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ON THE KALMAN FILTER AND THE ECONOMETRIC GENERAL
LINEAR MODEL

by Michiel Hazewinkel

In this note we show how a particular econometric estimator for the '
general linear model (the one best adapted to the noise present
in the observations arises as the limit of Kalman state estimators

of a discrete dynamical system with trivial dynamics.

1. First consider a discrete dynamical system given by the equations

A * Bu o+ G
(1) Ve = Hex

Zp TV Y Vg

H
A

where x is an n-dimensional state vector; u, are deterministic controls;

fk a deterministic forcing vector; W is random noise in the system;

Vi is the p-dimensional output vector; 2z, are the observations of the

k
Vi corrupted by random noise v, ; Ak’ Bk’ Ck’ Hk are matrices of
appropriate sizes, which are assumed to be known. One further makes

the assumptions
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(2) E(Wk) =0 = E(vk), E(wkwl) = 6,,Q E(vkvl) =8, R E(wkvl) 0
where E denotes expectation and T denotes transposition. The covariance
matrices Qk and R, are also assumed to be known.
Given all this, the Kalman filter with starting values io = 0, PO is
given by the equations (cf. e.g. [2]).
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2. Now consider the general linear model as it is often used in

econometrics
(L) z = Hx + v

(H is usually written X, and x is usually written g; cf. [1] for a
discussion of the linear model), where x is to be estimated from the
observations z and v is random noise with E(v) = 0, E(va) = R, where
R is nonnegative definite.

We write the model as (a rather trivial) discrete dynamical system

(5) Tepq T X Vi THE 2 S W Y

Now we are going to apply the discrete Kalman filter (3) to it starting
with io = 0 and an arbitrary initial covariance matrix Po’ Using a

double induction one finds

_ T T =1 _ T T -1
(6) K, = P.H (HPOH +R)” ', K, =P.H (nHPOH +R)

It follows from this that

(7) Kﬁ = Kﬁ—1 - KﬁHKn-l

and hence, using induction again, that the estimate for in is equal to

(8) %, =nP H (nHPOH +R)" 'z

3. We are interested in what happens as n goes to infinity. There are
(at least) two interesting cases.

Case A: HPOHT is nonsingular. (I.e. in any case less outputs than the
dimension of the system). In this case the R in equation (8) can be

neglected as n goes to infinity and we find the estimator
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Case B. R is nonsingular, p > n, rank(H) = n. This is what is usually
assumed in the econometric general linear model.
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Premultiplication with H H of the matrix in (8) gives

(10) (HTR"1H)(nPOHT)(anPOHTm)”1 = 5! - HT(nHPoHT+R)‘1

Now

(11) lim HT(nHPOHT+R)'1 =0

n->oo

which is seen as follows. Because rank(HT) = rank(HPoHT) it suffices

to prove that HPOHT(nHPO.HT+R)—1 goes to zero. But

(12) HPOHT(nHPOHT+R)"1 =1 - n_1R(nHP0HT+R)-1,

and one easily sees that the terms in (nH}?QHT+R)-'1 are bounded
independantly of n (e.g. by diagonalizing HPOHT). This proves (11).
Using (10) and (11) in (8) it follows that in case B one obtains
the limit estimator

(13) 2= (8" 'H)'ER 2

which is the econometric generalized least squares estimator with

weighting matrix equal to R = E(va).
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