ON THE KALMAN FILTER AND THE ECONOMETRIC GENERAL LINEAR MODEL

by Michiel Hazewinkel

July 11, 1975
ON THE KALMAN FILTER AND THE ECONOMETRIC GENERAL LINEAR MODEL

by Michiel Hazewinkel

In this note we show how a particular econometric estimator for the general linear model (the one best adapted to the noise present in the observations) arises as the limit of Kalman state estimators of a discrete dynamical system with trivial dynamics.

1. First consider a discrete dynamical system given by the equations

\[x_{k+1} = A_k x_k + B_k u_k + f_k + C_k w_k \]
\[y_k = H_k x_k \]
\[z_k = y_k + v_k \]

where \(x_k \) is an n-dimensional state vector; \(u_k \) are deterministic controls; \(f_k \) a deterministic forcing vector; \(w_k \) is random noise in the system; \(y_k \) is the p-dimensional output vector; \(z_k \) are the observations of the \(y_k \) corrupted by random noise \(v_k \); \(A_k, B_k, C_k, H_k \) are matrices of appropriate sizes, which are assumed to be known. One further makes the assumptions

\[E(w_k) = 0 = E(v_k), E(w_k w_k^T) = \delta_{kl} Q_k, E(v_k v_k^T) = \delta_{kl} R_k, E(w_k v_k^T) = 0 \]

where \(E \) denotes expectation and \(T \) denotes transposition. The covariance matrices \(Q_k \) and \(R_k \) are also assumed to be known.

Given all this, the Kalman filter with starting values \(\hat{x}_0 = 0, P_0 \) is given by the equations (cf. e.g. [2]).

\[P_k' = A_{k-1} P_{k-1} A_{k-1}^T + C_{k-1} Q_{k-1} C_{k-1}^T \]
\[K_k = P_k' H_k (H_k P_k' H_k^T + R_k)^{-1} \]
\[\hat{x}_k' = A_{k-1} \hat{x}_{k-1} + f_{k-1} + B_{k-1} u_{k-1} \]
\[\hat{x}_k = \hat{x}_k' + K_k (z_k - H_k \hat{x}_k') \]
2. Now consider the general linear model as it is often used in econometrics

\[z = Hx + v \]

(H is usually written \(X \), and \(x \) is usually written \(\beta \); cf. [1] for a discussion of the linear model), where \(x \) is to be estimated from the observations \(z \) and \(v \) is random noise with \(\mathbb{E}(v) = 0 \), \(\mathbb{E}(vv^T) = R \), where \(R \) is nonnegative definite.

We write the model as (a rather trivial) discrete dynamical system

\[x_{k+1} = x_k, \quad y_k = Hx_k, \quad z_k = y_k + v \]

Now we are going to apply the discrete Kalman filter (3) to it starting with \(\hat{x}_0 = 0 \) and an arbitrary initial covariance matrix \(P_0 \). Using a double induction one finds

\[K_1 = P_0H^T(HP_0H^T+R)^{-1}, \quad K_n = P_0H^T(nHP_0H^T+R)^{-1} \]

It follows from this that

\[K_n = K_{n-1} - K_nH_n^{-1} \]

and hence, using induction again, that the estimate for \(\hat{x}_n \) is equal to

\[\hat{x}_n = nP_0H^T(nHP_0H^T+R)^{-1}z \]

3. We are interested in what happens as \(n \) goes to infinity. There are (at least) two interesting cases.

Case A: \(HP_0H^T \) is nonsingular. (I.e. in any case less outputs than the dimension of the system). In this case the \(R \) in equation (8) can be neglected as \(n \) goes to infinity and we find the estimator

\[\hat{x} = P_0H^T(HP_0H^T)^{-1}z \]
Case B. R is nonsingular, \(p > n \), \(\text{rank}(H) = n \). This is what is usually assumed in the econometric general linear model.

Premultiplication with \(H^T R^{-1} H \) of the matrix in (8) gives

\[
(10) \quad (H^T R^{-1} H)(nH_0^T H^T(nH_0^T H^T + R))^{-1} = H^T R^{-1} - H^T (nH_0^T H^T + R)^{-1}
\]

Now

\[
(11) \quad \lim_{n \to \infty} H^T (nH_0^T H^T + R)^{-1} = 0
\]

which is seen as follows. Because \(\text{rank}(H^T) = \text{rank}(H_0^T H^T) \) it suffices to prove that \(H_0^T H^T (nH_0^T H^T + R)^{-1} \) goes to zero. But

\[
(12) \quad H_0^T H^T (nH_0^T H^T + R)^{-1} = n^{-1} I - n^{-1} R (nH_0^T H^T + R)^{-1},
\]

and one easily sees that the terms in \((nH_0^T H^T + R)^{-1} \) are bounded independently of \(n \) (e.g. by diagonalizing \(H_0^T H^T \)). This proves (11).

Using (10) and (11) in (8) it follows that in case B one obtains the limit estimator

\[
(13) \quad \hat{x} = (H^T R^{-1} H)^{-1} H^T R^{-1} z
\]

which is the econometric generalized least squares estimator with weighting matrix equal to \(R = \text{E}(vv^T) \).

REFERENCES