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l. INTRODUCTION AND SURVEY OF RESULTS 

A linear, constant, finite dimensional dynamical system is thought of as being 

represented by a triple of matrices (F,G,H), where Fis an n x n matrix, Gan 

n x m matrix, and H an p x n matrix; i.e. there are m inputs, p outputs and the 

state space dimension is n. The dynamical system itself is 

( 1 . l) Fx + Gu, y Hx 

or, if one prefers discrete time systems 

( 1 • 2) 

A change of coordinates in state space changes the triple of matrices (F,G,H) 

into the triple (SFS-l, SG, HS- 1). Let DS denote the space of all triples 
2 

(F,G,H); i.e. DS is affine space of dimension np + n +nm. 

Then we have just defined an action of GLn on DS. This paper is concerned with 

~the following type problems. To what extent does the quotient DS/GLn exist ? 

~oes the quotient have a nice geometric structure ? Do there exist globally 

defined algebraic continuous canonical forms_ for triples (F ,G,H)? 

Most of the paper is concerned with the input aspect only, i.e. instead of 

studying triples (F,G,H) under the action (F,G,H)S = (SFS-I ,SG,HS- 1) we study 

pairs (F,G) under the action (F,G)S = (SFS-l ,SG). Let~ be the affine space 

of all pairs (F,G) and ~er the open subvariety of all completely reachable 

pairs. It turns out that the orbit space ~cr/GLn has a nice geometric structure. 

In fact, it is a quasi-projective algebraic variety. Moreover this variety 

!'.!m,n = ~cr/GLn turns out to be a fine moduli space for algebraic families of 

completely reachable pairs (suitably defined). I.e. the points of M 
-rn,n 

correspond bijectively to equivalence classes of completely reachable pairs 

and there exists over tlm,n a universal family from which every family can be 

obtained (uniquely) by pullback. 
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However, if there are two or more inputs the underlying bundle of this universal 

family is non trivial and this ruins all chances of finding continuous algebraic 

canonical forms for lScr This in turn also implies the nonexistence of 

continuous algebraic canonical forms for~. ~r and DS. There exist of course 

(many) discontinuous canonical forms. (To keep the non existence result in 

proper perspective: the Jordan canonical form for square matrices is also not 

continuous). 

In this paper we shall work over an arbitrary field k, which, for convenience, 

can be taken to be algebraically closed. However, all the constructions 

performed yield varieties defined over k itself. The category of varieties 

over k is denoted Schk. Much of the material which follows is also contained 

in [2] in one way or another. The emphasis and presentation are different, 

however; here we stress the underlying ideas rather than the algebraic 

geometric techniques. Also this paper contains additional new material, 

notably subsections 3.9, 6. I, 6.3, 7.1, 7.2, 7.3, 7.4, 7.5. 

2. GRASSMANN VARIETIES 

Let A denote the affine space of all n x s matrices, where s > n; i.e. A -n,s -n,s 
is affine space of dimension ns. Let Areg denote the (Zariski) open dense -n,s 
subvariety of ~n,s consisting of matrices of maximal rank. The group GLn acts 

(and Areg) by multiplication on the left: (S,A)t-'t SA. on A -n,s 
The orbit space 

-n,s 
Areg/GL has a nice geometric structure; it is a smooth -n,s n 

projective algebraic variety of dimension n x (s-n), known as the Grassmann 

variety of n-planes in s-space, and dE·noted Qn,s" This interpretation arises 

as follows. Let A be an n x s matrix of rank n. The n rows of A span an 

n-dimensional subspace of affine space of dimension s, and, clearly, the rows 

of SA span the same subspace. 

The (canonical) projective embedding of G is obtained as follows. -n,s 
A selection a of [l, ..• ,s} is a subset of size n. For each selection a and 

n x s 

which 

minus 

( 2. I) 

matrix A, let Aa be the submatrix of A consisting of those columns of A 

are indexed by an element of a. Let N = (n) - l the number of selections s , 
1. We now define a morphism from G to projective N-space -n,s 

G + ~N, A+ (det(A~))~ n,s ~ ~ 

where det denotes determinant. This is an embedding and exhibits G 
-n,s as 

a closed subvariety of ~N· 
Choose a selection a. The open subvariety of G where det(A~) f 0 is isomorphic -n,s ~ 

to affine n x (s-n) space: a point x E G corresponds to the unique n x s -n,s 
matrix Ax for which (i) (Ax) a= In' the n x n unit matrix and (ii) the rows of 



Ax span the linear subspace x. 

For further details concerning -2.n,s' 

defining G as a closed subvariety -n,s 
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e.g. for a description of the equations 
N of!: cf. e.g. [4]. For more details concerning 

G from the differential topological point of view cf. e.g. [3]. 
-n,s 

3. THE COARSE MODULI SPACE M 
--ill, n 

Let IS denote the affine space of all pairs of matrices (F,G). The group 
-I 

GLn acts on IS by (F,G) + (SFS ,SG). 

3. I. The :M:lrphism ! and Completely Reachable ~ 

We define the morphism R from IS to A ( I) by - -n, n+ m -(3.1 .I) R(F,G) = (G FG •.. FnG) 

The pair (F,G) is said to be completely reachable if R(F,G) has rank n. Let 

~r denote the Zariski open subvariety of IS consisting of the completely 

reachable pairs. It follows that R induces a morphism 

(3.1.2) R: IS + Areg 
~r n,(n+l)m 

Note that R is a GLn-invariant morphism. I.e. 

(3.1.3) R(SFS- 1,SG) SR(F,G) 

3.2. Nice Selections and Successor Selections. 

In section 2 we have seen that selections play on important role in the 

description of the quotient A /GL • In view of (3.J.3) it is to be expected -n,s n 
.tlllllirat they will also be important in the case of GLn acting on IS. Certain 

~elections of the (n+l)m columns of the R(F,G) play a special role. To define 

them we number the (n+l)m columns by pairs of integers (lexicographically 

ordered) as follows 

01, ... , Om; 11, ... , Im; ••• nl, ... , nm 

A selection a is called nice if (:iJ) €a • (i!j) € a for all i' < i. 

Given a nice selection a its successor selections are obtained as follows: take ----
any (i,j) E {01, •.• ,nm} such that (i,j) ~a but (i!j) €a for all i' <i. Now 

take away from a U (i,j) any of the original elements of a. The result is a 

successor selection. Note that a successor selection may be nice but need not be. 

Example, take m = 4, n = 6 
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* x x x 0, l 0,4 

x * x 

x * 

* 

6, I ... 6, 4 

The crosses constitute a nice selection. Its successor selections are obtained 

by adding one of the stars and deleting one of the crosses. 

3.3. Lemma. 

If (F,G) is a completely reachable pair then there is a nice selection a such 

that det(R(F,G)a) # 0. 

3.4. Successor Indices. 

Let a be a nice selection. The successor indices of a are those elements 

(i,j) E (01, .. .,nm} such that (i!j) Ea for all i' <i. I.e. in the example 

of subsection 3.2 the *'s mark the successor indices of the nice selection 

given by the x's. 

We now define an algebraic morphism~ :Arnn~ IS as follows. Let o(a) be the 
a - -

set of successor indices of the nice selection a. The subset a U o(a) has 

precisely n + m elements. Give this subset the ordering induced by the 

(lexicographic) ordering of (01 , •.• ,nm}. Write an element x E Arnn as an array 

of m columns of length n; let xi denote the i-th column in this array. We now 

assign to each element (i,j) of a U o(a) a column c(i,j) of length n as follows: 

if ( i, j) is the 2.-th element of a then c(i,j) = e.e.' the £ -th unit vector. If 

( i, j) is the ~-th element of o(a) then c(i,j) = x.e., the .t-th column of x. 

Writing G. (resp. Fi) for the i-th column of G (resp. F) we now define ~a by 
l 

~a(x) (F,G), where 

G. column assigned to i-th element of a u o(a) 
l 

F. column 
l 

assigned to (m+i)-th element of a U o (a) . 

Thus in the example of subsection 3.2 we have 

Gl = xl, G2 = el, G = e2, G4 = e3 3 

Note that if ~a(x) (F,G), then R(F,G)a =unit matrix, and if (i,j) is the .e.-th 

element of o(a) then R(F,G)(. ")'the (i,j)-th column of R(F,G), is equal to x, 
l,J l 

the Q.-th column of x. (This is easy to check; if (i,j) Ea U o(a) is the (m+Q.)-th 

element of a U o(a) then (i-1,j) is the £-th element of a). 
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3.5. Lemma. 
reg 

R~a : ~mn 7 ~n,(n+l)m is an embedding which as image the subvariety of ~:~n+l)m 
consisting of the matrices of the form R(F,G) for which R(F,G)a = In' the n x n 

unit matrix. 

Proof. Follows from 3.4 above. 

3.6. Lemma. 

Let a be a nice selection. Denote with Ua the subvariety of ~r consisting of 

all completely reachable pairs (F,G) for which det(R(F,G)a) ~ 0. 

Then U GL x Anm. 
a n 

lllJ!roof. Let (F,G) E Ua. There is a unique invertible matrix S such that 

~s- 1 R(F,G)) = I , the n x n unit matrix. In fact S = R(F,G)a. Further 

S-IR(F,G) aR(S-?FS,S- 1G). Now apply lennna 3.5. 

3.7. The Coarse Moduli Space M 
~- ~~~ ~~~ ~~- --m,n 

It follows directly from lemma 3.6 that the quotients Ua/GLn exist for all nice 

selections a. (Note also that Ua is GLn-invariant). To construct the quotient 

~r/GLn it therefore suffices to patch the various affine pieces 

V = U /GL ~ Arnn together. This is done as follows: let a,S be two nice 
a a. n 

selections. Let 

The open subvarieties VaS of Va and VSa of v6 are now identified by means of 

the isomorphisms ~aS : Vas 7 VSa defined by 

• 
where x' is the unique point of VSa such that 

This is a well defined isomorphism in view of lemma 3.5. Patching together all 

the Va for all nice selections a gives us, in view of lemma 3.3, a prescheme 

I:!m,n of which the points correspond bijectively to the orbits of GLn in ~er 

This does not yet show that M is a variety. However, using the same general 
--m,n 

techniques it is not difficult to write down equations for M 
--m,n 
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More precisely: the assignment: orbit(F,G) ~ (det(R(F,G) ) E G ( +I) c: PN, y y -n, n m -

where y runs through all selections, embeds M -m,n 
down a set of homogeneous equations. 

(3. 7. I) q s< ... ,x , .•. ) 
(t y 

0 

in Gn,(n+l)m c: !'._N. One now writes 

(one equation for each pair: (nice selection tt, successor selection of tt)). The 

variety M as a subvariety of PN (or G ( +I) ) then consists of those points 
~,n -n, n m 

(x) satisfying the equations (3.6.J) such that moreover for at least one nice y y 
selection tt, x # 0. Thus M is a quasi projective variety. Cf. [2] for tt -m,n 
more details. (Note also that the affine pieces + patching data description 

of M given above is compatible with the affine pieces + patching data ~, 
-m,n • 

description of G ( I) indicated in section 2. -n, n+ m 

3.8. Example. 

~2 2 is obtained by patching together three affine pieces vt:t,vf3,vy, all isomorphic 

to'A4• Let V ,v13 ,v be the affine pieces corresponding respectively to the 
- Cl y 

nice selections tt = {01,02}, f3 = {01,11} , y = {02,12}. 

Take coordinates (a 1,a2,a3,a4) for Vtt, (b 1,b2 ,b3 ,b4) for v6 , (c 1,c 2,c 3 ,c4) for 

VY arranged in columns (a 1,a2) and (a3 ,a4), etc •.•• 

Then we see that 

vttf3 {a E Vt:tja3 # O} 

VSt:t {b E v 13 jb2 # 0} 

and the identification isomorphism is 

Further 

bi 
-I 

b2 = -ala3 

b3 = a2a3 - a 1a4 b4 

vtty {a E vttla2 # O} 

Vya {c E vyjc2 I O} 

with identifications 

And finally 

-I 
cl = -a2 a4 

-I 
c2 = a2 

{b E Vf3jb~ + 

{cEVylci+ 

given 

-1 
a3 

al 

by 

+ a4 

I O} 

I O} 
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with identifications 

3.9. Warning. 

We have seen that IS /GL = M . Now DS = IS x Apn and the action of GL -er n -m,n --er --er n 
on DS -er is such its restriction to IS is faithfull. It does not follow from -er 
this that DS /GL ; M x Apn 

-er n -m,n as is incorrectly claimed in subsection 4.6.A 

of [2]. (This would be the case if .!.§.er were isomorphic to ~,n x GLn; this, 

however, is not true if m ~ 2). The following example may serve to illustrate 

I the difficulty involved. 

Let GL 1 act on A2 x A1 as follows 

A(Xl,x2,y) = (AX1,AX2,AY) 

2 21 2 Let A = {x EA x 1 ¥ 0 or x2 # O}. The quotients A /GL 1 and 
2 - reg 1 - - reg 1 

(A x A )/GL 1 both exist and are respectively equal to P , the projective -reg -
line, and.!'_Z.{pt}, the projective plane minus the point (0,0,1). Thus we have 

(A2 /GL ) x A1 = P 1 x A1 
-reg I -

(A;eg~ 1 )/GL 1 = .!'_2-..{pt} 

But the algebraic varieties E_2"{pt} and.!'.! x ~I are not isomorphic. 

Remark. It is true that the geometric quotient DScr/GLn exists and it is a 

quasi-projective variety as we expect to show in a subsequent note. 

4. FAMILIES OF DYNAMICAL SYSTEMS 

The next topic we take up is that of a family of input pairs (F,G) parametrized 

~by a variety S. The notion of a (locally trivial) vectorbundle is assumed to 

•be known (cf. e.g. [!] Ch.2 for the algebraic case, or [3] for the topological 

version). 

4. 1. Families of Completely Reachable Pairs over~ Variety. 

As a first primitive approximation of a family of completely reachable pairs 

parametrized by a variety S we could define a family over S to be a morphism 

S + ~r· This turns out not to be suffiently general. Cf. 6.2 below. A more 

general concept is: a family L of pairs over a variety S consists of 

(i) an n-vectorbundle E over S 

(ii) a vectorbundle endomorphism F: E + E 

(iii) m sections g 1, ... , gm: S + E 
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Given a point s E S we have over s 

(i)s 

(ii) s 

the fibre E(s) which is a vectorspace of dimension n 

a vectorspace endomorphism F(s): E(s) + E(s) 

(iii) s m vectors g 1 (s), ... , gm(s) in E(s) 

i.e. after choosing a basis in E(s) we have a pair (F,G). The family E is said 

to be completely reachable if these induced pairs over the points of S are all 

completely reachable, i.e. if the vectors 

i 
F(s) gj(s), i =I, ... , n; I, ... , m 

span all of E(s) for all s E S. 
A family in the sense of a morphism S + IE.cr corresponds to a family E over S 

for which the bundle E is isomorphic to S x ~n, the trivial n-vectorbundle over S. 

Two families E, E' over S are said to be isomorphic if there exists a 

vectorbundle isomorphism ~: E + E' such that ~F = F'~ and such that ~gi = gi. 

Remark. There is another possible definition of families of input pairs; however, 

this other definition is not "rigid" enough for "fine moduli scheme" purposes. 

Cf. [2] for details. 

4.2. The Functor: Isomorphism Classes of Families of Input Pairs. 

Let l: be a family of input pairs over a variety S, and let f: T + s be a 

morphism of varieties. Let i: = (E,F,g 1 , ••• ,&m). We now define an induced 
I 

family f'E over T by pulling everything back along f. I.e. 
I I I I I f t 

f·i: = (f'E,f'F,f'g 1, ••• ,f'g ), where f'E is the induced bundle over T, f'F the 
m I 

induced endomorphism over T and if we identify (f'E)(t) with E(f(t)) then 
I I 

(f'gi)(t) = gi(f(t)). (The bundle f'E has as its fibre over t the fibre of E over 
I 

f(t); these fibres are fitted together in the obvious way). The family f'E 

is completely reachable if (and only if) the family E is completely reachable. 

We now define a functor °f' : Schk + Sets from varieties over k to the category m,n 
of sets as follows. 

Of (S) m,n 

°F. (f) m,n 

set of isomorphism classes of completely reachable families of 

pairs with m inputs and state space dimension n 
I 

'f (S) + "f (T) is the mapping induced by l: 1-+ f. E if m.,n m,n 

f: T + S is a morphism in Schk. 

5. THE FINE MODULI SCHEME M --m,n 

5.1. M is a Coarse Moduli Scheme. -m,n ~- ~~~ ~~~ ~~~ 

Let Ebe a completely reachable family of pairs over a variety S. Then for every 

s E S we have (after choosing a basis in E(s)) a completely reachable pair 
(F(s),G(s)). 
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The pair (F(s),G(s)) is unique modulo a choice of basis in E(s) and hence 

defines a unique point of M . Thus we find a continuous algebraic map 
-m,n 

fl: : S -+ ~.n· This map fl: only depends on the isomorphism class of l:. It turns 

out that we have defined a morphism of functors <!>: "'F -+ Schk ( ,M ) 1 m,n -- -m,n 
<l>(S)(l:) = (fl:: S-+ ~,n). Note also that <l>(Spec(k)) is an isomorphism. Finally 

one can prove that every functor morphism ~:'Ji -+ Schk( ,M) into a 
m,n -- -

representable functor factors uniquely through <!>, via a morphism h: M -m,n 
-+ M. 

I.e. M 
-m,n 

is a coarse moduli scheme. (Cf. [2], [5] or [6] for a definition of 

this notion). 

In fact, more is true: M is a fine moduli scheme, which by definition means 
-m,n 

that the functor morphism <!> above is an isomorphism of functors. Or in other 

• ords: there exists a universal completely reachable family l:u over M such that 
-m,n 

for every family l: over a variety S there is a unique morphism f: S -+ M 
' -m,n 

such that f'l:u l:. The next thing to do is to construct this universal family 

l:u. 

5.2. Construction £i the Universal Family l:u. 

Let V ~ Arnn be the affine piece of M corresponding to the nice selection o.. 
a. -m,n 

Over V we take the trivial bundle E = V x An. Let ~ V -+IS be the 
a o. et a a -er 

morphism defined in subsection 3.4. Write ~a(x) = (Fo.(x),Ga(x)). We now define 

the bundle endomorphism Fo. Ea-+ Ea by the formula Fa(x,v) = (x,Fet(x)v) and 

the sections gla' ... , gmo. Vo.-+ Eo. are defined by gia(x) = (x,i-th column of 

Go.(x)). 

We now construct the universal family l:u by patching together the partial 

families (E ,F ,g 1 , ••• ,g ). This is done as follows. Let E "= E fv 0 , 
o. a o. ma o...., a o..., 

ESo. = E8 f vso. and let ~as : Vas -+Vea be the isomorphism constructed in 3.7 above. 

We now define the isomorphism iaS : EaS -+ EBa by the formula 

.(5.2.1) 

It is easy to check that these isomorphisms are compatible with the endomorphisms 

Fo.,FB and the sections g. ,g. , i = I, 
lo. 1$ 

u u u u u uf l: = (E ,F ,g 1, ••• ,gm) such that l: Va 

the point of M corresponding to i:u(s) 
-m,n 

m1 so that we find a family 

(Ea,Fa,glo.'' .. ,gm:x) and hence such that 

is precisely s. I.e. f M + M , i:u --m,n --m,n 
the morphism induced by the family l:u over M (cf. 5.1 above), is the identity 

-m,n 
morphism. 

5.3. Theorem. 

M is a fine moduli space with universal family l:u. -m,n 

(For a proof cf. [2]) 
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5.4. Remark. 

Let E be the canonical n-bundle over the Grassmannian G ( 1) , i.e. -n, n+ m 
(n+I )ml E = {(x,v) E Qn (n+l)m x ! v Ex}, where x is interpreted as an 

· · 1 1 ~ b f A (n+l )m L R M G b h n-dimensi.ona inear su space o _ et : 4!1,n + -n, (n+l )m e t e 

embedding induced by the GLn-invariant embedding R: IS + Areg( I) . 
_, -er -nli n+ m 

Then R"E = Eu the underlying bundle of the universal family E over M 4!1,n 

6. CANONICAL FORMS 

In this section we discuss the existence and nonexistence of canonical forms. 

6.1. Triviality of Eu and the Existence of Canonical Forms. 

Suppose that Eu, the underlying bundle of the universal family Eu, were trivial; 

i.e. there is an isomorphism x: Eu + M x An. Let e.: M + M x An be the 
--m,n i -m,n -m,n 

section ei(x) = (x,ei) where ei is the i-th unit (column) vector in An. If there 

were such an isomorphism x we would have a canonical basis, viz. 
-I -I u u {x e 1(x), ... ,x en(x)}, in every fibre E (x) of E which varies continuously 

with x. Let (F (x),G (x)) be the matrices corresponding to Eu(x) with respect x x 
to this basis. Let n : IS + M be the natural projection. Then -er -ill,n 

(F,G) ~ n(F,G) = xt+ (F (x),G (x)) x x 

would be a globally defined continuous algebraic canonical form on ~er 

Inversely, suppose there were a globally defined continuous algebraic canonical 

form on IS , say (F,G)~ (F,G). We can now define a family Ec over M as 
-gr c c c c c n c 4!1, n 

follows, E = (E ,F ,g 1 , ••• ,g ), where E = M x A, F (x,v) = (x,F v), 
m --m,n - x 

g7(x) = (x,i-th column of G) where (F ,G) is any pair such that n(F ,G) 
l. x x x x x x. 

Because Eu is universal there is a unique morphism f: M ~ M such that 
, -m,n -m,n 

f"Eu =Ee. But because n(F ,G) = x, f is the identity morphism (cf. section 5.1)• 
x x ' 

which would imply that Ec ~ Eu, i.e. that Eu is trivial. 

We have therefore proved 

Theorem. The existence of a globally defined, continuous algebraic canonical 

form for IS is equivalent to the triviality of Eu, the underlying bundle of -er 
the universal family Eu over M 4!1,n 

6.2. Nonexistence of Canonical Forms for IS 
----- --- -- -er 

Let i: G ( +I) + PN be the canonical embedding of the Grassmannian into -n, n m -
projective space (cf. section 2). Let L be the canonical line bundle over ~N, 
i.e. L(x) = the affine line which x represents. Let E be the canonical n-bundle 
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over ~n,(n+l)m' Then 

(6. 2. I) ' i 'L 

where R denotes the n-th exterior product. 

Let R: ~.n ~ £n,(n+l)m be the embedding induced by R. By 5.4 we have that 
-' U f I 
R'E = E • Hence fu:U"' R'i'L, which is a very ample linebundle. Hence the sections 

of fu:u + M separate the points of M (cf. [I] Ch.II). Hence if Eu were 
-m,n -m,n 

trivial, then REu would be the trivial line bundle and sections of the trivial 

line bundle correspond bijectively to morphisms M + A 1 • I.e. if Eu were 
. ' 1 h h . I -m,n . . . 

trivia t en t e morphisms ~.n + ~ would separate points. It 1s easily seen 

(cf. [2] for details) from the affine pieces + patching data description of M 
--m,n 

+ A1 to do this when m .::_ 2. Thus Eu that there are not enough morphisms M 
--m,n 

is not trivial and there does not exist a continuous canonical form for IS 
-er 

if 

m .::_ 2. The nontriviality of Eu justifies the definition of family which we have 

used. 

6.3. Nonexistence of Canonical Forms (continued) 

There is an easier way to prove the nonexistence of canonical forms for IScr 

Suppose there existed a continuous canonical form fro IS , say (F,G) + (F,G) 
2 I -er 

then we haven morphisms a .. : M +A defined as follows 
iJ -m,n 

a .. (x) = (i,j)-th entry of (F ,G ), where (F ,G) is any pair such that 
lJ x x x x 

n(F ,G ) = x. These morphisms would separate the points of M . But this cannot x x -m,n 
be done by morphisms to ~I if m .::_ 2, hence a continuous canonical form does not 

exist for IS 
-er 

if m > 2. A fortiori there does not exist a continuous canonical 

form for IS if m > 2. 

There is a GLn-invariant embedding ~er+ ~r' viz. (F,G) + (F,G,O) where 0 

denotes an appropriate zero matrix. Hence there also does not exist a continuous 

canonical form for ~r and DS if m > 2. If m = I there does exist a global 

continuous canonical form for ~r and ~r Summing up, we have 

6.4. Theorem. 

If m = I, there is a globally defined continuous algebraic canonical form for 

IS -er and DS -er 
If m > 2, there is no globally defined canonical form for~. ~er' DS, DScr 

7. CONCLUDING REMARKS AND OPEN QUESTIONS. 

7. I. The moduli space M is not complete (for all m,n); i.e. it is not a 
ifl•n - -I 

closed subvariety of P (or G (+I) ). Let M be its closure. E.g. F1 t e 1 -n, n m ~,n 
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i 2, GI 
n 

+ e2+ + e G. = 0, i = 2, F. iei' n; = t e 1 n' ... , m. Then 
l. 

... , 
l. 

I 
n-1 I 

0 0 
I 0 0 I 0 0 I t 

I 
I I 2n 0 0 I 2 0 0 0 0 

I 

R(F,G) . . . I . I 

I 
I n 

0 0 I n 0 0 In 0 0 
I 
I 

· · l" f Areg h · h which as t goes to 0 specia 1zes to an element o -n,(n+l)m w ic is not of the 

form R(F' ,G') for any (F' ,G') E IScr (in view of lemma 3.3) and which hence 

gives rise to a point in M which is not in M --m,n -m,n 
The question arises whether it is possible to interpret the missing points, i.e. 

the points of M ' M ,as (generalized?) dynamical systems? 
-m,n -m,n 

7. 2. The group GL of basis changes in inp..it space acts on M • If m < n, then m -m,n 
there is an open dense subset U of M such that the stabilizer of this action -m,n 
is GL 1 (diagonally embedded in GLm) for all x E U. (So what we really have is 

an action of PGL 1 on M ). By general theorems (cf. [S]) we then know that a 
m- -m,n 

geometric quotient V/GL exists for a suitable dense open subset V of M • 
m -m,n 

Problem: calculate the maximal V and describe the quotient V/GLm. In particular 

(in view of canonical forms) one would like to know whether the points of 

V/GLm can be separated by morphisms to !I 

7. 3. Let V be the subvariety of M corresponding to the nice selection o: . 
CL """111,n -I 

There is a global continuous algebraic canonical form for TI Vo:, where 

TI : IS + M is the natural projection, viz (F,G) + ~ n(F,G), where~ -er -m,n o: CL 

is the morphism defined in 3.4 above. The Vo: are also maximal subvarieties 

for which a canonical form exists for TI-IV However, not every subvariety V 

of M 
--m,n 

0: 

for which a canonical form exists for TI- 1v, is contained in one of the V 
( 

o: a nice selection. E.g. let S be a not nice selection and 

WS = {(F,G) E IScrldet R(F,G)S ~ O}. Then there is a canonical form on WS. 

(NB. WS can be nonempty as the family) 

shows. This family also shows that w6 need not be contained in any of the VCL, CL 

a nice selection. The following could be true, let A be a linear form in the 

expressions det(R(F,G) 6), where S runs through all selections. Let WA be the 

subvariety of ~r where A is~ 0. If V c~r is a subvariety for which a 

canonical form exists, then Vis contained in one of the WA. 
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7.4. What kind of morphisms between the various M does the partial 
--m,n 

realization algorithm induce? This could be interesting also because of 7.1. 

7.5. We have seen in theorem 6.4 that there is no canonical form on DScr or DS 

if m ~ 2. Let DS be the subspace of DS consisting of completely -cr,co 
reachable and completely observable linear dynamical systems. The nonexistence 

of a canonical form for ~r does not imply the nonexistence of a canonical 

form for DS , and, a priori, a canonical form for DS could exist ---cr,co --cr,co 
also for m ~ 2. Indeed, such a canonical form does exist if p = I 

(p is the number of outputs), n and m arbitrary. The geometric quotient 

~r,co/GLn does exist, cf. also section 3.9 above, but in this case there 

also exists an embedding of DS /GL in an affine space, so that the -cr,co n 
argument of 6.3 above cannot be used to prove nonexistence of canonical forms. 

Possibly one shall have to use results like 6.J to decide whether DS -cr,co 
admits a global continuous algebraic canonical form or not. 
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