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I • INTRODUCTION • 

1 

This paper could equally well have been called: 'Calculation of the 

stable cohomology operations r~. of Brown-Peterson cohomology', where 
]. 

~. stands for the exponent sequence (O, ••• ,O,l,O, ... ) with the 1 in 
1 

the i-th place. 

Let BP stand for the Brown-Peterson spectrum.. The stable cohomofogy 

operations of BP cohomology can be described as continuous homomorphisms 

over BP*(pt) from BP*(BP) to BP*(pt), where BP*(BP) is seen as a left 

BP*(pt) module. Cf. [1]. To find out what such an operation does to 

the elements of BP*(pt) compose such a homomorphism with the right 

unit map nR: BP*(pt) + BP*(BP); cf [I]. 

Now BP*(pt) = 7l (p)(v1,v2, ••• ] cf. (2], and BP*(BP) = BP•(~t)(t 1 ,t2 , ••. ]. 

In this paper we calculate nR(vi) € BP*(BP) mod(t 1,t2, ••• ) 

As a corollary we find r~ (vi) for all i, n = 1, 2, ••• 
n 

2.· THE RECURSION FORMULA 
. i I 

We know that BP,.(pt) &:Q =:Q[m1.m2 , ••• ], where mi= p-1 [G:!p - ] where 

the square brackets denote cobordism classes. The v. and m. are related 
1 1 . 

as follows 

(2. 1) ~= 

(2.2) 

l: 
i 1+ ••. +i =k,i.>1,r>I 

r J- -

k i 
p 

I: m. tk . 
• 1 -1 
1=0 

where m0 = m0 = t 0 =I. Write 

r 
p 



(2.3) = l: 
il+ .•. +i =k,i.>l. 

r J-
r 

p 

2 

(This determines the vi € BP*(BP) 9:Q uniquely). It turns out that the 

v. are polynomials with integer coefficients in the 
l. . vl' •.. ,vi; tl' ..• ,ti. 

Cf. [3]. The map nR: BP*(pt) + BP*(BP) is now given by v.~ ; .. 
l. 1 

In [3] we gave the following recursion procedure for calculating the v .. 
1 

Define the polynomials U, W 0 ,Y with integer coefficients in the 
r s,.v r 

symbols v 1,v2 , ••• ; t 1,t2 , ••• ; v1,v2 , ••• as follows 

(2.4) 

9., 

w s, 9., 

y 
r 

v 
r 

where U(p ) is the polynomial obtained 
s 

v.,t.,V., i = 1,2, .•. with their p 2-th 
l. l. l. 

from U by replacing each of the 
s 

powers. 

- -
Once we know v 1, ••• ,vr-l' the polynomial vr is then given by 

r-1 -(2.5) v = U + pt = l: v W + Y + v + pt 
r r r k=l k r-k,k r r r 

- - -
where Ur' Ws,R.'yr are obtained from Ur' Ws,R.' Yr' respectively, by 

substituting v. for V., i = 1,2, .... 
l. l. 

3. CALCULATION of v. mod J. 
l. 

Let J be the ideal generated by the t.t., i,j = 1,2, •.. ; 1.e. 
2 l. J 

J = (t 1 ,t2 , ••• ) • We now use the recursion scheme given above in section 2 

to calculate vi mod J. Let R be short for BP*(BP) = BP*(pt)[t 1,t2 , ••• ]. 

3.1. Lemma. 

Let U W be as in (2.4) above. Suppose that U - v + L:t.z. mod J 
s' s,9., s s l. 1 

for certain z. E R. Then 
l. 

(3. I • I) 
9., 

9.,-l p -1 
(L:t.z.)p v 

l. l. s 
mod J 



Proof. It follows from the hypothesis concerning U that 
s 

mod J 

g, 
(U +pt )p 

s s mod J 

£ 1 
The lemma follows from this because W = p- 1(u5(p )-(U +pt )p) and 

s, t s s 

because if x, y ER and x = y mod(J~) in R i::Q, then x = y mod J. 

3.2. Proposition. 

Let U be as in (2.4). Then we have mod J 
n 

sl l s2 s -I 
t -I 5 1- I 2 u + pt 

n n 
E (-1) (v vp p ) (v p - ) 

S n-s s vn-s -s P 

(3.2.1) 

where the 

( .. ) I 2 l 2 s 1 , ••• ,st,1,J l 

s 
t l s -1 i 

• (v vP - p t ) . (-t. V~ ) 
st n-s 1- ••• -st-I 1 J 

s I I 5 2 s -1 
+ 

t p -I sl- p -I 2 
i: (-l)(v v p )(vv p ). s 1 n-s 1 2 n-s 1-s2 (sl'' .• ,st,i) 

+ v 
n 

first sum is over all sequences (s 1, ••• ,st,i,j) such that 

sk, i,j E JN, sl+ ... + s + 
t i + j = n, tEJNU{O} and the second sum 

over all sequences (s 1, ••• ,st,i) such that sk' i E JN, SI+ ... + s + 
t 

t E JN U {O}. 

Proof. According to (2.4) we have 

n-1 
(3.2.2) u = v + y + E vkw -k k ' UJ = VI n n n k=I n , 

is 

i = 

Use induction with respect ton, noting that formula (3.2.1) holds 

trivially for n = I. Now remark that the hypothesis of lemma 3.1 holds 

for U , s < n. Using formula (3.1.1) and (3.2.1) for s < n, formula s 
(3.2.1) itself readily follows. 

n, 
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3. 3. Corollary. 

The formula for v is obtained from formula (3.2.J) by substituting n 
v. for V., i = l, ... , n-l in the righthand side of 3.2.1. l. l. 

Proof. We claim that 

(3.3.l) v - v n n 
(mod(t 1, t 2 , ••• ) ) 

This claim is proved by induction simultaneously with the corollary 
itself. The congruence (3.3.1) obvious holds for n =I, as 
v1 = v 1 + pt 1• Suppose that the corollary and (3.3.l) both have been 

proved for s < n. Then the corollary follows for s = n because of 
(3.2.1) and (2.5), which in turn proves (3.3.l) for s = n. 

3.4. Corollary. 

Let I denote the ideal ( ••. ,pt., ••. ; ... ,t.t., •.. ). Then we have modulo 
1 1 J 

I 

(3. 4. I) v - v n n 

n-1 
- t VP n-1 l 

n-2 p-1 p-l p 
+ ( -1 ) v Iv n-1 . . . v l v 2 ( t Iv l ) 

4. APPLICATION TO BROWN-PETERSON COHOMOLOGY OPERATIONS. 

Let 8. be the exponent sequence (0,0, .. .,0,1,0, •.. ) with the I in l. 

the i-th place, 

operation. I.e. 

and let r~. denote the 

rA (v ) =1 coefficient ..,. n 
l. 

corresponding BP-cohomology 

of t . 
1 

in v . 
n 
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4.1. Theorem. 

For all 0 < i < n we have 

s 
t I i. • • P - p n-t-,..-J (v v )v. p 

st n-sl- ••• -st-1 J 

(4.l.l) 

+ 

where the first sum is over all sequences (s 1 , ••• ,st~i) such that 
sk,j EJN = {I,2,3, ••.. }, t EJN U {O}, and s 1+ ... + st+j = n - i, and 
the second sum is over all sequences (s 1 , ••• ,st) such that sk EJN, t EJN U {O}, 

• • • + St = n - 1. 

4.2. Addendum. 

r. (v ) = p, r. (v ) 
u n u. n 

0 ifi>n 
n i. 

4.3. Proof of (4.1) and (4.2): write down the coefficient oft. in v 
l. n 

using (3.2.l) and corollary 3.3. 

4.4. Theorem. 

For all 0 < i < n we have the congruence 

(4.4.1) ••• + 

mod p 

Proof. This follows directly from either (4.1.I) or (3.4.I) 

4.5. Remark. 

Some of the terms in the two sums of (3.2.1) give rise to the same 
monomials in v 1,v2 , ... ; t 1,t2 , .•• E.g. the terms with st = I, i = 1 
in the second sum gives rise to the same monomials as the terms 

(s 1, ... ,st-l'l,l) in the first sum. 
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4.6. Some Examples. 

Modulo J we have 

3 3 3_1 2 I 2 2 p t - p VP V t + p + p-1 p p-1 
VI 3 I 3 1 VI V3 tz + p YI V2Y3 tl 

P+2 p-1 p-1 2 p p2 2 p-1 p-1 (p+l)v1 v2 v3 t 1 + (p +p)v 1v2 t 1 + pv1v2 v3 t 2 

p p-1 p-1 2 p2 p + v 1v2v3 t 1 - pv 1v3 t 3 - (p +l)v2 t 2 - v 3 t 1 + pt4 

and from this the rb. (v4), i = 1,2,3,4 can be read off immediately. 
l. 

The results modulo p are 

r Ii (v 4) - 0 (mod p) 
4 

3 
r 11 (v4) - VP (mod p) 

3 
I 

2 2 
rb (v4) 

p +I p-1 vP (mod p) - + V] V3 2 2 

(mod p) 

which (of course) agrees with (4.4.1). 
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