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1. INTRODUCTION. 

Let~ be the p-adic integers, let K be a finite extension of~ 

and let A be the ring of integers of K. A formal A-module is, 

grosso modo, a commutative one dimensional formal group which 

admits A as a ring of endomorphisms. For a more precise definition 

cf. 2.1 below. For some results concerning formal A-modules 

cf. [1], [2] and [6]. 

It is the purpose of the present note to use the techniques of [3] 

and [5] cf. also [4], to construct a universal formal A-module, 

a universal A-typical formal A-module and a universal strict 

isomorphism of A-typical formal A-modules. For the notion of a 

A-typical formal A-module, cf. 2.6 below. As corollaries one then 

obtains a number of the results of [1], [2] and [6]. 

In particular we thus find a new proof that two formal A-modules 

over A are (strictly) isomorphic iff their reductions over k, the 

residue field of K, are (strictly) isomorphic. 

All formal groups will be commutative one dimensional; JN stands for 

the set the natural numbers {1, 2, 3, .•. }; :?2 denotes the integers, 

:?2 the ring of p-adic integers,~ denotes the rational numbers and 
p 

~the p-adic numbers. A will always be the ring of integers of a finite 

extension of I\, its quotient field will be denoted K, 1T is a 

uniformizing element of A and k is the residue field of K, 1.e. 

k = A/irA. We shall use q to denote the number of elements of k. 

2. DEFINITIONS, CONSTRUCTIONS AND STATEMENT OF 

MAIN RESULTS. 

Let 7l and A be as above. With B we shall always denote an A-algebra 
p 

which is a characteristic zero ring i.e. B + B 2:72~ is injective. 

2. 1. Definition. 

A formal A-module over B is a (one dimensional commutative) formal 

group G(X,Y) over B such that for every a E A, there is a power series 

[a](X) such that [a](X) = aX mod degree 2, and such that 
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[a](G(X,Y)) = G([a](X),[a](Y), i.e. [a](X) is an endomorphism of 

G(X,Y). Because Bis a characteristic zero ring the series [a](X) is 

unique. 

2.2. Let R be a ring, JR[U] = JR[U 1 ,u2 , .•• ] . If f(X) is a power series 

overJR[U] and n EJN we denote with f(n)(X) the power series obtained 

from f(X) by replacing each u. with U~, i = 1,2, .... 
l l 

Let A[V], A[V;T], A[:3] denote respectively the rings A[V1' v2 , ... ], 

A[V 1,v2 , ... ; T1, T2 , ... ], A[S2 ,s3 , ... ].Let p be the residue 

characteristic of A0 The three power series gv(X), ~ T(X), g8 (X) 
' over respectively K[V[, K[V;T] and K[S] are defined by the functional 

equations 

(2.2.1) 

(2.2.2) 

(2.2.3) 

The first few terms 

(2.2.4) 

(2.2.5) 

gS(X) = 

are 

00 v. ( i) i 
I 2. g q (Xq ) 

i=l TI 

00 l oov. i) i 
= X + I T.Xq + t 2. g(q (Xq ) 

i=1 l i=l 1T V,T 

00 

x + I s.xi + 
i=2 

l 

i not a 
power of q 

v1 v vq v 2 
gv(x) = x + -;-xq + (~ + ;)xq + 

'TT 

v v vq v Tq v2 2 
= X + (-~l+T 1 )Xq + (~ + nl +-:; + T2 )Xq + 

'TT 

(2.2.6) = x + s2x2 + .. . • + s xc;,.- 1 
q-1 

s 
+ -9.. xq + s xq+ 1 + . • . + 

'TT q+1 

s sq 
+ s2q-1 x2q-1 + c--;-1- + 

We now define 

(2.2.7) 

(2.2.8) 

(2.2.9) 
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where if f(X) = X + t:.2X2+:· •.• is a power series over R, then f- 1(X) denotes 

the inverse power series, i.e. f- 1(X)) = X = f(f- 1(X)). 

And for all a E A we define 

(2.2.10) 

(2.2.11) 

(2.2.12) 

[aJV,T(X) = g;~T(agV,T(X)) 

[aJ 8 (x) = g~ 1 (ag8 (x)) 

2.3. Integrality Theorems. 

(i) The power series GV(X,Y), GV T(X,Y) and G8 (X,Y) have their 
' coefficients respectively in A[V], A[V,T] , A[S] 

(ii) For all a EA, the power series [a]y(X), [aJV,T(X), [a] 8(X) 

have their coefficients respectively in A[V], A[V,T], A[S] 

2.4. Corollary. 

GV(X,Y), GV,T(X,Y) and G8 (X,Y) are formal A-modules 

2.5. Universality Theorem. 

G8 (X,Y) is a universal formal A-module 

I.e. for every formal A-module F(X,Y) over an A-algebra B there is 

a unique A-algebra homomorphism ~ : A[S] + B such that G~(X,Y) = F(X,Y) 

where G~(X,Y) is the form.al group obtained from G8 (X,Y) by applying 

~ to its coefficients. 

2.6. Definition. 

Let F(X,Y) be a formal A-module over B. Because B is a characteristic 

zero ring the logarithm f(X) of F(X,Y) is well defined. We shall say 

that the formal A-module F(X,Y) is A-typical if its logarithm is of 

the form 

00 l. 

(2.6.1) f(X) = E a.Xq 
i=o 1 

2.7. Theorem. 

GV(X,Y) is a universal A-typical formal A-module 
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2.8. Let K : A[V] + A[S] be the injective homomorphism defined 

by K(V.) = S., and let A : A[V] + A[V,T] be the natural inclusion. 
' 1. 1. 

q 
2.9. Theorem. 

(i) The formal A-modules G~(X,Y) and G8 (X,Y) are strictly isomorphic 

(ii) T A( ) ( ) . he formal A-modules Gv X,Y and GV,T X,Y are strictly isomorphic 

2 • 10 . Corollary . 

Every formal A-module is isomorphic to an A-typical one 

2.11. Let aV T(X) be the (unique) strict isomorphism from GVA(X,Y) 
' -1 

to GV,T(X,Y). I.e. aV,T(X) = ~,T(gV(X)). 

2.12. Theorem. 

The triple (GV(X,Y), av T(X), GV T(X,Y)) is universal for triples 
' ' consisting of two A-typical formal A-modules and a strict isomorphism 

between them. 

There is also a triple (G8 (X,Y), a8 ,U(X), GS,U(X,Y)) which is universal 

for triples of two formal A-modules and a strict isomorphism between 

them. The formal A-module a8 ,U(X,Y) over A[S;U] is defined as follows 

(2.12.1) 

(2.12.2) 

J. not power 
of q 

co • 

r u.x1 + 
i=2 1. 

s . . . 
co l l l 
E -L g ( q ) ( xq_ ) 

i=1 1T s,u 

The strict isomorphism between G8 ,U(X,Y) and G8 ,U(X,Y) is 

as,u(x) = g~~u(gs(X)). 

2.13. Let F(X,Y) be a formal A-module over A itself. Let 

p: A+ k =A/TIA be the natural projection. The formal group FP(X,Y) 

is called the reduction mod 1T of F(X,Y). 

2.14. Theorem (Lubin [6]). 

Two formal A-modules over A are (strictly) isomorphic iff their 

reductions over k are (strictly) isomorphic. 
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2.15. Remark. 

If the two formal A-modules over A are both A-typical then they 

are (strictly) isomorphic if and only if their reductions are equal. 

3. SOME FORMULAE. 

3.1. Some Formulae. 

The following formulae are all proved rather easily direct from the 

definitions in 2.2. Write 

(3.1.1) 
co • 

l 
L: a. (V)Xq 

. l i=o 
00 l 

(3.1.2) 

Then we have 

(3.1.3) a.(v) = 
l 

(3.1.4) a. (V) = 
l 

L: a. (V ,T )Xq 
. l 
i=o 

v. 
a (V) 

0 

l -+ 
1T 

a (V,T) = 
0 

r 
1T 

i-1 
(3.1.5) a.(V,T) 

l 
= ai(V) + ai_ 1(V)T{ + ... + a 1(V)T{_1 + a0 (V)Ti 

3.2. We define for all i, j .'.:_ 1. 

(3.2.1) 
i i 

y . . = 1T - l ( V. T~ -T. V~ ) , Z .. 
lJ l J l J lJ 

-1 pi pj 
= 1T ( V. T . -T . V. ) 

l J J l 

The 
(qr) ( r) 

b l Y Z .~ then have sym o s .. the usual meaning i.e. 
lJ lJ 

r r+i r r+i 
= 1T-l(V~ T~ -T~ V~ 

l J l J 
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3.3. Lemma. 
n-i 

n v9- ( n-i-j) 
a (V ,T) Ea .(V,T) 

l 
= + l: a . . (V)Y. ~ + T n i=1 n-i 7f i,j>1,i+j<n n-i-J lJ n 

- -
n-i 

n v~ ( n-i-j) 
= l: a .(V,T) l + l: a .. (V)Z.~ + T 

i=1 n-i 7T i ,j~1 ,i+j.::_n n-i-J 1.J n 

Proof. That the two expressions on the right are equal is obvious 

fr.om the definitions of Z. . and Y.. (because Z .. + Z .. = Y .. + Y .. ) l,J lJ 1.J Jl lJ Jl. 
We have according to (3.1.4) and (3.1.5) 

an(V,T) 
n n-i 

= a (V) + l: a . (V)T9-
n . l D-l l i= 

n-1 _ 1 ( ) qn-i n-1 n-i _ 1 ( ) qn-i-J 
+ l: 7r a . V V. + T + l: l: 7r a .. V V. 

i=1 n-i J.. n i=1 j=1 n-i-J J 
n-i 

T~ 
l 

-1 n-1 -1 n-i 
= 1f v + T + I 1f a . (V ,T)v9-n n 

i=1 n-i i 

n-1 n-i -1 n-i-j n-i 
i:: l: 1f a . . (V)T9- yC}. 

i=1 j=1 n-i-J J J.. 

n-1 n-i -1 n-1.-J n-i 
+ l: l: 7f a .. (v)v9- T9-

i=1 j=1 n-1.-J J J.. 

-1 
n-1 -1 n-i 

= T + 1f v + l: 1f a .(V,T)T9-n n i=1 n-i J.. 

+ 
( qn-i-j) 

i:: a .. Y .. 
i,j~1,i+j.::_n n-i-J J.J 

n _ 1 ( ) qn-i = T + I 7r a . V,T T. + 
n . 1 n-i J. i= 

( qn-i-j) 
l: a .. Y .. 

n-1.-J 1.J i ,j~ 1 ,i+j.::_n 

3.4. Some Congruence Formulae. 

Let n E JN; we write gV(n) (X), GV(n) (X,Y) , ... for the power series 

obtained from gv(X), GV(X,Y), ... by substituting 0 for all Vi with 

i > n. 

One then has 



V n 
(3.4.1) esy(x) - €Sv(n)(X) + ~ Xq mod (degree qn+1) 

(3.4.2) 

where T(n) = 1 if n is not a power of q and T(n) = w~ 1 if n 

is a power of q. Further 

n 
(3.4.3) GV,T(X) - GV,T(n)(X) + TnXq mod (degree qn+1) 

7 

(3.4.4) -1 n 
Gy(X,Y) - GV(n)(X,Y)-Vnw B n(X,Y) mod (degree q +1) 

q 

(3.4.5) G8 (X,Y) = GS(n)(X,Y) - SnT(n)- 1Bn(X,Y) mod (degree n+1) 

where B.(X,Y) = (X+Y)i 
J. 

And finally 

(3.4.6) 

4. THE FUNCTIONAL EQUATION LEMMA. 

Let A[V;W] = A[V 1,v2 , ... ; w1,w2 , ... ]. Iff(X) is a power series 

with coefficients in K[V;W] we write P1 ,2f(X 1 ,X2 ) = f(X.1) .+f(X2 ) 

and Paf(X1,x2 ) = af(X 1), a EA. 

4.1. Let e (X), r = 1,2 be two power series with coefficients in 
r 

A[V,W] such that e (X) = X mod (degree 2). Define 
r 

(4.1.1) f (X) 
r 

= e (X) + 
r 

And for each operator P, where P = P1 ,2 or P =Pa, a EA and 

r, t E {1,2} we define 

(4.1.2) 

4.2. Functional Eguation Lemma. 

( i) The power series FPV (X1,x2 ) have their coefficients in 
,er,et 

A[V;W) for all P,er,et. 



(ii) If d(X) is a power series with coefficients in A[V;W] such 

that d(X) = X mod (degree 2) then f (d(X)) satisfies on a 
r 

functional equation of type (4.1.1). 
p 

Proof. Write F(X1,x2) for FV,es,et(x1,x2 ). (If P # P1,2, x2 

does not occur). Write 

where F. is homogeneous of degree i. We are going to prove by 
]. 

induction that all the F. have their coefficients in A[V;W]. 
]. 
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This is obvious for F 1 because er(X) = et(X) = X mod (degree 2). 

Let a(X1 ,x2 ) be any power series with coefficients in A[V;W]. 

Then we have for all 1, J E~ 

(4.2.1) 

This follows immediately from the fact that aq _ a mod n for all a EA 

and nip. 
Write 

(4.2.2) 
00 • 

f (X) = 1 b.(r)X1 

r i=1 i 

Then we have, if q,Q,ln but q.Q,+ 1 ~n, that 

(4.2.3) 
,Q, 

b (r )n E A[V;W] 
n 

This is obvious from the defining equation (4.1.1). 

Now suppose we have shown that F1 , ••• , Fn have their coefficients 

in A[V;W], n > 1. We have for all d > 2. 

(4.2.4) 

It now follows from (4.2.4), (4.2.3) and (4.2.1) that 

(4.2.5) 
i) i 

f(q (F(X X )q ) 
r 1' 2 
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Now from ( 4. 1 . 2) we have that for all i E ]~ 

(4.2.6) 

where all congruences are mod (1, degree n+2). But fr(F(X 1 ,x2 )) = 
Pft(x1 ,x2 ). And hence er(F(X1 ,x2 ) - (Pet)(x1,x2 ) = O mod (1, degree n+2), 

which implies that Fn+l has its coefficients in A[V,W]. This proves 

the first part of the functional eQuation lemma. 

Now let d(X) be a power series with coefficients in A[V,W] such that 

d(X) = X mod (degree 2). Then we have because of (4.2.1) and (4.2.2) 

where the congruences are mod(1). This proves the second part. 

4.3. Proof of Theorem 2.3 (and corollary 2.4) 

Apply the functional equation lemma part (i). (For G8(x,Y) and 

[a] 8 (x) take Vi= Si). 
q 



5. PROOF OF THE UNIVERSALITY THEOREMS. 

We first recall the usual comparison lemma for formal groups 

(cf. e.g. [3]). 
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For each n EJN, define B (X,Y) = ((X+Y)n-~-'i1)) and n 
Cn(X,Y) = v(n)- 1Bn(X,Y), where v(n) = 1 if n is not a power of a prime 

number and v(pr) = p, r EJN, if p is a prime number. 

5.1. If F(X,Y), G(X,Y) are formal groups over a ring B, a.nd 

F(X,Y) - G(X,Y) mod (degree n), there is a unique b E B such that 

F(X,Y) - G(X,Y) + bCn(X,Y). 

5. 2. Lemm.a. 

Let F(X,Y) and G(X,Y) be formal A-modules, and suppose that 

F(X,Y) = G(XS) mod (degree n), then there is a unique b E B ~?l::Q 

such that F(X,Y) = G(X,Y) + bBn(X,Y), where b E B if n is not a power 

of q and ~b E B if n is a power of ~· 

This lemma is standard. Cf. e.g. [2]. For completeness sake we give 

the easy proof. By 5. 1 we know that there is a unique b E B ~?Z.::Q 

such that F(X,Y) = G(X,Y) + bB (X,Y). Let a EA. B being a characteristic 
n 

zero ring we have that [a]F(X) = [a]G(X) mod (degree n). Let c E B 

be the unique element such that [aJF(X) = [a]G(X) + ct1 mod (degree n+1). 

We have mod (degree n+1) 

abBn (X,Y) 

= [a]FG(X,Y) - c(X+Y)n - abB (X,Y) + banB (X,Y) + c(x°+Yn) n n 

It follows that (a-an)b E B for all a E A. Now if n is not a power of q, 

there is a a EA such that a - an is a unit in A, hence b E B in that case. 
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Let n be a power of q, suppose that nb ~ B, then there is an r such 

that nrb E B but nrI\ E B, because pb E B and Pint for t large enough. 

This is a contradiction, hence nb E B. 

5.3. Proof of Theorem 2.5. (Universality of GS(X,Y)) 

This follows immediately from 5.2 above and (3.4.4) 

5.4. Proof of Theorem 2.7.(A-typical universality of Gv(X,Y)). 

Let F(X,Y) be an A-typical formal A-module over B. By the universality 

of G8 (X,Y), there is a unique A-algebra homomorphism~ : A[S] + B 

such that G~(X,Y) = F(X,Y). Because F(X,Y) is A-typical (cf. 2.6) 

it follows from (3.4.1) that we must have ~(S.) = 0 if i is not a power 
l. 

of q. This proves the theorem. 

6. PROOFS OF THE ISOMORPHISM THEOREMS. 

6.1. Proof of Theorem 2.9. 

Apply the functional equation lemma. 

6.2. Proof of the Universality of the Triple.(GS(X,Y), aS,U(X),GS~U(X,Y)) 

Let F(X,Y), G(X,Y) be two formal A-modules over Band let S(X) be a 

strict isomorphism from F(X,Y) to G(X,Y). Because G8 (X,Y) is universal 

there is a unique homomorphism~ : A[S] ~ B such that G~(X,Y) = F(X,Y). 

Now aS U(X) = g~ 1 U(gS(X)), hence we have by (3.4.6), 
' ' 

(6.2.1) mod (degree n+1) 

It follows from this that there is a unique extension ~ : A[S,T] + B 

such that a~,U(X) = S(X). And then G~,U(X,Y) = G(X,Y) automatically. 

6. 3. Proof of Theorem 2. 12 . 

Let F(X,Y), G(X,Y) be two A-typical formal A-modules over B, and 

let B(X) be a strict isomorphism from F(X,Y) to G(X,Y). Let f(X), g(X) 

be the logarithms of F(X,Y) and G(X,Y). Then g(B(X)) = f(X) . Because 

of the universality of the triple (G8 (X,Y), as U(X), GS U(X,Y)) there is a 
' ' unique A-algebra homomorphism ~: A[S,U] + B such that 

G~(X,Y) = F(X,Y) and a~,U(X) = S(X). Because F(X,Y) is A-typical we 

know that ~(s.) = o if i is not a power of q. Because F(X,Y) and G(X,Y) 
l. 
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are A-typical we know that f(X) and g(X) are of the form 

g(S(X)) = f(X). It n0w follows from (6.2.1) that we must 

if i is not a power of q. This proves the theorem. 

i q 
I:c.X . But 

l 

haveijJ(U.)=O 
l 

6.4. Proof of Theorem 2.14. 

It suffices to prove the theorem for the case of strict isomorphisms. 

Let F(X,Y), G(X,Y) be two formal A-modules over A and suppose that 

F*(X,Y) and G*(X,Y) are strictly isomorphic. By taking any strict 

lift of the strict isomorphism we can assume that F*(X,Y) = G*(X,Y). 

Finally by theorem 2.9 (i) and its corollary 2.10 we can make F(X,Y) and 

G(X,Y) both A-typical and this does not distroy the equality 

F*(X,Y) = G:+(X,Y) because the theorem gives us a universal way of 

making an A-module A-typical. So we are reduced to the situation; 

F(X,Y), G(X,Y) are A-typical formal A-modules over A and F*(X,Y) = G*(X,Y). 

Let $, $ 1 be the unique homomorphisms A[V] +A such that 

Gt(X,Y) = F(X,Y), Gt(X,Y) = G(X,Y). Let vi =$(Vi)' vr =$'(Vi). Because 

F*(X,Y) = G*(X,Y) we must have 

(6.4.1) v. - v! 
l l 

mod n , i = 1, 2, ... 

If we can find ti EA such that an(v,t) = an(v') for all n then av,t(X) 

. ( q_n-i-J) 
will be the desired isomorphism. Let us write z.. for the element 

lJ 
of A 2 It, obtained by substituting v. for V. and tJ. for T. in 

LZ: l l J 

( ,,n-i-J) 
z. ;- . Then the problem is to find t. , i = 1 ~ 2,. . . such that 
lJ l 

(6.4.2) a ( v' ) = 
n 

n n-i 
I: TI- 1a . (v' )v9- + 

( n-i-j) 
E a . . ( v) z. ~ + tn 

i=l n-i i i ,j.'.'.'._1 ,i+j.::_n n-i-J lJ 

Now 

(6.4.3) 
n 1 n-i 

a ( v 1 ) = I: n - a . ( v' )v ! q 
n i=1 n-i i 

So that tn is determined by the recursion formula 

(6.4.4) t = 
n 

n 1 n-i n-i 
I: a .(v')n- (v!q -v'?-

. n-1 i i 
i=1 

( n-i-j) 
1: a .. (v)z.~ 

l. J.>1 i·+J·<n n-i-J lJ 
' - ' -



And what we have left to prove is that these t are elements of A 
n 

(and not just elements of K). However, 

n-i 
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(6.4.5) 1f a .(v') EA 
n-i z .. 

l.J 

-1 qi qj 
= 1f (v.t. -t.v. ), v. - v! 

l. J J l. J. l. 
mod ir 

Hence 

n-i 
(6.4.6) 

. n-i 
v!q 

l. 

q n-i+1 - v. mod ir 
l. 

(. rin-i-j, 
z . "?- i - 0 mod irn-i-j 

1J 

and it follows recursively that the t are integral. This proves the 
n 

theorem. 

6.5. Proof of Remark 2.15. 

If F(X,Y) and G(X,Y) are A-typical formal A-modules which are strictly 

isomorphic then F*{X,Y) = G*(X,Y). Indeed, because F(X,Y), G(X,Y) are strictly 

isomorphic A-typical formal A-modules we have that there exist unique 

v.,v!, t. EA such that (6.4.2), (6.4.3) and hence (6.4.4) hold. Taking 
l. l. J. 

n = 1 we see that v, = v; mod ir. Assuming that Vi =Vi mod ir, 

i = 1, ... , n-1, it follows from (6.4.4) that v = v'. Finally, let 
n n 

F(X,Y) be an A-typical formal A-module, F(X,Y) = G .. (X,Y), v1'_v2 , ••• EA, 
v J. 

and let u E A be an invertible element of A. If f(X) = Ea.X<l is the 
l. 

logarithm of F(X,Y), then the logarithm of F'(X,Y) = u- 1F(uX,uY) is 
ql. 1 l. 

equal to Ea.u - Xq, so that F'(X,Y) = G ,(X,Y) with 
l. v 

1 n 1 
v' = uq- v ... , v' = uq - v and it follows that v! - v. mod ir, i.e. 

1 1' n n' l. i 

F'*(X,Y) = F*(X,Y). 

7. CONCLUDING REMARKS. 

Several of the results in [1], [2] and [6] follow readily from the 

theorems proved above. For example the following. Let F(X,Y) be a 

formal A-module; define END(F), the absolute endomorphism ring of F, 

to be the ring of all endomorphisms of F defined over some finite 

extension of K. Let <j>h: A[V] + A be an/ homomorphism such that 

<Ph(Vi) = O, i = 1, .~., h-1, <j>h(Vh) EA*, the units of A and 

<j>h(Vh+ 1) ::!- 0. Then FVh(X,Y) is a formal A-module of formal A-module height 

h and with absolute endomorphism ring equal to A. 
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SYMBOLS USED. 

Latin lower case 

Latin upper case 

k,q,a,f,i,n,p,g,r,t,e,d,j,b,c,z,u,h, 

K,A,B,G,R,U,X,Y,V,T,S,F,Z,W,P,E,N,D, 
Latin lower case bold face 

Latin upper case bold face :Q(rational numbers, .1N(natural numbers, ?l (integers) 

Latin lower case as sub- or superscript p,n,i,q,r,j,a,t,e,l,d,h 

Latin upper case a sub- or superscript V,T,S,U,P,F,G, 

Latin upper case bold face as sub- or superscript ?l 

Greek lower case 

Greek upper case 

Greek lower case as sub- or superscript 

Numerals 0,1,2,3,4,5,6 

Numerals as sub- or superscript 0,1,2 

Special symbol as sub- or superscript 00 ,=,+,-,(,),~,~· 

Special symbols /, [,] ,= .~,+,E, (,),=,i.:,+,-.~.~. {,},I ,'f-, 

Groups of letters occurring in formulas mod, degree 


