Special symbols /,(,),I,+,E,~,=,-,oo,:::::>,>,[,J,{,},U,<,.::_,.:::_,c:,~,~.~ ,o, 

Special symbols as sub or superscript -:_,/,*,oo,-,=,+ 

Groups of symbols: Norm, mod, Gal, Coker, Im, Tr 

The latin lower case letter 0 does not occur in the formulas except as part of 

the groups Norm, mod, Coker 

The latin uppercase letter 0 does not occur 

Greek letters: straight underline in red 

German Letters: straight underline in green 

Boldface: wiggly underline in black 

Script: encircled in blue 


