ERASMUS UNIVERSITY ROTTERDAM ECONOMETRIC INSTITUTE

Report 7513/M

THE LINEAR PART OF THE BROWN-PETERSON COHOMOLOGY OPERATIONS MAP $\eta_{R}: B P_{*}(p t) \rightarrow B P_{*}(B P)$
by Michiel Hazewinkel

THE LINEAR PART OF THE BROWN-PETERSON COHOMOLOGY
OPERATIONS MAP $\eta_{R}: B P_{*}(p t) \rightarrow B P_{*}(B P)$
by Michiel Hazewinke1

1. INTRODUCTION.

This paper could equally well have been called: 'Calculation of the stable cohomology operations $r_{\Delta_{i}}$ of Brown-Peterson cohomology', where Δ_{i} stands for the exponent sequence $(0, \ldots, 0,1,0, \ldots)$ with the 1 in the i-th place.
Let BP stand for the Brown-Peterson spectrum. The stable cohomology operations of BP cohomology can be described as continuous homomorphisms over $B P_{*}(p t)$ from $B P_{*}(B P)$ to $B P_{*}(p t)$, where $B P_{*}(B P)$ is seen as a left $B P_{*}(p t)$ module. Cf. [1]. To find out what such an operation does to the elements of $B P_{*}(p t)$ compose such a homomorphism with the right unit map $\eta_{R}: B P_{*}(p t) \rightarrow B P_{*}(B P) ; c f[1]$.
Now $B P_{*}(p t)=\mathbb{Z}_{(p)}\left[v_{1}, v_{2}, \ldots\right]$ cf. [2], and $B P_{*}(B P)=B P_{*}(p t)\left[t_{1}, t_{2}, \ldots\right]$. In this paper we calculate $\eta_{R}\left(v_{i}\right) \in B P_{*}(B P) \bmod \left(t_{1}, t_{2}, \ldots\right)^{2}$.
As a corollary we find $r_{\Delta_{n}}\left(v_{i}\right)$ for all $i, n=1,2, \ldots$

2. THE RECURSION FORMULA

We know that $B P_{*}(p t) \otimes \mathbb{Q}=\mathbf{Q}\left[m_{1} \cdot m_{2}, \ldots\right]$, where $m_{i}=p^{-i}\left[\mathbb{C P}^{p^{i}-1}\right]$ where the square brackets denote cobordism classes. The v_{i} and m_{i} are related as follows

$$
\begin{equation*}
m_{k}=\sum_{i_{1}+\ldots+i_{r}=k, i_{j} \geq 1, r \geq 1} \tag{2.1}
\end{equation*}
$$

The map $\eta_{R}: B P_{*}(p t) \rightarrow B P_{*}(B P)$ is given over \mathbf{Q} by

$$
\begin{equation*}
m_{k} \mapsto \bar{m}_{k}=\sum_{i=0}^{k} m_{i} t_{k-i}^{p^{i}} \tag{2.2}
\end{equation*}
$$

where $m_{0}=\bar{m}_{0}=t_{0}=1$. Write

$$
\begin{equation*}
\bar{m}_{k}=\sum_{i_{1}+\ldots+i_{r}=k, i_{j} \geq 1} \frac{{ }_{i_{1}}{ }^{v_{i_{2}}} \cdots v_{i_{r}}^{F}}{p^{r}} \tag{2.3}
\end{equation*}
$$

(This determines the $\overrightarrow{\mathrm{v}}_{\mathrm{i}} \in \mathrm{BP}_{*}(\mathrm{BP}) \otimes \mathrm{P}$ uniquely). It turns out that the $\overline{\mathrm{v}}_{\mathrm{i}}$ are polynomials with integer coefficients in the $\mathrm{v}_{1}, \ldots, \mathrm{v}_{\mathrm{i}} ; \mathrm{t}_{1}, \ldots, \mathrm{t}_{\mathrm{i}}$. Cf. [3]. The map $\eta_{R}: B P_{*}(p t) \rightarrow B P_{*}(B P)$ is now given by $v_{i} \mapsto \bar{v}_{i}$. In [3] we gave the following recursion procedure for calculating the \bar{v}_{i}. Define the polynomials $U_{r}, W_{S, \ell}, Y_{r}$ with integer coefficients in the symbols $\mathrm{v}_{1}, \mathrm{v}_{2}, \ldots ; \mathrm{t}_{1}, \mathrm{t}_{2}, \ldots ; \mathrm{V}_{1}, \mathrm{v}_{2}, \ldots$ as follows

$$
\begin{align*}
& U_{1}=v_{1}, U_{r}=\sum_{k=1}^{r-1} v_{k} W_{r-k, k}+Y_{r}+v_{r} \\
& W_{S, l}=p^{-1}\left(U_{S}^{\left(p^{l}\right)}-\left(U_{s}+p t_{s}\right)^{p^{\ell}}\right) \tag{2.4}\\
& Y_{r}=\sum_{k=1}^{r-1}\left(v_{k} t_{r-k}^{p^{k}}-t_{r-k} V_{k}^{p-k}\right)
\end{align*}
$$

where $U_{S}^{\left(p^{\ell}\right)}$ is the polynomial obtained from U_{S} by replacing each of the $v_{i}, t_{i}, v_{i}, i=1,2, \ldots$ with their $p^{\ell}-$ th powers.
Once we know $\overline{\mathrm{v}}_{1}, \ldots, \overline{\mathrm{v}}_{\mathrm{r}-1}$, the polynomial $\overline{\mathrm{v}}_{\mathrm{r}}$ is then given by

$$
\begin{equation*}
v_{r}=\bar{U}_{r}+p t_{r}=\sum_{k=1}^{r-1} v_{k} \bar{W}_{r-k, k}+\bar{Y}_{r}+v_{r}+p t_{r} \tag{2.5}
\end{equation*}
$$

where $\bar{U}_{r}, \bar{W}_{S, \ell}, \bar{Y}_{r}$ are obtained from $U_{r}, W_{S, \ell}, Y_{r}$, respectively, by substituting \bar{v}_{i} for V_{i}, $i=1,2, \ldots$.

3. CALCULATION of $\overline{\mathrm{v}}_{\mathrm{i}} \bmod \mathrm{J}$.

Let J be the ideal generated by the $t_{i} t_{j}, i, j=1,2, \ldots$; i.e. $J=\left(t_{1}, t_{2}, \ldots\right)^{2}$. We now use the recursion scheme given above in section 2 to calculate $\bar{v}_{i} \bmod J$. Let R be short for $B P_{*}(B P)=B P_{*}(p t)\left[t_{1}, t_{2}, \ldots\right]$.

3.1. Lemma.

Let $U_{S}, W_{S, \ell}$ be as in (2.4) above. Suppose that $U_{S} \equiv v_{S}+\Sigma t_{i} z_{i} \bmod J$ for certain $z_{i} \in R$. Then

Proof. It follows from the hypothesis concerning U_{s} that

$$
\begin{gathered}
U_{s}^{\left(p^{\ell}\right)} \equiv v_{s}^{p^{\ell}} \bmod J \\
\left(U_{s}+p t_{s}\right) p^{\ell} \equiv v_{s}^{p^{\ell}}+\left(\begin{array}{c}
p_{1}^{\ell}
\end{array}\right)\left(\Sigma t_{i} z_{i}\right) v_{s}^{p^{\ell}-1}+\left(p_{1}^{\ell}\right) v_{s} p^{\ell}-1\left(p t_{s}\right) \quad \bmod J
\end{gathered}
$$

The lemma follows from this because $W_{s, \ell}=p^{-1}\left(U_{s}^{\left(p^{\ell}\right)}-\left(U_{s}+p t s\right)^{p^{\ell}}\right.$) and because if $x, y \in R$ and $x \equiv y \bmod (J Q)$ in $R Q$, then $x \equiv y \bmod J$.

3.2. Proposition.

Let U_{n} be as in (2.4). Then we have mod J

$$
\begin{gathered}
U_{n}+p t_{n} \equiv \sum_{\left(s_{1}, \ldots, s_{t}, i, j\right)}(-1)^{t}\left(v_{s_{1}} v_{n-s_{1}}^{p_{1}} p^{s_{1}^{-1}}\right)\left(v_{s_{2}} v_{n-s_{1}-s_{2}}^{s_{2}} p^{s_{2}^{-1}}\right) \cdots \\
\\
\cdot\left(v_{s_{t}} v_{n-s_{1}-\ldots-s_{t-1}}^{s^{t_{-1}}} p^{s_{t}^{-1}}\right) \cdot\left(-t_{i} v_{j}^{p^{i}}\right)
\end{gathered}
$$

(3.2.1)

$$
\begin{gathered}
+\sum_{\left(s_{1}, \ldots, s_{t}, i\right)}(-1)^{t}\left(v_{s_{1}} v_{n-s_{1}}^{s_{1}^{1}-1} p_{1}^{s_{1}^{-1}}\right)\left(v_{2} v_{n-s_{1}-s_{2}}^{s_{2}} p^{s_{2}^{-1}}\right) \cdot \ldots . \\
\cdot\left(v_{s_{t}} v_{n-s_{1}}^{s^{t}-\ldots-s_{t-1}} p^{s_{t}^{-1}}\right)\left(p t_{i}\right)
\end{gathered}
$$

$$
+v_{n}
$$

where the first sum is over all sequences $\left(s_{1}, \ldots, s_{t}, i, j\right)$ such that $s_{k}, i, j \in \mathbb{N}, s_{1}+\ldots+s_{t}+i+j=n, t \in \mathbb{N} \cup\{0\}$ and the second sum is over all sequences $\left(s_{1}, \ldots, s_{t}, i\right)$ such that s_{k}, $i \in \mathbb{N}, s_{1}+\ldots+s_{t}+i=n$, $t \in \mathbb{N} \cup\{0\}$.

Proof. According to (2.4) we have

$$
\begin{equation*}
U_{n}=v_{n}+Y_{n}+\sum_{k=1}^{n-1} v_{k} W_{n-k, k}, U_{1}=v_{1} \tag{3.2.2}
\end{equation*}
$$

Use induction with respect to n, noting that formula (3.2.1) holds trivially for $n=1$. Now remark that the hypothesis of lemma 3.1 holds for $U_{s}, s<n$. Using formula (3.1.1) and (3.2.1) for $s<n$, formula (3.2.1) itself readily follows.

3.3. Corollary.

The formula for \bar{v}_{n} is obtained from formula (3.2.1) by substituting v_{i} for $v_{i}, i=1, \ldots, n-1$ in the righthand side of 3.2 .1 .

Proof. We claim that
(3.3.1)

$$
\bar{v}_{\mathrm{n}} \equiv \mathrm{v}_{\mathrm{n}} \quad\left(\bmod \left(\mathrm{t}_{1}, \mathrm{t}_{2}, \ldots\right)\right)
$$

This claim is proved by induction simultaneously with the corollary itself. The congruence (3.3.1) obvious holds for $n=1$, as $\bar{v}_{1}=v_{1}+p t_{1}$. Suppose that the corollary and (3.3.1) both have been proved for $s<n$. Then the corollary follows for $s=n$ because of (3.2.1) and (2.5), which in turn proves (3.3.1) for $s=n$.

3.4. Corollary.

Let I denote the ideal ($\ldots, \mathrm{pt}_{\mathrm{i}}, \ldots, \ldots, \mathrm{t}_{\mathrm{i}} \mathrm{t}_{\mathrm{j}}, \ldots$). Then we have modulo I
(3.4.1)

$$
\begin{aligned}
\bar{v}_{n} \equiv & v_{n}-t_{1} v_{n-1}^{p}-\ldots-t_{n-1} v_{1}^{p^{n-1}} \\
& +v_{1} v_{n-1}^{p-1}\left(t_{1} v_{n-2}^{p}+\ldots+t_{n-2} v_{1}^{p^{n-2}}\right) \\
& -v_{1} v_{n-1}^{p-1} v_{1} v_{n-2}^{p-1}\left(t_{1} v_{n-3}^{p}+\ldots+t_{n-3} v_{1}^{p}\right) \\
& +(-1)^{n-2} v_{1} v_{n-1}^{p-1} \cdots v_{1} v_{2}^{p-1}\left(t_{1} v_{1}^{p}\right)
\end{aligned}
$$

4. APPLICATION TO BROWN-PETERSON COHOMOLOGY OPERATIONS.

Let Δ_{i} be the exponent sequence $(0,0, \ldots, 0,1,0, \ldots)$ with the 1 in the $i-t h$ place, and let r_{Δ}. denote the corresponding $B P$-cohomology operation. I.e. $r_{\Delta_{i}}\left(v_{n}\right)={ }^{\text {i coefficient of }} t_{i}$ in \bar{v}_{n}.

4.1. Theorem.

For all $0<i<n$ we have

$$
r_{\Delta_{i}}\left(v_{n}\right)=\sum_{\left(s_{1}, \ldots, s_{t, j}\right)}(-1)^{t+1}\left(v_{s_{1}} v_{n-s_{1}}^{s_{1}-1}\right) \ldots\left(v_{s_{t}} v_{n-s_{1}-\ldots-s_{t-1}^{t^{t}}-1}\right) v_{j}^{p_{j}^{i}} p^{n-t-i-j}
$$

$$
\begin{equation*}
+\sum_{\left(s_{1}, \ldots, s_{t}\right)}(-1)^{t}\left(v_{s_{1}} v_{n-s_{1}^{p}}^{s_{1}}\right) \ldots\left(v_{s_{t}} v_{n-s_{1}-\ldots-s_{t-1}^{s^{t}}}\right) p^{n-i-t+1} \tag{4.1.1}
\end{equation*}
$$

where the first sum is over all sequences $\left(s_{1}, \ldots, s_{t}, \dot{\mathcal{j}}\right)$ such that $s_{k}, j \in \mathbb{N}=\{1,2,3, \ldots\}, t \in \mathbb{N} \cup\{0\}$, and $s_{1}+\ldots+s_{t}+j=n-i$, and the second sum is over all sequences $\left(s_{1}, \ldots, s_{t}\right)$ such that $s_{k} \in \mathbb{N}, t \in \mathbb{N} \cup\{0\}$, $s_{1}+\ldots+s_{t}=n-i$.
4.2. Addendum.

$$
r_{\Delta_{n}}\left(v_{n}\right)=p, r_{\Delta_{i}}\left(v_{n}\right)=0 \text { if } i>n
$$

4.3. Proof of (4.1) and (4.2): write down the coefficient of t_{i} in \bar{v}_{n} using (3.2.1) and corollary 3.3.
4.4. Theorem.

For all $0<i \leq n$ we have the congruence
(4.4.1) $r_{\Delta_{i}}\left(v_{n}\right) \equiv-v_{n-i} p^{i}+v_{1} v_{n-1}^{p-1} v_{n-i-1}^{i}+\ldots+(-1)^{n-i} v_{1} v_{n-1}^{p-1} \ldots v_{1} v_{i+1}^{p-1} v_{1}^{p^{i}}$
$\bmod \mathrm{p}$
Proof. This follows directly from either (4.1.1) or (3.4.1)
4.5. Remark.

Some of the terms in the two sums of (3.2.1) give rise to the same monomials in $v_{1}, v_{2}, \ldots ; t_{1}, t_{2}, \ldots$ E.g. the terms with $s_{t}=1$, $i=1$ in the second sum gives rise to the same monomials as the terms $\left(s_{1}, \ldots, s_{t-1}, 1,1\right)$ in the first sum.

4.6. Some Examples.

Modulo J we have

$$
\begin{aligned}
\bar{v}_{4} \equiv & -v_{1}^{p^{3}} t_{3}-p^{3} v_{1}^{p^{3}-1} v_{3} t_{1}+v_{1}^{p^{2}+1} v_{3}^{p-1} t_{2}+p^{2} v_{1}^{2} v_{2} v_{3}^{p-1} t_{1} \\
& -(p+1) v_{1}^{p+2} v_{2}^{p-1} v_{3}^{p-1} t_{1}+\left(p^{2}+p\right) v_{1}^{p} v_{2}^{2} t_{1}+p v_{1}^{2} v_{2}^{p-1} v_{3}^{p-1} t_{2} \\
& +v_{1} v_{2}^{p} v_{3}^{p-1} t_{1}-p v_{1} v_{3}^{p-1} t_{3}-\left(p^{2}+1\right) v_{2}^{p^{2}} t_{2}-v_{3}^{p} t_{1}+p t_{4}
\end{aligned}
$$

and from this the $r_{\Delta_{i}}\left(v_{4}\right)$, $i=1,2,3,4$ can be read off immediately. The results modulo p are

$$
\begin{aligned}
& r_{\Delta_{4}}\left(v_{4}\right) \equiv 0 \quad(\bmod \mathrm{p}) \\
& r_{\Delta_{3}}\left(v_{4}\right) \equiv-v_{1}^{p^{3}} \quad(\bmod p) \\
& r_{\Delta_{2}}\left(v_{4}\right) \equiv+\mathrm{v}_{1}^{p^{2}+1} v_{3}^{p^{-1}}-\mathrm{v}_{2}^{p^{2}}(\bmod \mathrm{p}) \\
& \mathrm{r}_{\Delta_{1}}\left(\mathrm{v}_{4}\right) \equiv-\mathrm{v}_{1}^{\mathrm{p}+2} \mathrm{v}_{2}^{\mathrm{p}^{-1}} \mathrm{v}_{3}^{\mathrm{p}^{-1}}+\mathrm{v}_{1} \mathrm{v}_{2}^{\mathrm{p}} \mathrm{v}_{3}^{\mathrm{p}-1}-\mathrm{v}_{3}^{\mathrm{p}} \quad(\bmod \mathrm{p})
\end{aligned}
$$

which (of course) agrees with (4.4.1).

REFERENCES .

1. J.F. Adams. Stable Homotopy and Generalized Homology. Univ. of Chicago Pr. 1974.
2. M. Hazewinke1. A Universal Formal Group and Complex Cobordism. To appear in Bull. Amer. Math. Soc. 81, , 6, 1975.
3. M. Hazewinke1. On Operations in Brown-Peterson Cohomology. Report 7502, Econometric Inst., Erasmus Univ. of Rotterdam, 1975.
