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ON NORM MAPS FOR ONE DIMENSIONAL 
FORMAL GROUPS III 

MICHIEL HAZEWINKEL 

1. Introduction 

The main purpose of the present note is to give a more elementary and 
conceptual and less computational proof of the main theorem of [4]. At the 
same time we generalize the theorem. 

Let K be a local field, L/K a finite galois extension. Let A be the ring of 
integers of K and F(X, Y) a (commutative one dimensional) formal group 
(law) over A, i.e. F(X, Y) is a formal power series in two variables over A 
of the form F(X, Y) = X + Y + I:i.i<!l a,;X;Y; such that ai; = a;, and 
F(F(X, Y), Z) = F(X, F(Y, Z)). Let mL be the maximal ideal of A(L), the 
ring of integers of L. The group recipe F(X, Y) can be used to define a new 
abelian group structure on the set mL , viz. x + FY = F(x, y) where x, y E mL. 

This group is denoted F(L). There is a natural norm map 

(1.1.) F - NormL;K : F(L) -t F(K), 

where lo-1 , • • • , <rn} = Gal (L/K). The general problem is to describe the 
image (or the cokernel) of the maps F - NormL;K . For example if Fis the 
multiplicative group Gm(X, Y) = X + Y + XY, then F - Norm becomes the 
ordinary norm map 

(1.2) 

where U1(L) Ix E U(L) = A(L)* Ix = 1 mod mL}. The study of Coker 
NL 1 x is what a not inconsiderable part of local class field theory is about. 

Let K./K be an infinite galois extension of Galois group isomorphic to Zv , 
the p-adic integers. Such an extension is called a Zp-extension or a r-extension. 
Let Kn be the invariant field of the closed subgroup p"Zp , n = 0, 1, 2, · · · , 
where we write K 0 = K. 

The abelian group F(K) carries a natural filtration F(K) = F 1(K) ::) F 2(K) ::) 

· · · ::) F"(K) ::) · · · where F"(K) = {x E F(K) I x E mx"l. 
We write F - Normn;o for F - Normx.;x. The main theorem of this paper 

is now. 
1.3. THEOREM. Let K~/K be a totally ramified Zp-extension of an absolutely 

unramified mixed characteristic local field K with perfect residue field le of char­
acteristic p > 2. Let F(X, Y) be a formal group over A of height h ;?: 2. Then we 
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have 
(1.3.1) 
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Im (F - Norm,,1o) = F"'"(K) 

with a,, given by a. = n - [h- 1(n - 1)], where [r] for r E R denote8 the integral 
part of r, i.e. [r] is the smallest integer :::; r. 

For a definition of the height of a formal group (law) F(X, Y) cf. [l], cf. 
also 2.1. below. 

If h = o:i, the theorem holds with a,, = n which fits naturally. If h = I 
then the statement of the theorem holds if k is algebraically closed but is false 
if k is finite. Indeed, taking F(X, Y) = Gm(X, Y) = X + Y + XY and taking 
K~/K to be the cyclotomic Z,,-extension the statement of the theorem says 
that N.10 : U1(K.) --+ U1(K) is surjective which is false by local field theory 
which says that Coker (N.10) is isomorphic to Gal (K,,/K) in this case. 

The main theorem of [4] dealt with the case: K local field of characteristic 
zero with finite residue field and K~/K the cyclotomic Z,,-extension. 

As isomorphic formal group laws have the same height the result above is 
really one about isomorphism classes of formal group laws i.e. about formal 
groups. For that matter the whole problem of studying F-NormL;K is a prob­
lem about formal groups rather than formal group laws as an isomorphism 
{3(X): F(X, Y) --+ G(X, Y) of formal group laws over A induces filtration pre­
serving isomorphisms F(L) --+ G(L) compatible with norm maps. 

Let k = A/mK. By reducing the coefficients of the formal group law F(X, Y) 
modulo mK we obtain a formal group law over k, denoted F*(X, Y). It is 
reasonable to expect (as suggested to me by B. Mazur) that if K is of mixed 
characteristic and absolutely unramified, i.e. mK = pA (K), then Coker 
(F-NormL;K) depends (up to isomorphism) only on the isomorphism class 
of F*(X, Y) and L/K. 

The result above gives some positive evidence for this. Indeed, provided one 
restricts attention to extensions L/K of the form K,,/K where K,, is a finite 
level of some Z,,-extension, the result 1.3 above says that Coker (F-NormL/x) 
depends only on the height of F*(X, Y) and L/K. 

As to the motivation why one would want to study cokernels of norm maps 
for formal groups: basically the goal is to look for a class field type theory 
for other algebraic groups than just Gm , the multiplicative group. In [7] §4, 
such a theory is developed for A an abelian variety with non degenerate reduc­
tion and invertible Hasse matrix, and the results obtained play an important 
role in the remainder of [7]. The development of the theory goes via A the 
formal group obtained by completing A along the identity and relies heavily 
(as does local class field theory) on the fact that j (L) Norm) .A (K) is surjective 
if L/K is a finite extension of a local field K with algebraically closed residue 
field. One consequence of theorem 1.3. is that this fails if h(E) ;::::: 2, i.e. it fails 
for elliptic curves in the supersingular case ( cf. also [7], § 1, dl). 

In local class field theory, in the theory developed in [7] and also in [10] 
the Zp-extensions play an especially distinguished role which may be seen as 
motivation for paying particular attention to Z,,-extensions. 
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Of course, from the point of a class field theory associated to an algebraic 
group in general, a weak consequence of theorem 1.3 is an analogue of that 
well known theorem of class field theory which says that the subgroup of uni­
versal norms is trivial. We have: if height (F(X, Y)) ;::: 2 then 

() F-NormL;K (F(L)) = {Ol. 
L/K 

All formal groups in this paper will be commutative and one dimensional. 
The notation introduced above will remain in force throughout this paper. In 
addition we use An for the ring of integers of Kn , v. for the normalized exponential 
valuation of Kn , 'lrn for a uniformizing element of Kn , i.e. v,.(7rn) = 1 and Trn;o 
is the trace map from Kn to K = K 0 • We write 7r and v instead of 1l'o and v0 • 

If K is absolutely unramified one can of course take 11' = p. (Cf., however, 
4.6 below). Finally N = {1, 2, 3, · · · l denotes the natural numbers, Q the 
rational numbers, Q,, the p-adic numbers, and R the real numbers. 

2. Prerequisites from formal group theory 

In this section we discuss the material form formal group theory needed 
for the proof of theorem 1.3. 

2.1. Generalities. Let A be the ring of integers of an absolutely unramified 
mixed characteristic local field K with residue field k. 

Let F(X, Y) be a formal group law over A and let p be the characteristic 
of k. Inductively one defines for all n E N = j 1, 2, 3, · · ·}, [n)p(X) = 
F(X, [n - l]F(X)), [l]F(X) = X. Now consider [p]F(X). If [p)p(X) = 0 
mod mK than F(X, Y) is said to be of infinite height. If [p]F(X) 'i' 0 mod mK 
then the first power of X whose coefficient is not = 0 mod mK is necessarily 
of the form X"' for some h E N. Then F(X, Y) is said to have height h. 

Two formal groups F(X, Y), G(X, Y) over A are said to be strictly isomorphic 
if there exists a power series {3(X) = X + c2X 2 + · · · c; E A such that 
{3(F(X, Y)) = G({3(X), {3(Y)). Note that the power series {3(X) induces iso­
morphisms F(L) ~ G(L) which preserve the filtration and which are compatible 
with the norm maps. 

2.2. Honda's method of constructing formal group laws over rings of integers 

of absolutely unramified local fields. Now let K be absolutely unramified. Choose 
elements t1 , t2 , · • · E A and let f, (X) be the power series 

" 
f tCX) = L a,X"' 

i=O 

(2.2.1.) ao = 1, nE N 

where u is the Frobenius endomorphism of K (characterized by u(a) = a" 
mod mK for all a EA). 

Now let 

(2.2.2.) 
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where f,-1(X) is the inverse power series of f,(X) i.e. f,- 1(f,(X)) = X. Then 
according to [6], theorem 4, and proposition 3.5, one has 

2.3. PROPOSITION. Every formal group F(X, Y) over A is strictly isomorphic to 
a formal group of the form F,(X, Y). If height (F(X, Y)) = co then t; E mx = pA 
for all i and if height (F(X, Y)) = h E N then t1 , · · · , th-1 E mx = pA and 
this a unit of A. 

We remark that the hypothesis "K is absolutely unramified" is necessary for 
this proposition. 

2.4. Let A, K be as before and let 

ti · · · , th-1 E mx, th E U(K), th+1 , h+2 , · · · E A 

and let f,(X) be as in (2.2.1.). We then have 

LEMMA. 

(i) v(a,h) = -r for all r E NU {O} 
(ii) v(a,.) ~ - r + 1 for all (r - l)h < n < rh, r, n E N. 

Proof. By induction. For n = 0 we have a0 = 1 and v(ao) = 0. Now 
letO < n <h. We have 

and assuming with induction that v(a;) ~ 0 for 0 ~ i < n < h we find v(a,.) ~ 0 
as v(t;) ~ 1 for i ~ h - 1. Now taken = h. Then 

-1 •h-> + + -I • -I ah = p ah-1t1 · · · p a1th-1 + p th 

All terms in this expression have valuation ~ 0 except p- 1th which has valuation 
-1. Thus v(ah) = -1. Now let n = rh + s, 1 ~ s ~ h - 1, r ~ 1. Then 

Now by induction v(an_,) ~ - rand v(t;) ~ 1 for i = 1, · · · , sand v(an-;) ~ 
-r + 1 (and v(t;) ~ 0) for j = s + 1, · · · , n. So that v(an) ~ -r. 

Finally let n = rh, r ~ 2. Then 

By induction hypothesis we have (using v(t,) ~ 1 for i = 1, · · · , h - 1, v(th) = O, 
v(t;) ~ 0 for j > h) that v(p- 1a,._,t/"-;) ~ -r + 1 for i = 1, · · · , h - 1, 
v(p- 1a,._ht/•-h) = -r, v(p- 1a,._;t/"- 1) ~ -r + 1 for j ~ h + 1. Hence 
v(a,.) = -r if n = rh. 

2.5. LEMMA. Let A, K be as before t; E pA = mx for all i. Then a; E A 
for all i EN. 

Proof. This follows from 2.2.1. because p- 1t; E A for all i in this case. 



NORM MAPS FOR ONE DIMENSIONAL FORMAL GROUPS III 309 

3. Prerequisites from local class field theory 

In this section we discuss the information we need from local field theory 
and local class field theory. 

3.1. The integer m(L/K). Let L/K be a totally ramified galois extension 
of prime degree p = char (k). Then there is a natural number m(L/K) such that 

(3.1.1) 

where s depends on r according to the formula. 

(3.1.2) s = [(m(L/K) + ~(p - 1) + rJ 
The number m(L/K) is uniquely determined by (3.1.1), (3.1.2). Cf. [8], Ch V, 
§3 or [2] section 2.6. 

3.2. Upper ramification groups. Let L/K be a finite galois extension. Then 
one can define upper ramification subgroups Gal (L/K); C Gal (L/K), i = 
-1, 0, 1, 2, · · · . For a definition, cf [8], Ch. IV. These upper ramification 
subgroups behave nicely with respect to quotients. If M /K is a subgalois 
extension of L/K then Gal (M/K); is equal to the image of Gal (L/K); in 
Gal (M/K) under the natural projection Gal (L/K) ~Gal (M/K). 

3.3. PROPOSITION. Let K.,,/K be a totally ramified Zp-extension of a mixed 
characteristic totally unramified local field K of residue characteristic p. Then 
the upper ramification groups are equal to 

(3.3.1) i = 1, 2, ... 

Proof. Let Kab be the maximal abelian extension of K. Because K,,JK 
is totally ramified and because Gal (K.,,/K) is a pro-p-group we have that 
Gal (K.,,/K) = Gal (K.,,/K) 0 = Gal (K.,,/K) 1 • We have therefore a natural 
epimorphism 

(3.3.2) 

Now by local class field theory Gal (Kab/K) 1 = p(U/) where UK1 is the pro­
algebraic group associated (via the Greenberg construction) to the group of 
1-units of A and where p(UK1) is the maximal constant quotient of 7r1(UK1) 

the first homotopy group of UK1. Furthermore Gal (Kab/K)" = image of 
p(UK") in p(UK1) under the map induced by the inclusion UK"~ UK1• Cf. [2] 
Ch. II for all this. Cf. also [9] in the case that k is algebraically closed. Now, 
because K is absolutely unramified and p > 2 the map p; : U x 1 ~ UK 1 ( = raising 
to the power p;) induces an isomorphism UK1 ~ UK;+i. Cf. [9] n° 1.7, Cor 1 
or [2] section 2.3, cf. also [3] lemma 5.7. It follows that the image of 
p; : p(UK1)--? p(U K1) is equal to the image of p(Ugi+1) in p(UK1). We therefore 
have 

Gal (K.,,/K)i = c/>(Gal (Kab/K)') = c/>(Im (p(UK')) -7 p(UK1)) 

= cJ>(p-1p(UK1)) = p'-1cJ>(p(UK1)) = pi-1z,, 
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Remarks. 
1. If k is finite one has p(Ux') = U'(K) canonically, cf. [3] no. 7.4 or [2] 

no. 9.2 which somewhat simplifies the proof in this case. 
2. The proof above is the only place where the hypothesis p > 2 is used. 

3.4. COROLLARY. Let K,,,/K be as above in 3.3. Let m,. = m(K,./K,,_1), 

n = 1, 2, ··· thenwehavethatm,. = 1 + p + ... + p"- 1• 

Proof. This follows from the relation Gal (L/K)"'(i) = Gal (L/K); , where 
I/I is the Herbrand If-function, and the definition of the Gal (L/K), . Cf. [8], 
Ch. IV, Ch. V. 

Finally we need one not difficult result from local field theory, viz. 

3.5. TRACE LEMMA ([5] Proposition 4.1). Let L/K be a totally ramified galois 
extension of degree p = char (k); let 

m = m(L/K) and r = [p-1((m + l)(p - 1) + 1)]. 

Let 7rL be a uniformizinr; element of L and 7rx = (-l)"- 1N Lix(irL). Then we 
have for all l E N, 

(3.5.1) T ( z,,) z d 2r+Z-1 
rL;K 7rL = P7rx mo 7rx • 

4. Proof of theorem 1.3 

4.1. We have now all we need to prove theorem 1.3. Because of proposition 
2.3 we can assume that F(X, Y) is a formal group (law) of the type F1(X, Y) = 
f,- 1 (f1(X) + f,(Y)) where f,(X) is as in 2.2.1. Now because K is absolutely 
unramified we have by lemmas 2.4 and 2.5 that a,x•' E 7rA ( = pA) for all 
x E 11'A and that the series I: a,x•' converges in 7rA. 

(NB the series I: a;x"' is also convergent for x E 11",.A,. but the values of these 
series will in general not be in 71',.A,.). It follows that 

(4.1.1) f, : F.(K) ~ 1rA, 

is an isomorphism of F 1(K) with (the additive group) 11'A, which takes F/(K) 
isomorphically onto 1r"A. 

Because F,(X, Y) = f,- 1 (!,(X) + f1(Y)) we have a commutative diagram 

(4.1.2) 

F,(K,.)~ K,. 

l F,-Norm.10 l Tr,.10 

F,(K) ~ 1rA CK 
ft 

4.2. The functions X,.10 (t). For each n E N define the function ~.1,.-1 by 

(4.2.1) An/n-i(t) = [p-1 ((m,. + l)(p - 1) + t)] 
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where mn = m (Kn/ Kn-1) = 1 + p + · · · + pn-1. Now define "An/ 0 inductively by 

(4.2.2) An;o(t) = An-1;o(An1n-l (t)) 

It is then clear from 3.1 that 

(4.2.3) 

It is not difficult to calculate X,.1o(t). First observe that if a1 , • • • , a,. E Z, 
t E Z and the numbers bo , bi , · · · b,._i are obtained by b,._1 = [p-1 (a,. + t)], 
b .. -2 = [p-i(a .. -1 + b .. -1)], · · • , bo = (p-1(a1 + bi)], then 

bo = [p-"t + p-"a,. + · · · + p- 1a 1] 

Substituting a,. = (p - 1) (m,. + 1) = p" - 1 + p - 1 one finds that 

X .. 1o(t) = [p-"t + n + 1 - p-" - p-"(p - lr 1(p" - 1)] 

so that 

(4.2.4.) 
A..10(t) = n for 1 :$; t :$; (p - 1)-1(p" - 1) 

A..;o(t) = 1 + l + n if {t ~ 1 + lp" + (p - 1r1Cpn - 1) and 

t ~ (l + l)pn + (p - lf 1(p" - 1) 

4.3. Proof that Im (F-Normn1o) C F""(K) holds in the case h = o:1. Let 
h = 0). From now on we write F for F, . Because of 4.1 it suffices to prove 
that Tr,.1o(f,(x)) C 'll'"A for all x E '11',.A,. . According to lemma 2.5 we have 
that a, E A for i = 1, 2, · · · in the case h = 0). Hence by (4.2.3) and (4.2.4) 
Tr,.1o(a,x"1

) E 'll'"A for all i = 1, 2, · · · One easily checks (using (4.2.3) and 
(4.2.4) again) that the series :E, Tr,.10(a,x" 1) converges. It follows that 
Trn1o(f,(x)) E 'll'"A for all x E '11',.A,.. 

4.4. Proof that Im (F-Norm,.10) ~ F""(K) holds in the case h = 0). To prove 
this we have to show that 'll'nA C Im (Tr,.10 o f,). Let t E N be such that 
A. .. 1o(t + 1) > X,.10 (t). It follows from (4.2.3) that then 

(4.4.1) v(Tr,.1o('11'n')) = X,.1o(t) 

For each l = O, 1, 2, · · · let s1 = (p - 1)-i(pn - 1) + lp". Then we have 
using (4.4.1), (4.2.3) and (4.2.4) 

(4.4.2) Trn;o (j,(y'll',.81 )) E Tr,.;o (y'll'.81 ) = y Tr .. ;o (71',.' 1) mod 'll'n+Z+l 

Using this and (4.4.1) we see that the maps 

Tr,.;oof' : F'1(K,.) ~ 71'n+z A/71'n+z+iA 

are surjective for all l = 0, 1, 2, · · · Because the groups F(K .. ) and 11"nA are 
complete and Hausdorff it follows that 

Tr,.10 of, : F(K,.) ~ 'll'"A 

is surjective. Cf. [4] lemma 3.2 or [8] Ch. V. §1, lemma 2. 
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4.5. Proof that Im (F-Norm,.1o) C F""(K) holds in case h < co Now let 
2 :::; h < co. Because of 4.1 it suffices to prove that 

(4.5.1) 

We have that a. = n - [h- 1(n - 1)], and that 

(4.5.2) v(TrJ,.10 (a,x'P')) 2 A.n10(p'v,.(x)) + v(a;) 

Write n = lh + r, with 1 :::; r :::; h. Then a,. = n - l. If i < n then v(a,) 2 -l 
by lemma 2.4 and A.,.1o(p'v,.(x)) 2 n. Hence 

(4.5.3) v(Tr.1o (a;xP')) 2 a.. for i < n 

If i = n, then t.,.10(p'v,.(x)) 2 n + 1 by (4.2.4) and v(a,) 2 -l - 1 so that also 

(4.5.4) v(Tr,.10 (a .. x'P") 2 a,. 

Finally if i > n, then p' 2 (p - 1)-1(p" - 1) + (p'-" - l)p" + 1 and v(a;) 2 
-l - 1 - (i - n), hence 

(4.5.5) v(Tr.10 (a;X''')) 2 a,. for i > n 

because A..1o(p'v,.(x)) 2 t..1o(P') 2 n + p'-" and p'-" 2 (i - n) + 1 if i > n 
The series ~ Tr.1o(a;x'P') converges. The inclusion (4.5.1) now follows from 
( 4.5.3)-( 4.5.5). 

4.6. Proof that F""(K) C Im (F-Norm,.10) holds in case h < co. Choose 
uniformizing elements 7rz E A 1 such that Nzf!-l (7r1) = (-1Y- 17rz-1 for l = 
1, ••'In. 

Let n = lh + r, 1 :::; r :::; h. For each s such that n - l :::; s < n let 
(4.6.1) t, = (p - 1)-l(p"-Cn-alh - 1) 

We try to calculate Tr.10(a,(7r,.1')'P'). To this end we first prove that for 
a :::; r < n. 

(4.6.2) 

This is done by induction. The case a = 1 is the trace lemma 3.5 above. Assum­
ing the result for all b < a, we have 

(4.6.3) 
T ( p'l) _ pr-a+1z a-1 d a. p"-a+iz-1 

rn/n-a+J 71",. = 11"11-a+I p ffi0 p 11"n-a+I 

T ( p1'-a+iz a.-1) 11""-"l a. d a+l pr-az-1 
rn-a+l/n-a 11"n-a+I p =: 11"n-a p ffi0 p 11"n-a 

It therefore suffices to show that 

An-•+l/n-a(ap<n-a+ll + p•-a+iz - 1) 2 (a + l)p"-a + p'-"l - 1 

which is easily checked. Cf. (4.2.1). Now write j. = (n - s)h. Then by (4.6.2) 
Tr (( 1.)'P;•) _ 1,p;, d ;,+1 1,-1 

n/n-;, 71",. = 11",.-;, mo p 11",.-;, 

But 

A.,.-;,;o(t, + 1) > A.,,_ 1,10(t.) and (p"- 1')(j. + 1) + t, - 1 > p"- 1'j, + t, 



NORM MAPS FOR ONE DIMENSIONAL FORMAL GROUPS III 313 

It follows that 

(4.6.4) 

and as 

v(a;,) = v(a(n-•> h) 

by lemma 2.4, we have that 

-(n - s) 

(4.6.5) v(Trn;o (a;,7rn''";')) = s n - l :::; s < n 

If i < j,, then An;o(7rn1'"') 2::: n and v(a;) > -(n - s), hence 

(4.6.6) v(Tr.;o (a;7rn'•v')) > s n - l S s < n, i < j. 
If i = j, + 1, then because h 2::: 2 we have that 

(4.6.7) v(a,) 2::: s - n i = j. + 1 

and because p;,+it, 2::: (p - l)- 1 (pn - 1) + 1 we have that 

(4.6.8) 

Finally if i 2::: j. + 2, then because h 2::: 2 we have that 

(4.6.9) v(a,) 2::: s - n - Hi - j.) 

and 

(4.6.10) 

(To see that (4.6.10) holds, use j. < n). It foliows that 

(4.6.11) v(Trn;o (a;'trn"P')) > s for i ~ j, + 2 

The series L Trn10 (a,7rn""'yv') converges for ally EA. It then follows from 
(4.6.5), (4.6.6), (4.6.8) and (4.6.11) that 

(4.6.12) Trn;o (f,(y7r,.")) = yv''b, mod 7r-+ 1 

where b, E A is an element of valuation s. Because le is perfect it follows that 

(4.6.13) Trn;o o f 1 : F 1'(K.)---? 7r'A/7rB+ 1A 

is surjective for an = n - l :::; s < n. Now suppose that s 2::: n. For theses let 

(4.6.14) t, = (p - 1)- 1(pn - 1) + (s - n)p" 

Then A,.;o(t,) = s and An;o(t. + 1) = s + 1. It follows that 

(4.6.15) v(Tr.10 (ao11'n1')) = s s 2::: n 

Because h ~ 2, v(a1) 2::: 0, hence 

(4.6.16) v(Trn10 (a111'nvi.)) > s s 2::: n 

because pt, 2::: t. + 1. 
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Finally for i ;::::: 2, we have v(a,) ;::::: -!i if i is even and v(ai) ;::::: -!i + t 
if i is odd and p;t, ;::::: t. + (!i)pn + 1. Hence 

(4.6.17) s;::::: n, i ;::::: 2 

It follows from (4.6.15)-(4.6.17) that 

(4.6.18) s;::::: n 

where b, is an element of A of valuation s. Hence 

(4.6.19) 

is surjective for s ;::::: n. Combining (4.6.13), (4.5) and (4.6.19) and using that 
F(K,.) and 7r"•A are complete Hausdorff filtered (topological) groups we see 
that the image of Tr.10 o f 1 is equal to 7r"•A. According to (4.1) this implies 
that the image of F-Norm,.10 is equal to F""(K) which is what we set out to prove. 
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