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1 . INTRODUCTION. 

Let K be discretely valued complete field of characteristic 

zero with algebraically closed residue field k of characteristic 

p > 0. Let A be the ring of integers of K and let F be a one 

dimensional commutative formal group over A. Let K /K be a 
co 

f-extension (associated to the prime p), i.e. K /K is galois and 
00 

Gal(K /K) = 2Z , the p-adic integers, and let K be the invariant 
n co n p 

field of p Gal(K /K). There 
00 

are natural norm maps 

F-Norm I : F(K ) + F(K) no n 

Let v be the normalized exponential valuation on K, i.e. v(n) = 1, 

where TI is a uniformizing element of K. Let Fs(K), s EJR, s ~ 1 

denote the filtration subgroup of F(K) consisting of all elements 

x of A such that v(x) > S. Let h be the height of the formal group 

F and let eK be the (absolute) ramification index of K, i.e. 

v(p) = eK. In [3] we proved. 

There exist constants c 1 and c2 such that for all n EJN 

S a 
F n(K) c Im(F-Norm I ) c F n(K) 

n o 

The proof in [3] that there exists a constant c 1 such that the 

second inclusion holds is relatively easy, but the proof in (3] 

that there is a c2 such that the first inclusion holds is very 

long and laborious. It is the purpose of the present note to give 

a much shorter and more conceptual proof of this part of the 

theorem by using some results on the logarithm of F. This proof 

is similar in spirit to the proof sketched in section 12 of (3] 

for the main theorem of [2]. 

For more complete definitions of the notions mentioned above 

cf. (2] and [3]. Some motivation as to why one would want to study 

the images of norm maps of formal groups can be found in the 

introduction of [2] and especially in (6]. 
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So the theorem we are going to prove in this paper is 

Theorem A. Let K00/K be a r-extension of a mixed characteristic 

local field K with algebraically closed residue field. Let F be a 

one dimensional commutative formal group over A of height h over A. 

Then there exists a constant c such that 

B 
F n(K) c Im(F-Norm I ) 

n o 

for all n, where Sn= h- 1(h-1)neK +c. 

(If h = oo, h- 1(h-1) is taken to be equal to 1). 

All formal groups in this paper will be one dimensional commutative. 

The notation introduced above will remain in force throughout this 

paper. In addition we use A for the ring of integers of K ; n for 
n n n 

a uniformizing element of K · v for the normalized exponential n' n 
valuation of K , i.e. v (n ) = 1; and Tr I is the trace map from n n n n o 
K to K. The natural numbers are denoted by JN. 

n 

2. RECAPITULATION OF SOME RESULTS AND DEFINITIONS. 

2.1. Let L/K be a cyclic extension of degree p. There is a unique 

integer m(L/K) ~ 1 such that for all n,TrL/K(n~AL) = n~K' where 

r = [p-1((m(L/K)+1)(p-1)+n)] where [y] denotes the entier of y. 

We shall use mn to denote the number m(K /K 1 ). n n-

2.2. Lemma. (Tate [7]). There is a constant m0 such that 

mn = (1+p+ ... +pn- 1)e + m for all sufficiently large n. 
K o 

2.3. Let L/K be any totally ramified extension. We define the function 

AL/K as follows AL/K(n) = r iff TrL/K(n~A1 ) = n~AK. The function 

AL/K can of course be described in terms of the various m(Li/Li_ 1) 

where K = L1 c L2 c ... c Ls= Lis a tower of cyclic extensions of 

prime degree. It follows immediately from this that 

2.4. Le:rn.ma. AL/K(t) 

indepently oft. 

-1 = e 1 eKt + et, where the numbers et are bounded 

2.5. Lemma. ([3] lemma 3.4). Let L/K be a totally ramified extension, 

then there is at EJN such that for all t > t 
0 - 0 



t 
F-NormL/K(F (L)) 

2.6. Reduction of the Proof of Theorem A. 

3 

If K /K is a r-extension, then so is K /K for all r EJN. In view 
oo oo r 

of 2.2 and 2.5 this reduces the proof of theorem 1.1 to the case 

( n-1) where K /K is r-extension such that m = 1+ ... +p e + m 
oo n K o 

for all n EJN. Indeed if K /K is any r-extension, then oy 2.2 
~- CXl 

there is an r E JN such that m = m(K /K 1) = 
n n n-

( n-r-1) r 1+ ... +p e. p + 
K 

apply lemma 2.5 with 

( r-1) m + 1+p+ ... +p e for all n > r. Now 
o K 

L = K (using that F-Norm I = F-Norm / (F-Norm I )). r n o r o n r 

2.7. Lemma. Let Foe a formal group over A and f(X) its logarithm. 

Then for t large enough f is an isomorphism 

f ---
where G is the additive formal group, i.e. G (X,Y) = X + Y a a 

Proof. We have f(F(X,Y)) = f(X) + f(Y) and no EA if f(X) = Io Xn. n n 
The lemma follows easily from this. 

2.8. Idea of the Proof of Theorem A. 

We consider the diagram 

f 
F(K ) -+ K 

n n 

j F-Norm l Tr I n o 

f 
F(K) -+ K 

which is commutative. It now suffices to prove that there is a constant 

c such that 

Sn 
TI A c Tr / f(n A ) n o n n 

This follows directly from lemma 2.7. 
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3. LEMMAS ON f(X). 

3.1. Leth= height(F) < 00 • Let F* be the reduction of the formal 

group F to a formal group over k, the residue field of K. Because 

k is algebraically closed F* is classified by its height h. 

Let FT be the p-typically universal formal group of [4]. 

Substituting 1 for Th and 0 for all Ti with i ~ h we obtain 

a formal group G over A such that G* is of height h and hence 

isomorphic to F* by a theorem of Lazard, because k is algebraically closed, 

cf. e.g. [1]. It now follows from [4] part I section 5.3 and [5] 

that F is isomorphic to a formal group Ft obtained from FT by 

substituting ti for Ti, i = 1, 2, ... where ti E nA, i = 1, ... , h-1, 

th = 1, tj = O, j = h+1, h+2, ... We can therefore assume that Fis 

equal to such an Ft. It follows that if 

2 
(3.1.1) F(X,Y) = f- 1(f(X) + f(Y) f(X) = X + a 1xP + a 2xP + ... 

then the coefficients of f(X) satisfy relations 

pa 
n 

n-1 
= a tp 

n-1 1 

n-h 
p 

+ · · · + an-hth 
(3.1.2) 

t 1 , ••• , th- l E nA, th = 1 

3.2. Lemm.a. If height(F) < 00 then there is non EJN such that 
0 

v(a ) > 0 for all n > n . n - - o 

n > h 

Proof. If v(a ) > O for all n > n . Then v(a ) > 0 for all n > n -1 n- -o n- -o 
by 3.1.2 (because th = 1), and thus with induction v(an} > 0 for all 

n .::._ 1, which means that f(X) is an isomorphism of F with the additive 

group and hence implies height(F) = 00 • 

3.3. Lemma. If h < oo then there is an n0 EJN such that 

< 0 

for all r E JN. 

n 
Proof. Let n 1 E IN be such that p > neK for n ~ n 1. Then for n .::._ n1+h 

n-i 
we have that v(a .tJ? ) _> O, i = 1, ... , h-1. Now let n > n 1 be such 

n-i i o -



that < o. 
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Such an n exists by ler.ima 3.2. Then by (3.1.2) we 0 

a 
n 

0 

and with induction v(an +rh) 
0 

= v( a )-re,., 
no :. 

r E JN. 

3.4. Lemma. Let h < oo. There is a constant c such that 

for all n E JN. 

Proof. We have that (cf.(4]) 

' l ) \ 3 • .:+. 1 a = n 

- c 

i1 i, ... i 1 r-• 
t. t~ ... t~ 

11 12 12 

r 
p 

where the sum. is over a.11 sequences (i 1 , ••• ,ir) such that 
i 1 + ... + ir = n, ij E { 1, ..• ,h}. Let s(i 1 , ... ,ir) be the number 
of indices j such ij =h. Let e1, 

i 1 , ••• , i ) which are different 
' r 

£ be the indices in · · · • r-s 
from h in their original order. 

Then 

u.:.. .2) 
~, 

v( a ) > 1 + p n 

Choose c' such that 1+p+ ..• + 

r < n + c' 
h 

-che 

Q1+ ... +£ 
1 r-s ........ + p - re 

K 

c'+1 
p > e and c 

K 
= e c'. If 

K 

has valuation 

> -1 =E.+ -h ne E - e { 1 . Suppose that :r h c' + d, d E :M. Because 

£ 1 + ... +i + hs = n we have that r-s + hs .::_n, hence ' r-s 
, , ( n ) , ) n c ' +d (h-1 )s.::. n-r = \h-1; h' - \c'+d hence s.::. n -11=1 and r-s > c'+d 

arid therefore 
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(3.4.3) r-s 1 + p + ... + p - reK ~ 1 + p + ..• + c'+d n 
p - (~c'+d)eK 

> d c' n 
p ( 1+p+ ... +p ) - (..;..;+c' )e - deK 

n K 

> 

which proves the lemrna. 

3.5. Remark. The estimate of 3,4 is (up to a constant) best possible. 

Because we see from lern..~a 3.3 that for n of the form n + rh we 

have for a certain constant d that 

v(a ) 
n 

-1 
;;:: -h neK + d 

4. VARIOUS FUNCTIONS AND ESTIMATES. 

0 

( n-1) From now on K.,/K is a r-extension such that mn = Hp+ ... +p eK + m0 

for all n E JN; F is a formal group ov~r A of height h < oo o·f the form 

F(X,Y) = f- 1(f(X) + f(Y)), where f(X) is as in (3.1.1) and (3.1.2). 

4. 1 • ~qe_ :f.~£~~5'_n~ µn, on, jn, tn. 

We define for all n E JN, t E JN, i E JN 

( 4 . 1. 1 ) µn ( pi , t ) = i e K + A. • I ( t ) if i ~ n , n-1 o 
( i ) i-n un p , t = ne K + p t 

if i > n 

(4.1.2) a (t) = min{v (a.) + µl;l (pi' t}} n l 
l 

(4.1.3) . ( t) 
Jn = smallest integer l such that a ( t) ::; v (a.) + µn(pi,t) 

n l 

(4.1.4) 

4.2. Lemma. For every n and t there are only finitely many i such that 

a (t) = v (a.) + µ (pi ,t). 
n 1 n 

This follows immediately from (4.1.1) and lemma 3.4. 
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4.3. We define 

(4.3.1) 
r ( 1 +mn ) ( p ... 1 ) + 1 

rn = L p . ] 

Lemma. Suppose that m0 > 2 and e > p. Then for all n > r > o 
K...,. 

( ) ( ) n-r n-r /.. I 2r + 1- 1 > r+ 1 e _J) · + p n n-r n - K 

Proof. One easily sees that ~ I (m ) = m + re pn-r = 
n n-r n n-r K 

( n-r-1) n~r 
l+p+ ... +p eK + m0 + re.rcP 

Hence it suffices to prove ~nat 

n n ( r n-1) r 2r -1 > m + e p + p - p + ..• +p e. - m p 
n+l - n K K o 

n + pn + ( 1 + + r- 1 ) :r = e p p ... +p e. + m - m0 p 
K K o 

If then m p r n 
2 and we also have r = n, ~ p because mo > 

0 
n n-1 

eK because p 2- p e > p. 
K-

It follows that it suffices to prove that 

n ( n-1) > e p + 1+p+ ... +p e t m 
- K K o 

-1( n+1 ) -1( ) -1 We have 2r 1-1 > 2p p -rl e + 2p p-1 m + 2p -1. 
n+ - K o 

. -1 ( ) . Now if p > 2 then 2p p-;-1 m > m +1 because m > 2 and if p = 2 
0 - 0 0 

2p- 1 n 2 ... 1 ( n- 1 ) n then = 1. Hence 2r 1-1 .:_2p eK - p e + m > 1+ .. ,+p e +m +p e. 
p+ K O - K o K 

4.4. Trace Lemma ( (3] Proposition 4,1) 

( )p-1 ( ) . Let TI 1 = -1 N I 1 TI , whf.Fre N /. 1 :i.s the norm r(.l.ap K -+ Kn- l n- n n- q · n n- n 
Then we have 

t 
(4.4.1) Tr I 1(TIP ) -n n- n 

t 
prrn-1 

2r +t+1 
mod TI n 

n-1 



4.5. Lemma. If m > 2 and e > p then 
o K-

Proof. First let r < n. Then we have because of 4.4 that 

rt 
Tr I 1 ( irp ) n n- n 

r-1 
P1rp t 

- n-1 

r-1 

mod(v _1 valuation n-
r-1 ) 2r +tp -1 

n 

8 

( p t 
Trn-1/n-2 pirn-1 ) -

( . r-2 n-1 mod v 2 valuation 2r 1+tp -1+p e_) 
n- n- K 

t 
Tr (pr- 1irP ) -

n-r+1/n-r n-r+1 Prirt mod(v valuation 
n-r n-r 

( r-i n-i ( . ) ) n-r ( . ) Now A • I 2r . 1 +p t-1 +p i-1 e . = t + p i-1 e + n-1 n-r n-1+ K K 

+ \ ·; (2r . -1) > t + reKpn-r + pn-r by lemma 4.3. It follows 
n-1 n-r n-1+1 

thg,t 

(4.5.1) 
rt r t Tr (TIP ) p 'IT 

n/n-r n - n-r mod(v -valuation t+re. pn-r+pn-r) 
n-r K 

Now v (pr'ITt ) = rerpn-r + t. So that 
n-r n-r !\. 

(4.5.2) 

Now suppose that r > n, then replacing t with pr-nt and r with n we 

obtain from (4.5.1) 

(4.5.3) 
r-n n p t 

- p 1r ( · r-n mod v-valuation p t+ne +1) 
K 

which proves the lenwia also in this case. 



9 

4.6. Lemma. 

If m > 2 and e > p and if t lS such that A I (t+1) = A I (t) + 
0 K- n-r o n-r o 

rt 
= µn (pr 't); and r < n then v ( Tr I ( 'ITP ) ) if r > n then 

n o n 
rt 

µn(pr,t) v ( Tr I ( 'ITP ) ) = for all t. n o n 

Proof. If x EA and v (x) =sand A I (s+1) =A I (s) + 1 
n-r n-r n-r o n-r o 

then always v(Tr I (x)) =A I (s). Lemma 4.6 now follows 
n-r o n-r o 

immediately from (4.5.1). The second statement of the lemma follows 

from ( 4 . 5 . 3 ) . 

4.7. Lemma. 

For every t E JN there is a constant c such that 

a (t) < h- 1(h-1 )ne + c 
n - K 

Proof. Let i 0 be such that v(ai ) < 0, v(ai +rh) = 
0 0 

for r E 2Z , r> _ 1 • For n < i take i = i , t = t . Then we have 
- 0 0 0 

i i -n ]. 

a (t) < v(a. ) + µ (p 0 ,t) < p 0 
n i n 

< p ot 
0 

If n > 1 0 , let i be the largest number of the form 1 0 + rh, which 

is smaller then n. Then n-i < h and we have 

a (t) < v(a.) + µ (p1 ,t) = v(a.) - re + 
n - i n i 0 K 

A . I ( t) + le K n-1 o 

1 

Now An-i/o(t) is bounded because n-i <h. Let d : 1max{A 1; 0 (t), ... ,\h/o(t)}. 

As i + rh + h > n we have that r > h- 1n - 1 - h i so that indeed 
0 0 

for all n E JN 

l -1 . 
with c = max(p 0 t, (1+h i 0 )eK+d) 
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5 • PROOF OF THEOREM A • 

By lemma 2.2 and 2.6 we can assume that the r-extension K /K 
CIO 

such that ( n-1) for all n E JN and that lS m = 1+p+ .. . +p e + m, n K 
e .. ~ p, m > 2. 

K 0 -

5 . 1 . Lemma . 

Let L/K be an extension. Then there is at EJN such that 
t 

F-NormL/K(F(L)) ~ F (K). 

Proof. If we have F(X,Y) = X + Y + I: a .. xlyl. It follows that 
. . 1 lJ 
i ,J~ 

if s is such that AL/K(s) < [L:K]- 12s, and v1 (x) = s then 

F-Norm(x) = TrL/K(s) mod (v -valuation AL/K(s)+1). Up to a constant 

we have AL/K(s) = [L:K]- 1s and the lemma follows. 

5.2. Proof of theorem A in the case h = 00 • This follows from 

lemma 5.1. Cf. also [3]. 

5.3. In view of 5.2. We can assume that h < oo. Hence we can assume 

that F(X,Y) is a formal group with logarithm f(X) such that (3.1.1) 

and (3.1.2) hold. Given all this we have available the various 

functions defined in section 3 and 4 and the various lemma's 

of sections 3 and 4. 
Choose n such that v(a 

o n < 0 and v(an +rh) = v(an ) - reK' r > 0 
0 0 0 

n and such that p > ne for n > n . Note that if n > n +h and 
- K o - o 

v(a) < -1 then v(a h) = v(a) + 1 by (3.1.2). n n- n 

( h-1) Lett EJN be such that t > 1+p+ ... +p eK + m and choose a 
0 0 - 0 

constant c 0 as in lemma 4.7. Now let n 1 EJN be such that 

n 1 > n +h, and such that a (t ) < neK. - o n o 

5.4. Lemma. 

If n > n 1 , j (t ) < n. - n o -

Proof. Suppose n'=j (t ) > n. Then n o 

n' v(a ,) + µ (p ,t ) =a (t ) < neK n n o n o 
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n' 
But µ (p ,t ) = ne + 

n o K 
n'-n p t. Hence v(a ,) < -1 and 

n 
v(a, h) = v(a ,) + 1. 

n - n 
Then if n' > n+h we have 

( ) ( n' -h ) ( ) n' -h-n 
v a , h + µ p ,t = v a , + 1 + ne + p t 

n- n o n K o 
< 

n' 
< v(a ,) + µ (p ,t ) which is a contradiction. And if n'-h < n. 

n n o 

We have 

n' 
< v(a ,) + µ (p ,t ) because A-; (t ) 
- n n o io o which is also 

i=1, ... ,h . ( h-1) if t 0 .::__ 1+p+ .•. +p e K + m0 . 

S.S. Proof of Theorem!::_. 

< t 
- 0 

for 

q.e.d. 

We assume all the conditions mentioned above. Let n 1 be as in 

5.3 above. By lemma 5.1 it suffices to prove theorem A for n ~ n1 . 

To do this it suffices a.ccording to 2. 8 to prove that 

B 
Tr I f( TI A ) ::J TI nA for n > n Note that because 

no nn - 1· 

f(F(X,Y)) = f(X) + f(Y) we have 

(5.5.1) x,y E Tr I f(n A ) => x + y E Tr I f(n A ) n o n n n o n n 

Now let t E JN be 
0 

J = j ( t ) . Then 
n o 

( h-1 ) larger than 1+p+ ... +p eK + m0 , and let 

j < n by lemma 5.4. Let £ = £ (t ) = n - j (t ) 
- n o n o = n - J, 

and let t be the largest integer such that t > t and An/ (t) = An; (t ) 
- 0 x,O x,O 0 

Then we have (cf. 4.1) 

(5.5.2) µn(pl ,t) > µ (pi,t ) for all i = 1, 2, ... 
- n o 
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And hence (cf. 4.1) 

(5.5.3) 

Now we also know by lemma's 4.6 and 4.5 that 

(5.5.4) 
:pJt 

v( a.) + µn(pj,t) v(Tr I (a.rr ) ) = 
n o J n J 

l.t 
> v( a. ) + µn(pi,t) v(Tr I (a.rrp )) ]. 

"' J n o i n - ]. 

Let x EA. Then it follows from (5.5.4) and lemma 4.2 that 

(5.5.5) 
a (t)+1 

modrr n 

where 

(5.5.6) v( b ) = a ( t) = a ( t ) , v(b. ) > a ( t), i = 1 , ... , r 
o n n o i - n 

Because k is algebraically closed this implies that 

(5.5.7) 
a (t )+1 a (t ) a (t )+1 

Tr I f(TI A )/TI n ° A~ TI n ° A/TI n ° A 
n o n n 

for every t E JN, 
0 

We obtain an inclusion (5.5.7) 

Now also a ( 1+p+ ... +h-l )e K+m ) = h- 1 (h-1 )neK + c for a certain constant c. 
n o 

Hence in view of (5.5.1) and completeness of A (or lemma 5.3) 

theorem A will be proved if we can show for every n ~ n 1 that all 

s EJN", s ~ s =a ((1+p+ ... +ph- 1 )eK+m )) occur as a a (t) for some t. 
o n o n 

This is done by induction on s - s 0 . 

( h-1) The induction hypothesis is: there is a t 0 > 1+p+ ... +p ek + m0 

such that a (t ) = s > 0. n o 
Let j = j (t ), then j < n. Let £ = n - j 0 . Let t 1 = o n o o - o 
Then 

Q, 
0 

t + p 
0 



v( a.) + 
J.. 

I~ ~ 8) vt a; \ \).). I + 
VO 

It follows that 

(5.5.9) 

µn(p 
l 
't 1 ) v( a.) > - 1 

µn{p 
Jo 

• t 1) ' = V\a; 
'-' 

on ( t 1 ) < a ( t ) + - n o 

+ 

\ 
I 

µn(p 
l ,t 

+ I 
µ~ \ p 
" 

J. 
p • 
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\ if i ,I + > 
;) 

Jo 
,t + 

0 

if 1 < i 
"o 

If o (t 1 ) =a (t) + 1 we are done. If on(t 1 ) =a (t ), then because n , n o n o 

of (5.5.8) we must have jn ( t 1) = J 1 < ; Let " = n - J 1 and "o . )C 1 
Q, 1 

.;.. 
t, Then an(t2) < a ( t ) 1 • if This "2 = + p . + process - n 1 , 

stop and finally give at such that o (t) = s + 1, because 
n 

j 0 > j 1 > •• .:._ 0. This concludes the proof of the theorem. 
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SYMBOLS USED. 

Latin lower case k,p,v,s,x,h,e,c,n,m,y,r,t,f,b,a,j,2 

Latin upper case K,A,F,L,X,G,Y,T,N, 

Latin lower case as sub-or superscript p,n,s,t,r,a,h,i,j, 

Latin upper case as sub or superscript K,L,T 

Latin lower case bold face 

Latin upper case bold face 7l (integers), JR(reals), JN(natural numbers) 

Greek lower case 

Greek upper case 

1T ,>..,a,B,µ,a, 

r 

Greek lower case as sub-or superscript 

Numerals 0,1,2,3,6, 

Numerals as sub-or superscript 0,1,2, 

B,a,a, 

Special symbols > ,/ ,"''."',(,) ,E,.::_,-,=, [,] ,+,c,+,L:,<,f,.::_ 

Special symbols as sub-or superscript oo,/,-,*,+, 

Frequently occurring groups of letters in formula s Gal, Norm, Im,Tr 

Conventions: 

Greek: underline in red 


