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ABSTRACT 

We construct an abstract isomorphism of p-typical formal groups which is universal 
for isomorphisms of p-typical formal groups over Zci»·algebras or characteristic 
zero rings. Associated to this universal isomorphism is a homomorphism of rings 
Z[V1, V2, ... ] - Z[V1, V2, ... ; T1, T2, ... ] which (after localization at p) can be 
identified with the right unit homomorphism 71R.: BP*(pt) - BP*(BP) of the Hopf
algebra BP*(BP) of Brown-Peterson (co)homology. We calculate 71R. modulo the 
ideal (T1, T2, ... )2. These results are then used to obtain information on some of 
the operations of Brown-Peterson cohomology. 

1. INTRODUCTION 

Choose a prime number p and let Q denote the rational numbers. Let 
ai(V), ai(V, T) in 

be the polynomials defined by the equations 

(1.1) 
' i-k 

pai(V)= I tii-Tc(V)V~ , ao(V)= 1 
k-1 

(1.2) 
i 

ai(V, T)= I aTc(V)Ttk, ao(V, T)= 1. 
k-0 

Now define the power series 

00 00 

(1.3) fv(X) = z an(V)XP"', fv,T(X) = z an(V, T)XP"' 
n-o n-o 

(1.4) Fv(X, Y) =fv 1(/v(X)+ fv(Y)), Fv,T(X, Y) = fv}(fv,T(X)+fv,T(Y)) 

(1.5) ixv,T(X) = /v}(/v(X)) 
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where fv1(X) and fv."fr(X) are the inverse power series to fv(X) and fv,T(X) 
respectively, i.e. fv1(fv(X)) =X and fv.Hfv,T(X)) =X. One then has (cf. 
[3], [4] and [5] part I). 

1.6. THEOREM. 

The power series Fv(X, Y), Fv,T(X, Y), IXV,T(X) have their coefficients 
in Z[V], Z[V; T], Z[V; T]. 

The power series Fv(X, Y) and Fv,T(X, Y) therefore define p-typical 
(one dimensional commutative) formal groups over Z[V] and Z[V; T] 
respectively, which are strictly isomorphic via av,T(X). In addition one 
has (cf. [4] and [5] part I). 

1.7. THEOREM. 

The triple (Fv(X, Y), IXV,T(X), Fv,T(X, Y)) over Z[V; T] is universal 
for triples (F(X, Y), 1X(X), F(X, Y)) consisting of two p-typical formal 
groups and a strict isomorphism between them defined over a ring A 
which is a ZCP>-algebra or a characteristic zero ring. 

I.e. for every such triple (F(X, Y), ix(X), G(X, Y)) there is a unique 
homomorphism <fo: Z[V; T] ~A such that F(X, Y)=li'P-(X, Y), a(X)= 
=IX;,T(X), G(X, Y)=Fi.T(X, Y). 
If we restrict attention to Z<P>-algebras A theorem 1. 7 implies that 

ZCP>[V; T] represents the functor J: A I~ set of all triples (F(X, Y), 
ix(X), G(X, Y)). Now BP*(BP)=Z(p>[V; T], cf. [1) part II, theorem 16.1, 
or [2], so that J is also represented by BP*(BP) where BP is the Brown
Peterson spectrum. This fact has been used to derive all the structure 
maps of the Hopf algebra BP*(BP), cf. [7]. Fv(X, Y) is a p-typically 
universal p-typical formal group and Fv,T(X, Y) is a p-typical formal 
group. It follows that there are unique polynomials V n e Z[V; T] such 
thatFv(X, Y)=Fv,T(X, Y). Itfollowsthatwehaveforthe polynomials Vn 

(1.8) 
,. - n-li: 

pan(V, T)= z an-7c(V, T)V% . 
Tc-1 

The assignment Vn 1~ Vn defines a homomorphism Z[V] ~ Z[V, T]. 
Now BP*(pt)=Zw>[v1, v2, ... ] where the v, are defined by 

(1.9) 

where l11 =p-n[CPP11-l) eBP*(pt) ®QC MU*(pt) ® Q. Now identify Z<P>[V] 
with BP*(pt) by means of Vi 1~ v, and Z<P>[V; T] with BP*(BP) by 
means of V, I~ v,, Tc 1~ tc where the t, are the elements of BP* (BP) 
described in theorem 16.1 of part II of [1]. The homomorphism Z[V] ~ 
~ Z[V; T] (when localized at p) then becomes the right unit map 
'YJR: BP*(pt) ~ BP*(BP). 
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Below we give a recursion formula for V n· On the one hand this formula 
can be used to give a noncohomological proof of the Lubin-Tate formal 
moduli theorem and a new proof of Lazard's classification theorem for 
one dimensional formal groups over an algebraically closed :field. On the 
other hand the formula gives information about 'f/R, and thus gives infor
mation about the BP-cohomology operations. Cf. section 3 below. 

2. SOME FORMULAS CONCERNING V n 

Let Bn=pnan(V) where an(V) is as m (1.1) above. Let J denote the 
ideal (T1, T2, ... )2 in Z[V; T] and let I be the ideal generated by the 
elements pTi, i = 1, 2, ... and the elements TiTf, i, j = 1, 2, .... Then we 
have 

2.1. THEOREM. 

(2.1.1) 

'11-1 
Vn= 2: an-k{(nn-k - Vf-")+ 2: (Vf-"Tf"-i -Tf-"Vf.,._1)} 

k=l i+i-k 
i.i ;;.1 

+ 2: (V,Tfi-T1Vf)+ Vn+PTn. 
i+i-n 
i,j;;. 1 

Modulo the ideal J we have (in Z[V; T]). 

lVn = 2: (-l)t(Bs1 V~~;;_1 )(Bs2 V~~;;_:_,2 ) ••• (Bs, V~·~;11- ... -s1 )(-T, Vt) 
(2.1.2) 

+ 2: (- l)t(Bs1 V~:;;_1 )(Bs2 V~~;;_:_.2 ) ••• (Bs1 V~·~;11- ... -.1)(pT,) + Vn 

where the first sum is over all sequences (s1, .. ., St, i,j) such that 
sk,i,jeN, s1 + ... +st+i+j=n, tENU {O}, and the second sum is over 
all sequences (s1, .. ., St, i) such that sk, i EN, s1 + ... +st+i=n, t EN u {O}. 

And, finally modulo the ideal I we have in Z[V; T] 

where the sum is over all sequences (s1, ... , St, i, j) such that Sk, i, j, t EN 
and s1 + ... +St+ i + j = n. 

2.2. These formula's can be used to give a noncohomological proof of 
the Lubin-Tate formal moduli theorem ([9]) and Lazard's classification 
theorem for one dimensional formal groups over an algebraically closed 
field, ([8]). Cf. [5] part V. Warning: formula (2.2.1) in [5] part Vis not 
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correct and should be replaced with {2.1.3) above. The proofs in [5] part 
V remain mutatis mutandi the same. 

3. APPLICATIONS TO BROWN-PETERSON COHOMOLOGY OPERATIONS 

A stable BP cohomology operation can be described as a BP* (pt)
linear homomorphism BP* (BP) -+BP* (pt), where BP* (BP) is seen as a 
left BP* (pt) module. To find out what such an operation does to elements 
of BP*(pt) one composes with rJR: BP*(pt)-+ BP*(BP). Cf. [1] part II, 
section 16 for all this. Let E = ( e1, e2, ... ) be a sequence of integers ;;;;;. 0 
which are almost all zero. 

Write BP *(BP) =BP *(pt) [t1, t2, ... ] where the tt are as in [1] part II, 
section 16. The cohomology operation rE is defined as: =coefficient of tE. 
One assigns to the exponent sequence E the weight 

i1Eii=(p- l)e1 + (p2-l)es+ .... 

Let Lit denote the exponent sequence Lli = (0, .. ., 0, 1, 0, ... ) with the 1 
in the i-th place, let Lio= (0, 0, ... ). Scalar multiplication with an element 
of N and addition of exponent sequences are defined component wise. 

A first application of (2.1.1) is then the following slight generalization 
of lemma 1.9 of [6] (sometimes known as the Budweiser lemma). 

3.1. LEMM.A.. 

(i) For n;;;;.3 and 2<l<n-l we have that 

rE(Vn} == 0 mod (pP+l, V1, ••• , Vz-1) 

if p"-pl-l>llEll>p11 -pl except in the cases 

E =p'Lln-l, E =L'.11 + (p- l)Lln-1 +p'Lln-1-1· 

In these two cases rE(Vn) is respectively congruent to vz and 
-p'Pvz mod (pP+1, v1, .. ., Vz-1). 

(ii) For n;;;;;. 3 (and l = 1) we have that rE(Vn} = 0 mod (p11+1) if p 11 - l > 
> llEll ;;;;;. p 11 - p except in the cases 

E =PLln-1, E=L'.11 + (p- l)Lln-1 +.PLln-2· 

In these two cases rE(Vn} is respectively congruent to v1(1-pP-1) 
and -pPv1 mod (pP+l). 

(iii) For n;;;;.3 (and l=O) we have that rE(Vn} == 0 mod (pP+2) if llEll>.Pn-1 
except in the cases E=Lln, E=L11+pL1n-l· In these two cases rE(vn) 
is respectively congruent to p and -pP mod (pP+2). 

(There are slightly different formulae for the cases n= l, 2). 

A second application is the calculation of the rA,(v11 ). Let bn eBP*(pt) 
stand for the element pnln. Then we have immediately from (2.1.2). 
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3.2. THEOREM. 

For O<i<n we have 

l r,i,(Vn) = z ( - l)t(bs1~~;;_1 ) • ••• • (batv~'~;11- ... -11)( -U.:'-,1 - ... -1,-•) 
(3.2.1) 

+p Z (- l)t(bs1~~~i) · ··· · (bs,U.:1_:",~ - .•• -1,)-~'_, 

where the first sum is over all sequences (s1, ... , s1) with s1 + ... +se<n-i, 
s1e, t EN and the second sum is over all sequences (s1, ... ,St) with 
s1 + ... +se=n-i, s1e, t EN. Modulo p we have for O<i<n. 

(3.2.2) l 
where the sum is over all sequences (si, ... , se,j) such that s1e, t,j EN, 
s1 + ... +se+j=n-i. 

3.3. COROLLARY. 

For O<i<n we have r<1,(Vn) = -v~'_, mod (p, v1). More generally: let 
r= min (n-i- I, p), then we have mod (p, 1/i+l) 

(3.3.1) ( ) .!Di ~ ( 1)1+1 t( )P-1 si' r4, Vn = -·u-n-i + .£., - V1 Vn-1 ••• Vn-t Vn-i-1· 
1-1 
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