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CONSTRUCTING FORMAL GROUPS. VIII: 
FORMAL A-MODULES 

Michie! Hazewinkel 

1. Introduction 

Let Op be the p-adic integers, let K be a finite extension of O, and let 
A be the ring of integers of K. A formal A-module is, grosso modo, a 
commutative one dimensional formal group which admits A as a ring 
of endomorphisms. For a more precise definition cf. 2.1 below. For 
some results concerning formal A-modules cf. [l], [2] and [6]. 

It is the purpose of the present note to use the techniques of [3] and 
[5], cf. also [4], to construct a universal formal A-module, a universal 
A-typical formal A-module and a universal strict isomorphism of 
A-typical formal A-modules. For the notion of a A-typical formal 
A-module, cf. 2.6 below. As corollaries one then obtains a number of 
the results of [I], [2] and [6]. 

In particular we thus find a new proof that two formal A-modules 
over A are (strictly) isomorphic.: iff their reductions over k, the residue 
field of K, are (strictly) isomorphic. 

As a matter of fact the techniques developed below also work in 
the characteristic p > 0 case. Thus we simultaneously obtain the 
analogues of some of the results of [I], [2], [6] for the case of formal 
A-modules where A is the ring of integers of a finite extension of 
F P((t)), where F P is the field of p-elements. 

All formal groups will be commutative and one dimensional; N 
denotes the set of natural numbers {I, 2, 3, ... }; Z stands for the 
integers, z, for the ring of p-adic integers,O for the rational numbers 
and Op the p-adic numbers. 

A will always be the ring of integers of a finite extension of O, or 
F p((t)), the field of Laurent series over F p· The quotient field of A is 
denoted K, 1T is a uniformizing element of A and k = A/1TA is the 
residue field. We use q to denote the number of elements of k. 
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2. Definitions, constructions and statement of main results. 

2.1. DEFINITIONS. Let B E AlgA> the category of A-algebras. A 
formal A-module over B is a formal group law F(X, Y) over B 
together with a homomorphism of rings pp: A__, End8 (F(X, Y)) such 
that pp( a)= aX mod(degree 2) for all a EA. We shall also write 
[a](X) for pp(a). 

If B is torsion free (i.e. B __, B@zO is injective) and F(X, Y) is a 
formal group over B, then there is at most one formal A-module 
structure on F(X, Y), viz pp( a)= r 1(a/(X)) where /(X) is the 
logarithm of F(X, Y). On the other hand if char(K) = p, then every 
formal A-module over B E AlgA is :somorphic to the additive formal 
group G0 (X, Y) = X + Y over B. In this case all the structure sits in 
the structural morphism PF: A__, End8 (F(X, Y)). 

Let (F(X, Y), pp), (G(X, Y), p0 ) be two formal A-modules over B. 
A homomorphism of formal A-modules over B, 
a(X):(F(X, Y),pp)..,(G(X, Y),p0 ) is a power series a(X)= 

b1X + b 2X 2 + · · ·, b; E B such that a(F(X, Y)) = G(a(X), a( Y)), 

a([a]p(X)) = [a]0 (a(X)); a(X) is an isomorphism if b 1 is a unit and a 
is a strict isomorphism if b 1 = I. 

2.2. Let R be a ring, R[ U] = R[ Ui. U2 , ••• ]. If /(X) is a power 
series over R[U] and n EN we denote by r>(X) the power series 
obtained from /(X) by replacing each U; with U'i. i = l, 2, .... Let 
A[V], A[V; T], A[S] denote respectively the rings A[Vi, V2, ••• ], 

A[Vi. Vi. ... ; Ti. T2, ••• ], A[S2, S3, ••• ]. Let p be the residue charac­
teristic of A. The three power series gv(X), gv.r(X), g5(X) over 
respectively K[V], K[V; T] and K[S] are defined by the functional 
equations 

(2.2.1) 

(2.2.2) 

(2.2.3) gs(X) = X + ~ S;X; + t §s!_ g<i><Xq;) 
l•2 i=I 1T' 

i not a 
power of q 

The first few terms are 

(2.2.4) V1 q (V1 V1 V2) q' gv(X) = X + - X + ---z + - X + · · · 
7T 7T 7T 
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(2.2.5) gv.r(X) = X + (~1 + r1)xq 

(2.2.6) 

+(~+ ViTf+ V2+r2)xq'+··· 
TI' 1T 1T 

Ks(X) = X + S2X2 + · · · + Sq-1Xq-i + §g_ Xq + Sq+ 1Xq+t + · - · 
1T 

+ S2q-1X2q-l + ( s~~ + S2q )xq' + ... 

We now define 

(2.2.7) 

(2.2.8) 

(2.2.9) 

Gv(X, Y) = g ~.1(gv(X) + Kv( Y)) 

Gv.r(X, Y) = gY.~r(Kv(X) + Kv(Y)) 

Gs(X, Y) = g:S1(gs(X) + Ks( Y)) 

where if f (X) = X + r2X 2 + · · · is a power series over R, then r 1(X) 

denotes the inverse power series, i.e. r 1(f(X)) = X = /(r 1(X)). And 
for all a E A we define 

(2.2.10) 

(2.2.11) 

(2.2.12) 

[a]v(X) = g\}(agv(X)) 

[a]v.r(X) = Kv~r(agv,r(X)) 

[a]s(X) = g51(ags(X)) 

2.3. lNTEGRALITY THEOREMS: (i) The power series Gv(X, Y), 
Gv.r(X, Y) and Gs(X, Y) huve their coefficients respectively in A[V], 
A[V, T], A[S]; (ii) For all a EA, the power series [a]v(X), [a]v.r(X), 
[a]s(X) have their coefficients respectively in A[ V], A[ V, T], A[S]. 

2.4. COROLLARY: Gv(X, Y), Gv.r(X, Y) and Gs(X, Y) with the 
structural homomorphisms Pv(a) = [a]v(X), Pv.r(a) = [a]v.r(X), Ps = 

(a)= [a]5(X) are formal A-modules. 

2.5. UNIVERSALITY THEOREM: (Gs(X, Y), Ps), where Ps(a) = 
[a]s(X), is a universal formal A-module. 

I.e. for every formal A-module (F(X, Y), pp) over BE Alg;1, there is a 
unique A-algebra homomorphism cf>: A[S]....,. B such that 
<f>*Gs(X, Y) = F(X, Y) and cf>*[a]5 (X) = pp(a) for all a EA. Here c/J* 
means: "apply cf> to the coefficients of the power series involved". 
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2.6. A-logarithms 
Let (F(X, Y), PF) be a formal A-module over BE Al1..1. Suppose 

that B is A-torsion free, i.e. that B--. B®.-1 K is injective. Let 
</>: A(S]--. B be the unique homomorphism taking (Gs(X, Y), Ps) into 
(F(X, Y), PF). Then lf>*gs(X) = /(X) E B®.-1 K[(X)] is a power series 
such that F(X, Y) = r'(/(X) + /( Y)), [a](X) = r'(a/(X)) for all a E 

A, and such that f(X) = X mod(degree 2). We shall call such a power 
series an A-logarithm for (F(X, Y), pp). We have just seen that 
A-logarithms always exist (if B is A-torsion free). They are also 
unique because there are no nontrivial strict formal A-module 
automorphisms of the additive formal A-module Ga(X, Y) = X + Y, 
[a](X) = aX over B®AK, as is easily checked. 

2.7. A-typical formal A-modules 
A formal A-module (F(X, Y), PF) over B E AlgA is said to be 

A-typical if it is of the form F(X, Y) = <f>*Gv(X, Y), pp(a) = 

lf>*[a]v(X) for some homomorphism i;b :A[V]-. B. It is then an im­
mediate consequence of the constructions of Gs(X, Y) and Gv(X, Y) 

that (Gv(X, Y), pv), Pv(a) = [a]v(X), is a universal A-typical formal 
A-module (given theorem 2.5). 

2.8. THEOREM: Let B be A-torsion free. Then (F(X, Y), PF) is an 
A-typical formal A-module if and only if its A-logarithm f(X) is of 
the form 

~ 

/(X) = L a;Xq', a; E B®A K, ao = I 
i;;;:Q 

Let K: A[ VJ--. A[SJ be the injective homomorphism defined by 
K( V;) = S4 1, and let A : A[ V] .... A[ V, T] be the natural inclusion. 

2.9. THEOREM: (i) The formal A-modules G~.(X, Y) and G5 (X, Y) 
are strictly isomorphic; (ii) The formal A-modules Gi-(X, Y) and 
G1,.r(X, Y) are strictly isomorphic. 

2.10. COROLLARY: Every formal A-module is isomorphic to an 
A-typical one. 

2.11. Let av.r(X) be the (unique) strict isomorphism from 
Gt(X, Y) to Gv.r(X, Y). I.e. av.r(X) = Kv~r(Cv(X)). 

2.12. THEOREM: The triple Wv(X, Y), av.r(X), Gv.r(X, Y)) i.1· 

universal for triples consisting of two A-typical formal A-modules 
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and a strict isomorphism between them over A-algebras B which are 
A-torsion free. 

There is also a triple (G5 (X, Y), as.u(X), Gs.u(X, Y)) which is 

universal for triples of two formal A-modules and a strict isomor­

phism between them. The formal A-module Gs.u(X. Y) over A[S; U] 

is defined as follows 

(2.12.1) 

(2. 12.2) 

gs.u(X) = X + L 
i~2 

i not power 
of q 

S;X; + f U;X 1 + i & g~~j(Xqi) 
j;;;::! j;:=J 1T 

The strict isomorphism between Gs.u(X, Y) and Gs.u(X. Y) is 

as.u(X) = g:S.1u(gs(X)). 

2.13. Let (F(X, Y), PF) be a formal A-module over A itself. Let 

w: A~ k = A/rrA be the natural projection. The formal A-module 

(w*F(X. Y), w*pF) is called the reduction mod -rr of F(X, Y). We also 

write (F*(X, Y), pi for (w*F(X. Y), w*pf'). 

2.14. THEOREM: (Lubin [6] in the case char(K) = 0): Two formal 
A-modules over A are (strictly) isomorphic if and only if their 
reductions over A are (strictly) isomorphic. 

2.15. REMARK: If the two formal A-modules over A are both 

A-typical then they are (strictly) isomorphic if and only if their 

reductions are equal. 

3. Formulae 

3.1. Some formulae 
The following formulae are all proved rather easily, directly from 

the definitions in 2.2. Write 

(3.1.1) gv(X) = L a;( V)Xq', ao( V) = I 
i""O 

(3.1.2) g, .. T(X) = L a;( V, T)X 4 ', ao( V, T) = I 
i-"--0 
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Then we have 

(3.1.3) 

(3. 1.4) 

3.2. We define for all i, j 2 1. 

(3.2.1) 

The symbols Y\fl, Z\f> then have the usual meaning, i.e. Ylf> = 
tr- 1(VfTf"'- TfVf'') 

3.3. LEMMA: 

- n Vf11-i (qn-i-i) 
a.( V, T) - L a._,( V, T) --+ L a.+;( V) Y ii + T. 

i=l '1r i.j2:J,i+jsn 

- n vr~ ~-~ - 2: a._,( V, T) --+ L a.+;( V)Z ;; + T. 
1•1 'TT' i.j~l.i+jsn 

PROOF: That the two expressions on the right are equal is obvious 
from the definitions of Z;j and Y,i (because Z1; + Z;1 = Y1; + Yi1). We 
have according to (3.1.4) and (3.1.5) 

a.(V, T)= a.(V)+ i a._,(V)T?°-' 
i-=1 

n-1 - -iv ~ -I (V)vq•-• r - 1T n + .t:J 1T an-i i + n 
i•l 

n-1 

- -iv T ~ -i (V T)V9"-' - 1t' n + n + £./ 7( an-i ' J 
jc} 

n-1 n-i 
- ~ '\' -1 . ·(V)T9·-•-1y9•-1 

"' ~ 1T an-1-1 J ! 
i=I J=I 

n-1 n-i 
+ ~ ~ -1 . ·( V) y9•-·-1r9·-• £.J 1T an-•-J J J 

i=I =I 
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= Tn + 11" 1 Vn + ~ 7r- 1a.-;( V, T)Vf-' 
j::::] 

+ 2: lln-i-j vwn-1-i) 
i.j~l.i+j$n 

= Tn + :i 7r- 1an_;( V, T)Vf-' + 2: a.+; Y\f""'- 11 

j::::.J .t ;~t,i+j"Sn 

3.4. Some congruence formulae 

283 

Let n EN; we write 8v1n1(X), Gv1n 1(X, Y), ... for the power series 
obtained from gv(X), Gv(X, Y), ... by substituting 0 for all V; with 
i~ n. 

One then has 

(3.4.1) 

(3.4.2) 

gv(x) = 8v1n1(X) + v. x•" mod(degree q" + 1) 
11" 

8s(X) = 8s1•1(X) + T(n)S.X" mod( degree n + 1) 

where T(n) = 1 if n is not a power of q and T(n) = 11"- 1 if n is a powe1 
of q. Further 

(3.4.3) 8v.r(X) ""'8v.r1n1(X) + T.Xq• mod(degree qn + 1) 

(3.4.4) Gv(X, Y)""' Gv1• 1(X, Y)- V.7r- 1 B.·(X, Y) mod( degree q" +I) 

(3.4.5) Gs(X, Y) = G51 • 1(X, Y)- S.T(n)B.(X, Y) mod(degree n + 1) 

where B;(X, Y) = (X + Y); - X; - Y;, and finally 

(3.4.6) 8s.u(X) = 8s.u1n1(X) + UnX" mod(degree n + 1) 

4. The functional equation lemma 

Let A[V; W] = A[Vi. V2, ••• ; W,, W2, ••• ]. If /(X) is a power series 
with coefficients in K[ V; W] we write P1.2f(Xi. X2) = /(X1) + /(X2) 

and PJ(Xi. X 2) = a/(X1), a EA. 
4.1. Let e,(X), r = 1, 2 be two power series with coefficients in 

A[ V, W] such that e,(X) = X mod( degree 2). Define 

(4.1.l) 

And for each operator P. where P = P1.~ or P =Pu, a EA and r, 
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t E {I. 2} we define 

(4.1.2) 

4.2. FUNCTIONAi. EQUATION LEMMA: (i) The power series 
Ft,.r,,(X 1, X~) have their coefficients in A[ V; W] for all P, e,., e,; (ii) If 
d(X) is a power series with coefficients in A[ V: W] such that d(X) = 
X mod(degree 2) then f,(d(X)) satisfies a functional equation of type 
(4.1.1). 

PROOF: Write F(Xi. Xcl for F\...,_./Xi. X 1). (If P¥ P 1 ,, X 1 does not 
occur). Write 

where F; is homogeneous of degree i. We are going to prove by 
induction that all the F; have their coefficients in A[V: WJ. This is 
obvious for F 1 because e,(X) = e,(X) = X mod(degree 2). Let 
a(Xi. X1) be any power series with coefficients in A[V: W]. Then we 
have for all i, j EN 

( 4.2.1) 

This follows imnediately from the fact that a q = a mod 7T for all 
a E A and p E 7TA. Write 

( 4.2.2) f,(X) = L b;( r)X', b 1( r) = I 
i"'I 

Then we have, if qtln but qe+i,r n, that 

(4.2.3) bn(r)1T' E A[V; W] 

This is obvious from the defining equati1 n , -1.1.1). Now suppose we 
have shown that F1, .. ., F" have their coefficients in A[ V; W], n ? I. 
We have for all d? 2. 

(4.2.4) 

h now follows from (4.2.4), (4.2.3) and (4.2.1) that 
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Now from (4.1.2) it follows that for all i EN 

(4.2.6) 

Using (4.2.5), (4.2.6) and (4.1.1) we now see that 

f,(F(Xi. X 2)) = e,(F(Xi. X 2)+ L 1T_, VJ~q' 1(F(X 1 , X 2) 4 ') 
i=I 

x 

""e,(F(Xi. X2) + L 1T 1 VJ~q' 1(F1 q' 1<X1', Xf)) 
i=l 

= e,(F(Xi. X2) + L 7T- 1 V;Pf~q''<Xf', Xf) 
r=t 

= e,(F(Xi. X2)) + ( P ~ 7T- 1 VJ\q'')<Xi. X 2) 

= e,(F(X1, X2)) + Pf,(Xi. X2)- Pe,(Xi. X,), 

285 

where all congruences are mod(!, degree n + 2). But f,(F(X 1, X 2)) = 
Pf,(Xi. X2). And hence e,(F(Xi. X2) - (Pe,)(Xi. X 2) ""0 mod(!, degree 
n + 2), which implies that Fn+i has its coefficients in A[ V, W]. This 
proves the first part of the functional equation lemma. Now let d(X) 
be a power series with coefficients in A[ V, W] such that d(X)"" 
X mod(degree 2). Then we have because of (4.2.1) and (4.2.2) 

x 

g,(X) = f,(d(X)) = L 7T-I VJ~q' 1(d(X)q'> 
i=l 

x 

... L 7T-I VJ~4 ' 1(d 1 q' 1(Xq')) 
i=l 

x 

= L '77"-l V;g~q'}(Xq') 
i=l 

where the congruences are mod( I). This proves the second part. 

4.3. PROOF OF THEOREM 2.3 (and corollary 2.4): Apply the f UllC­

tional equation lemma part (i). (For G8 (X, Y) and [a ls(X) take 
V; =Sq•). 

5. Proof of the universality theorems 

We first recall the usual comparison lemma for formal groups (d. 
e.g. [3]). 
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For each 11 EN, define B,(X, Y) = ((X + Y)" - X" - Y" )) and 

C,,()( Y) = 11(11) 18,(X. Y), where !'(11) =I if n is not a power of a 

prime number, and v(p') = p, r EN, if p is a prime number. 

5.1. If F(X. Y), G(X, Y) are formal groups over a ring B, and 

F(X, Y) = G(X, Y) mod( degree 11), there is a unique b E B such that 
F(X, Y)""' G(X, Y) + bC.(X, Y) mod( degree n + I). 

5.2. PROOF OF THE UNIVERSALITY THEOREM 2.5: Let 

(F(X, Y), PF) be a formal A-module over B. Let A[S],, be the subal­

gebra A[S2, ••. , S,_iJ of A[S]. Suppose we have shown that there 

exists a homomorphism <f>n: A[S], ~ B such that 

(5.2.1) 

(5.2.2) 

<f>,*(Gs(X, Y)) = F(X, Y) mod(degree n) 

<f>,,*[a Js(X) =[a ]p(X) mod( degree 11) 

and that </>,, is uniquely determined on A[S],, by this condition. This 
holds obviously for n = 2 so that the induction starts. 

Now, according to the comparison lemma 5.1 above there exist 

unique elements m, m., a E A, in B such that 

(5.2.3) 

(5.2.4) 

<f>,,*G5(X, Y) = F(X, Y) + mC,,(X, Y) mod( degree n + I) 

</>,,*[a].,(X) = [a]p(X) + m0 X" mod(degree n +I) 

From the fact that ai-+[a]s(X) and ai-+[a]p(X) are ring homomorphisms 

one now obtains easily the following relations between the m and m 0 

(5.2.5) 

(5.2.6) 

(5.2.7) 

(a" - a)m = v(n)ma 

am,,+ b"m,, =mah 

If 11 is not a power of p = char(k), then v( n) is a unit. Let 

<P"' 1 : A[S],,, 1 --> B be the unique homomorphism, which agrees with </J, 
on A[S],, and which is such that </J,,. 1(S,,) = mv(n)'. Then obviously 
(5.2.1) holds with 11 replaced by n + I, and (5.2.2) holds with n 

replaced by 11 +I because of (5.2.5) and because (3.4.2) implies that 
(with the obvious notations) 

(5.2.8) [a]<;(X) = [a].,,,,(X)- r(11)(a" - a)S,X" mod(degree 11 +I). 
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Now let n = p', but n not a power of q, the number of elements of 
k. Then there is an y E A such that (y - y") is a unit in A. Let 
<f>n. 1 : A[S] •• 1 -+ B be the unique homomorphism which agrees with <h. 
on A[S. and which takes s. to (y - y")- 1m, .. Now (5.2.7) implies that 
for all a EA 

(y - y")m. =(a - a")m, 

Hence <f>n+ 1(a - a" )S. = m. for all a so that (5.2.2) holds with n 
replaced with n +I. Finally, again because (y - y") is a unit, we find 

Finally let n be a power of q. In this case there is a unique 
homomorphism cPn+i: A[S].+1-+ B which agrees with <b. on A[S]. and 
which takes S. into (I - 7T"- 1)- 1m,,.. Of course this is the only possible 
choice for <1> •• 1 because of (5.2.8). 

Now consider the A-module generated by symbols m, m.., a EA 
subject to the relations (a" - a)m = v(n)m., m. •• ,., - mu - m.,., = 
Cn(a, b)m, am,.,+ b"m. = m..,.,. for all a, b EA. This module is free on 
one generator m,,.. This will be proved in 5.3 below. It follows that all 
the m. and m can be written as multiples of m,,.. These multiples turn 
out to be 

simply because if one takes an arbitrary element m,,. and one defines 
m •. m as above, then all the required relations are satisfied. It follows 
in particular that 

where m, m.,, a E A are as in (5.2.3), (5.2.4) above. Hence 

so that, by (5.2.8) and (3.45), (5.2. l) and (5.2.2) hold with n replaced 
by n + I. This completes the induction step and (hence) the proof of 
theorem 2.5 . 

. 'U. LFMMA: Let X be the A-module generated by symbols m. m., 
for all a E A suhject to the relations 



288 

(5.3.1) 

(5.3.2) 

(5.3.3) 

M. Hazewinkel 

(a" - a)m = i'(n)m., for all a EA 

ma•h - m,, - mh = C.(a, b)m for all a, b EA 

amh + b"m., =mah for all a, b EA 

[12] 

Suppose moreover that n is a power of q. Then X is a free A-module 

of rank I, with generator m". 

PRooF: Let X = X/Am". For each x EX we denote with x its 
image in X. Then because (7T- 7T")m., =(a - a•)m,, and because I -
rr"- 1 is a unit in A we have that 7Tri'z., = 0 in X. Further ( 17" - 7T )m = 
v(n)m" so that also mn = 0 in X. This proves that X is a k-module. 
Now b" = b mod rr (as n is a power of q). Hence mah= amb + bma in 
x proving that the map c: k -+ x, defined by al--+ ma is well defined 
and satisfies C(iib) = iiC(b) + bC(ii). In particular C(ii") = nii"- 1C(ii) = 
0. But ii"= ii. Hence C(ii) = ma = 0 for all a EA. 

With induction one finds from (5.3.2) that 

(5.3.4) 

where C.p(Zi. ... , Zr) = p- 1((Z 1 + · · · + z.)" - Z~ - · · · - Z~). Taking 
a 1 = · · · = ar =I we find that mr - pm 1 = (p"- 1 - l)m, and hence m = 0 
because I - p"- 1 is a unit of A. This proves that X is zero so that X is 
generated by m,,. Now define X-+A by m,,.-rr- 1(a"-a), m>--+'1T- 1p. 
This is well defined and surjective. Hence X = A. 

5.4. PROOF OF THEOREM 2.8: First, (Gv(X, Y), Pv) has the A­
logarithm gv(X) and hence satisfies the A-logarithm condition of 
theorem 2.8. The A-logarithm of (<f>*Gv(X, Y), <f>*Pv) is <P*gv(X), 
which also satisfies the condition of theorem •2.8. Inversely, let 
(F(X, Yl. PF) have an A-logarithm of the type indicated. Let 
</>: A[S]-+ B be such that <P*G5 (X, Y) = F(X, Y), <P*Ps = PF· Then, as 
B is A-torsion free, <P*gs(X) = f(X) because A-logarithms are 
unique. From the definition of G5 (X, Y) (cf. (3.4.1 ), (3.4.2)) we see 
that </>(S;) = 0 unless i is a power of q. Hence <P factorizes through 
A[S] ..... A[ VJ, S;>-> 0 if i is not a power of q, Sq,>-> V;, and, comparing 
gv(X) and gs(X), we see that r/J*gv(X) = f(X), where r/J is the 
A-homomorphism A[ VJ-+ B induced by </J. q.e.d. 

6. Proofs of the isomorphism theorems 

6.1. PROOF OF THEOREM 2.9: Apply the functional equation 
lemma. 
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6.2. PROOF OF THE UNIVERSITY OF THE TRIPLE: (G5(X, Y), 

as.v(X), Gs.u(X, Y)): Let F(X, Y), G(X, Y) be two formal A­

modules over B and let {3(X) be a strict isomorphism from F(X, Y) 

to G(X, Y). Because Gs(X, Y) is universal there is a unique 

homomorphism <P: A[S]-> B such that <P*Gs(X, Y) = F(X, Y). 

<P*Ps = PF· Now as.u(X) = g~~\,(gs(X)), hence we have by (3.4.6) 

(6.2.1) as.u(X) = as.u1ni(X) - UnX" mod( degree n + I) 

It follows from this that there is a unique extension l/J: A[S, U]-> B 

such that l/l*as.u(X) = {3(X), and then t/f*Gs.u(X, Y) = G(X, Y), 

•hPs.u = Pa, automatically. 

6.3. PROOF OF THEOREM 2.12: Let F(X, Y), G(X, Y) be two A­

typical formal A-modules over B, and let {3(X) be a strict isomor­

phism from F(X, Y) to G(X, Y). Let f (X), g(X) be the logarithms of 

F(X, Y) and G(X. Y). Then g({3(X)) = f (X). Because of the um­

versality of the triple (Gs(X, Y), as.u(X), Gs.u(X, Y)) there is a 

unique A-algebra homomorphism I/I: A[S, U]-> B such that 

Because F(X, Y) is A-typical we know that !/J(S;) = O if i is not a 

power of q. Because F(X, Y) and G(X, Y) are A-typical we know 

that f(X) and g(X) are of the form 2: c;Xq'. But g({3(X)) = f(X). It 

now follows from (6.2. l) that we must have !/J( U;) = 0 if i is not a 

power of q. This proves the theorem. 

6.4. PROOF OF THEOREM 2.14: It suffices to prove the theorem for 

the case of strict isomorphisms. Let F(X, Y), G(X, Y) be two formal 

A-modules over A and suppose that F*(X. Y) and G*(X, Y) are 

strictly isomorphic. By taking any strict lift of the strict isomorphism 

we can assume that F*(X, Y) = G*(X, Y). Finally by Theorem 2.9 (i) 

and its corollary 2.10 we can make F(X, Y) and G(X. Y) both 

A-typical and this does not destroy the equality F*(X, Yl = G*(X, Y) 

because the theorem gives us a universal way of making an A-module 

A-typical. So we are reduced to the situation: F(X, Y), G(X, Y) are 

A-typical formal A-modules over A and F*(X, Y) = G*(X. Y). Let 

<P. <f>' be the unique homomorphisms A[ V] ~A such that 

<P*Gv(X. Y) = F(X, Y). <P*Pv = Ph 

<P~Gv(X. Y) = G(X, Y), <P~Pv = p,;. 
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Let v1 =<Ji( V;), vi = 4>'( V;). Because F*(X, Y) = G*(X, Y), p'F =pt; 
we must have 

(6.4. I) v1 =vjmod1TA, i= 1,2, ... 

(by the uniqueness part of the universality of (Fv(X, Y), pv)). 

If we can find t; EA such that an( v, t) = an( v') for all n then a,,,,(X) 
will be the desired isomorphism. Let us write z\r·•-J) for the element 
of A@z 0 obtained by substituting v; for V; and ti for T; in Z\y""' '>. 
Then the problem is to find f;, i = I, 2, ... such that 

<6.4.2> an<v') = i 1T 1an-1<v'>vr-· + 2: an+j(v)z\r-·-1) + tn 

Now 

(6.4.3) 

i=t i.j2::l,i+i's.n 

. 
a.(v') = L 1T ·1a •. ;(v')v;q•-• 

i=l 

So that t. is determined by the recursion formula 

n 

(6.4.4) t. = L a •. ;(v')1T- 1(vjq"-' - v?'-')- L a.+i(v)z\["·'-IJ 
i=I i,j2:1,i+J~n 

And what we have left to prove is that these t. are elements of A (and 
not just elements of K). However, 

Hence 

(6.4.6) 

and it follows recursively that the t. are integral. This proves the 
theorem. 

6.5. PROOF OF REMARK 2.15. If F(X, Y) and G(X, Y) are A­
typical formal A-modules over A, which are strictly isomorphic then 
F*(X, Y) = G*(X, Y). Indeed, because F(X, Y), G(X, Y) are strictly 
isomorphic A-typical formal A-modules we have that there exist unique 
v;, vj, t; EA such that (6.4.2), (6.4.3) and hence (6.4.4) hold. Taking n = I 
we see that v1 = v; mod 1T. Assuming that v1 = vj mod 1T, i = I .... , n - l, 
it follows from (6.4.4) that Vn = v~. Finally, let F(X, Y) be an A-typical 
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formal A-module, F(X, Y) = G,.(X, Y), v1, v~ •... EA, and let u EA be 
an invertible element of A. If /(X) = ~ a;X 4' is the logarithm of F( X, Y), 

then the logarithm of F'(X, Y) = u _, F( uX, u Y) is equal to ~ a;u 4 ' 1 X4', 
so that F'(X, Y) = G,.(X, Y) with vl = u 4 - 1vi. .. . , v~ = u 4'- 1v ••... and it 
follows that vj = v; mod rr, i.e. F'*(X, Y) = F*(X, Y). 

7. Concluding remarks 

Several of the results in [I], [2] and [6] follow readily from the 
theorems proved above. For example the following. Let F(X, Y) be a 
formal A-module; define END(F), the absolute endomorphism ring of 
F, to be the ring of all endomorphisms of F defined over some finite 
extension of K. Let <f>h: A[ V]--+ A be any homomorphism such that 
<f>h(V;)=O, i=l, .. .,h-1, <f>h(Vh)EA*, the units of A and 
<f>h(Vh+1)r!O. Then ((</>h)*Fv(X. Y), (</>h)*pv) is a formal A-module of 
formal A-module height h and with absolute endomorphism ring 
equal to A. 

(If char(K) = p then formal A-module height is defined as follows. 
Let B be the ring of integers of a finite extension of K; let m be the 
maximal ideal of B. Consider [ 1T ]dX) for (F(X, Y), PF) a formal 
A-module over B. If [ rr 1F(X) = 0 mod(m ), then one shows that the 
first monomial of [ 1T ]F(X) which is not = 0 mod(m) is necessarily of 
the form aX4 •• Then A-height (F(X, Y), PF) =h. If char(K) = 0 this 
agrees with the usual definition A-height= [K: 0Pr1 Height). 
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