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1. INTRODUCTION. 

In this paper we give an explicit construction for the logarithms of 

more dimensional universal formal groups of various kinds. This has 

already been done (rather hurriedly) in [2]. There are several reasons 

to take this up again: (i) the treatment in [2] is rather too sketchy 

(ii) several new results have turned up, and the third reason (and 

maybe the most important one) is the following: 

Given the construction of a suitable candidate for a universal formal 

group (e.g. the constructions of [2]), it turns out that one can prove 

universality directly by a straightforward more dimensional extension 

of the method which Buh~taber and Novikov have used in [1] to prove 

the universality of the formal group of complex cobordism and which 

we have already used twice in [3] and [4]. In particular one avoids 

Lazard's truly tough (and computational) comparison lemma between more 

dimensional formal groups. (This lemma can be found in [7]). This 

lemma now appears as a corollary. 

Thus, starting from nothing, one obtains in 10 pages or so (i) a 

proof of the existence of a universal n-dimensional formal group,(ii) 

the structure of the underlying ring and (iii) an explicit description 

of the logarithm of this formal group, and, if one wishes, the same 

things for p-typical formal groups. 

All formal groups will be commutative. All rings will be commutative 

with unit element. Zl stands for the integers, Zl (p) for the integers 

localized at p and~ for the rational numbers; JN denotes the natural 

numbers, JN= {1, 2, 3,,,,}. If F(X,Y) is a formal group over a ring 

A and ~ : A~ B a ring homomorphism then F~(X,Y) denotes the formal 

group obtained from F(X,Y) by applying ~ to its coefficients. 

2. CONSTRUCTIONS AND STATEMENT OF MAIN THEOREMS. 

2.1. A multiindex ~ = (n1, ... ,nm) is an m-tµpll.e. of integers,> O. 

Let I jgj I = n 1 + n2 + ••. +nm. We shall only consider multiindices ~ 

with I lgl I.::._ 1. We use ~(i), i = 1, ... , m to denote the multiindex 

(<1.,;..;_,,0,.1,0"··~.,,,-0) with 1 in the i-th place. If~ is a multiindex 

and i EJN then i ~is the multiindex ig = (in 1, ... ,inm). We use~ 
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to denote the set of all multiindices g with I lgl I ~ 1 and 

g ~ pr~(i) for all r = 1,2, ... ; i = 1, ••. , m and prime numbers p EJN 

2.2. If g(X) is a power series over A[U 1,u2 , ••. ]and n €JN then g(n){X) 

denotes the power series obtained from g(X) by replacing each u. with 
. 1 

~,i=1,2, ... 

2.3. Constructions. 

Choose m €JN. Let ?l [V]be short for ?l [V.(j,k); i = 1, 2, •.• ; 
l. 

j,k = 1, ... , m]. We write V. for the matrix V.(j,k), X for the column 
l. l. 

vector (.~, ... ,Xm) and r, n €JN for (X~, ••• ,X~}. Choose a prime 

number p. With these notations we define the m-tuple of power series 

£V-(X) with coefficients in~[V] by 

(2.3.1) 

and we define 

(2.3.2) 

00 v. ( i) i 
fy(X) = X + E ~ f p (XP ) 

i=1 p v 

where h- 1(X) is the inverse m-tuple of power series to h(X); 1.e. 

h- 1(h(X)) = X = h(h- 1(X)). 

Let ?l [V ;T] be short for 7l [Vi (j ,k), Ti (j ,K); i = 
We define 

1 ,2' . . . ' 

(2.3.3) 

and 

(2.3.4) 

co 

fV,T(X) = X + E 
i=1 

i 
T.XP 

1 

00 v. ( i) i 
+ E ~f p (Xp } 

i=1 p V,T 

j,k = 1, .... 

For each sequence (q1, ••. ,~)of powers of prime numbers, qi a power 

of pi' choose an integer n(q1, ••• ,qt) such that the following congruences 

are satisfied 

n(q1 ' ... ,~) 1 
r if p1 Pr .;. Pr+1 - mod p1 = P2 = = 

(2.3.5) 

n(q1 ' ..• ,~) 0 
r-1 if ~ P2 Pr :f Pr+l - mod p2 P1 = = 

,m]. 
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Let 'll [U] be short for 'll [U( i ,n); ~ a mul tiindex with I h~ 11 .::__ 2, 

i = 1, ..• , m]. We also define U(i,~(j) = 0 if i ':f. j and U(i,~(i)) = 1. 

If q is a power of a prime number in JN, we use U to denote the matrix 
q 

(U(i,q§(j)) .. and if g is a multiindex we use Ud to denote the column 
- 1,J - = 

n n 1 n 
vector (U(1ng), ···n U(m,g)). Kinally x- = x1 ••• Xmm and if a 1s 

a vector aX= = (a1x=, ... , amx=). We now define the column m-vectors 

ag for all multiindices g with I lgl I > 1 as 

(2.3.6) a = g 
n(q1 ' •.• ,qt) n(~, ... ,qt) 

P1 P2 

where the sum is over all sequences (q1, ••• ,Clt,~) such that 

= n =' ~ E ~' qi a power of a prime number pi. NB t = 0 1s allowed. 

We now define 

(2.3. 7) hu(X) = 

and 

(2.3.8) ~(X) = ht(x), ~(X,Y) = rttcx,Y) 

where cf>: 'll [U] -+ Zl [U] is the homomorphism which takes U(i ,~(j)) into 

itself for i,j = 1, ... , m and prime powers q, and which sends U(i,~) 

to zero for all f:! E ~' i = 1, ..• , m, where~=~-.... {~(i)li=1, ... ,m} 

2.4. Integrality Theorem. 

The formal power series FV(X,Y), FV T(X,Y), Ru(X,Y) and ~(X,Y) have 
' their coefficients respectively in 'll [V], ?l [V ;T], 'll [U] and 'll [U] . 

2.5. Theorem (Universality of 1!tJ(X,Y)). 

Ru(X,Y) is a universal m-dimensional formal group. 

I.e. for every m-dimensional commutative formal group F(X,Y) over a 

ring A there is unique homomorphism cf> : 'll [U] -+ A such that 
,cp 

I\j(X,Y) = F(X,Y). 



2.6. Theorem. 

Ru(X,Y) and ~(X,Y) are strictly isomorphic over ?Z [U]. 

2.7. Curves. 
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Let F(X,Y) be an m-dimensional formal group over a ring A. A curve in 

F(X,Y) is an m-tuple of power series y(Z) in one indeterminate Z with 

coefficients in A and zero constant terms. Two curves can be added 

by means of F(X,Y) as follows y(Z) +F o(Z) = F(y(Z), o(Z)). Let n EJN. 

One now defines a Frobenius operator f in exactly the same way as 
=n 

for one dimensional formal groups. I.e. formally we have that 

(2.7.1) 

where ~n is a primitive n-th root of unity. For a more precise 

definition, cf. [3]. 

2.8. More Dimensional p-typical Formal Groups. 

Choose a prime number p. Let F(X,Y) be a formal group over a ring A. 

A curve y(Z) is said to be p-typical in F if (~y)(Z} = 0 for all 
•q_ 

prime numbers q # p. We shall say that the formal group F(X,Y) is p-typical 
r r 

. ( ) _ ( p 1 p m) · { } if all curves of the form y Z - Z , ... ,Z , r. EJN U 0 are 
J. 

p-typical. 

If A is a characteristic zero ring, i.e. A -+A &2ZJQ is injective, and 

f(X) is a logarithm for F(X,Y) and f(X) is of the form 

(2.8.1) f(X) = X + 

for certain matrices ci with coefficients in A, then F(X,Y) is a 

p-typical formal group, as is easily seen. The converse is also true; 

this follows from theorem 2.9 below. 

2.9. Theorem. 

FV(X,Y) is a p-typical universal formal group (of dimension m). 

I.e. for every p-typical formal group G(X.Y) over a ring A there 1s a 

unique homomorphism <f>: 2Z [V] -+A such that Fi(X,Y) = G(X,Y) 
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Let K: 7.l [V] -+ 7.l [U] be the injective homomorphism defined by 

K(Ti (j ,k)) = U(j ,pi~(k)), and /.. : 7.l [U] -+ 7.l (p) [U] be the localization 

homomorphism. 

2.10. Theorem. 

The formal groups F~K(X,Y) and ~(X,Y) are strictly isomorphic 

( over 7.l ( p ) [ U ]) . 

2.11. Corollary. 

Every formal group over a 7.l ( p )-algebra is isomorphic to a p-typical 

formal group. 

2.12. Theorem. 

The formal groups FV(X,Y) and FV,T(X,Y) are strictly isomorphic over 

7.l [V;T] and this isomorphism is universal for strict isomorphisms between 

p-typical formal groups over 7.l (p)-algebras or characteristic zero rings. 

2.13. Curvilinear Formal Groups. 

If ~,£ are multiindices of length m we define ~£ = (k1i 1 , •.• , km.fl.m). 

Let~ be the multiindex g = (0, ... ,0). In [7] Lazard defines a formal 

group F(X,Y) over a ring A to be curvilinear (curviligne) if 

where F(X,Y) = (F(1)(X,Y), 

x. + Y. + ra. (i)~£: 
l. l. ~'~ 

... ' 

.,. ~ i(i) = 0 for all i = 1, ... , m 
='= 

F(m)(X,Y) and F(i)(X,Y) = 

2. 14. Let 7.l [R] be short for 7.l [R. (j ,k); l. = 2, 3, ... , j = 1, ... , m, 
l. 

k = 1, ... , m]. Let e : 7.l [U] -+ 7.l [R] be the projection e (U(i,g_)) = 0 

unless~ is of the form d~(j) for some d EJN, d ~ 2, j E {1, ... ,m}, and 

, 1 (U(i,d~(j)) = Rd(i,j). 

Let 1: 7.l [R]-+ 7.l [U] be the injection defined by i.(Rd(i,j)) = U(i,d~(j)). 

We define 

(2.14.1) hR(X) = riS(x), ~(X,Y) = ~(X,Y) 

2.15. Theorem. 

~(X,Y) is a curvilinear m-dimensional formal group over 7.l[R] and 

it is universal for curvilinear m-dimensional formal groups. The formal 



groups H;(x,Y) and HU(X,Y) are strictly isomorphic over ZZ. [U]. 

2.16. Corollary. 
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Every formal group over a ring A is strictly isomorphic to a curvilinear 

formal group over A. 

2.17. The formal group HR(X,Y) is the multidimensional analogue of the 

one dimensional universal formal group denoted Ru(X,Y) in [4]. There is 

also a multidimensional curvilinear analogue of the universal one 

dimensional formal group FU(X,Y) of [4]. To obtain it choose c(p,i), 

pa prime number, i €JN' {1} as in [4) and determine n(i 1 , •.• ,is) 

for all sequences (i 1 , ••• ,is)' ij €JN' {1} as in [4]. Let d(i 1 , ••• ,is) = 
( . . ) ( . . ) ( . ) ( . )-1 ( . )-1 (. )-1 n i 1 , ••• ,is n in, •.. ,is n i 8 v i 1 v i 2 ••• vis . Now 

define the matrices bi(R) as 

(2.17.1) 
( i 1 ) 

E d(i 1, ... ,i )R.R. 
( . . ) s i, i2 i,, ... ,is 

i = 2, 3, 

(i1 ... is-1) 
R. 

J. s 

where Rk is the matrix (Rk(j,i))ji and the sum is over all sequences 

(i 1, ••. ,i ), i. €JN' {1}, s > 1, such that i 1 , ..• , i =i. 
s J - s 

We put 

(2.17.2) 

(2.17.3) 

2.18. Theorem. 

00 • 

E b. (R)X1 , 

i=1 1 
I , the m x m identity matrix 
m 

FR(X,Y) is an m-dimensional curvilinear formal group over ZZ. [R] and 

it is universal for m-dimensional curvilinear formal groups. FR(X,Y) 

is strictly isomorphic to HR(X,Y) over ZZ. [R]. 

2.19. Because the d(i 1, ... ,is) in (2.17.1) have been chosen as in [4] 

we find exactly as in [4] the following formula between the R. and 
J.. 

the b. (R). 
J.. 



(2.19.1) R + n E 
djn 
d#1 ,n 

(n/d) 
p(n,d)bn/d(R)Rd 

3. PROOF OF THE INTEGRALITY THEOREMS 2.4. 
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3.1. Let g1(X) and g2 (X) be m-tuples of power series over 2Z (p)[V;W] 

where W is short for an additional set of indeterminates and V is as 

in 2.3. 

Suppose that g. (X) = X + ... 
J 

, j = 1, 2, has its coefficients in 2Z (p) [V ;W]; 

(3.1.1) 

Eu:!19~!Q11a)-_~qu.!1~h~n_!~~~· 

(i) F(X,Y) = f~ 1 (f 1 (x) + f 1(Y)) has its coefficients in 2Z (p)[V;W] 

(ii) There is a h 1(x) with coefficients in 7l (p) [V ,W] such that 

f 1(h1(X)) = f 2(x) 

(iii) If h2(X) is of the form h2(X) = X + ... Then f 1(h2(X)) satisfies 

a :functional equation of the form 3.1.1. 

The proofs of these facts are completely analogous to the proofs of the 

corresponding lemmas in [3]. 

3.2. Choose numbers n(q1, ••• , 'lt) for all sequences of powers of prime 

numbers (q1, ... ,'lt) such that (2.3.5) is satisfied. Let 

(3.2.1) 
n(q,, ... ,~) 

d(q,, ... , ~) = 
P1 

where q. is a power of the prime number p .. 
1 1. 

Lemma (i) If p 1 = ... =Pr~ pr+l then p~d(q1 , ... ,~) E 2Z 

(ii) d(q1, ... ,~) - p~ 1 d(q2 , ... ,~) E 2Z (p1) 

Proof. We prove (i) by induction. The cas~ t = 1 is trivial. If r = 1, 
s-1 ( ) let p2 = p3 = • . . = p ;i p + 1 . Then p2 d q2 , •.. , ~ E 2Z and 

s 1 s 
n( q1, .•• ,~) :: 0 mod p~- Therefore p 1d( q 1, •.• ,~) = . 

( ( r-1 ( ) n q 1, •• .,qt)d q2 , .. .,'lt) E '!l. Now let r > 1, then p 1 d ~·····~ E 2Z . 
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Hence p~d(q 1 , ... ,~) = n(q1, ... ,~)p~- 1 d(q2 , ... ,~) E 7l. 

To prove (ii) we distinguish two cases. If r = 1 then d(q2 , •.• ,~) E 7l (p1) 

by (i) and hence d(q1, ... ,~) - p~ 1 d(q2 , ... ,~) = 

p~ 1(r'i(q 1 , .•. ,qt)-1)d(q2 , ... ,~) E ?l (p1), because n(qpq2 , ... ,~) _ 1 mod p1 

if p 1 ~ p2 . If P1 = p2 = ... =Pr~ Pr+ 1 with r > 1. 

Then p~- 1 d(q2 , ... ,<lt) EZZ. by (i) and hence d(q1, ..• ,~) - p~ 1 d(q2 , ..• ,~) = 

p~ 1 (n(q 1 , ... ,~)-1)d(q2 , ... ,qt) E 7l (p1) because n(q1, ... ,~) = 1 mod p~ 
in this case. 

3.3. Lemma. 

The formal power series hu(X) satisfies a functional equation of the 

form 

u . . . 
(3.3.1) hu(X) = ~(X) + i~l ~1 h~p1 )(Xpi) 

with gp(X) = X + ... ZZ.(p)[U][[x]] for all prime numbers p. 

This follows from (2.3.6) and lemma (3.2) (ii) above. 

3.4. Proof of Theorem 2.4 (Integrality Theorems) 

By lemma 3.3 and lemma 3.1 (i) we have that Ru(X,Y) is in Zl (p)[U][[X,Y]] 

for all prime number p. Hence ~(X,Y) in Zl [U][[X,Y]]. The m-tuple of 

power series ~(X,Y) is obtained by setting certain U(i,~) equal to zero 

in ~(X,Y), hence also Ru(X,Y) in Zl [U][[X,Y]]. 

The power series fv(X) and fv T(X) satisfy by their definition a functional 
' equation of type (3.1.1). Moreover the only denominators occurring in 

fv(X) and fv,T(X) are powers of p. Hence FV(X,Y) and FV,T(X,Y) can only 

have denominators which are powers of p. Now apply lemma 3.1 (i) again, 

to conclude that Fv(X,Y) and Fv ,T(X,Y) are in Zl [V][ [X, Y]] and 

Zl [V;T][[X,Y]] respectively. 

- --- -- 4. A LITTLE BIT OF MULTIDIMENSIONAL BINOMIAL 

COEFFICIENT ARITHMETIC. 

4. 1. Let g be a multiindex of length m. Recall that 11g11 = n1+ ... 

n. EJN U.{O}. We write k < n if k. < n., i = 1, ..• , m and k= < =n if 
i =-= 1 1 

~ ~ ~ and 11~11 < 11Q11 • If ~ ~ $:! we define 

+ n ' m 
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~also define v(g) = 1 unless n is of the form g = pr~(j) for some 

E:JN, j E {1, ••• ,m}, and prime number p, then v(pr~(j)) = p. Then 

1e has that 

r 1.2) 

,_ere ~ stands f·or the mul tiindex ( 0, O, ... ,0). 

J.is is clear if g is of the form g = n ~(j). And if g is such that at 

~~st two different ni are > O, let i 1 be the smallest number such that 

:f. 0 • Take Is, = n . e ( i ) . Then ( g} = 1 • 
- l. = 1 k -1 1 = 

.z. Let n EJN, n > 2. Choose A 1 , n, ... ' A 1 such that n,n-

l,1(~) + 

1en if ,Q 

+A 1( n 1 ) = v(n). 
n,n- n- If g is of the form n = n ~(j), 

< ~ < g, ~ = k ~(j) for some 0 < k < n. We put A(g,~) =A n,k 

>r all£<~< gin this case. If n is not of the form n ~(j), let i 1 
! the smallest natural number such that n. :f. O. For these n we take 

l.1 

~,~) = 0 if~ :f. (O, ... ,O,n. ,O, ... ,O), ~<g.< g and A(g,~) = 1 if 
l.1 

::::: (O,O, ... ,O,n. ,o, ... ,O). Then we have of course 
l.1 

.• 2. 1 ) 

~. Lemma. 

~ g be a multiindex, I lgl I .::_ 2. For each ~ < ~ < g let X(k) be an 

~eterminate and let X(k) = X(n-k). Then every X(k) can be written as = = = = 
integral linear combination of the expressions 

'2.2) I: A(g,~)X(~) 
O<k<n = c --

'2.3) c~z£)x(~+£) - (&+~)X(t+m) ~ + :£ + m = g, ~,£, m > 0 
k - - = = - -



where the \(g,~) are as above 

Proof. If g is of the form g = n ~(j), this the binomial coefficient 

lemma of [4] section 4. If g is not of the form n ~(j) let i be the 

smallest natural number such that n. 1 0. Then (4.2.2) is equal to 
l 

X(n.e(i)) 
l= 

10 

For all 0 < k < ni take~= k ~(i), £ = (ni-k}~(i), m = g - ~-£·Then 

= X(k~(i)) and (~+m) = 1, so that X(k+t) = X(n.e(i)), X(£+m) = X(k) = = i= = = = m 
we have written all X(k~(i)) with 0 < k < ni as linear combinations 

of (4.2.2) and (4.2.3). Now let J = (j 1 , ···~ jm) be a multiindex 

with~< J < g and ji < ni. 

k+£ 
Take~= ji~i' £ = J - ~' ~ = g - ~ - £·Then(=$:=)= 1, X(~+J:) = X(J) 

X(£+~) = X(~) = X(ji~i). So that we can write all X(~) with~< J < g 
such that j. < n. as linear combinations of (4.2.2) and (4.2.3). But 

l l 

if ~ < J < g either J or g - ~ has its i-th component smaller than ni 

and X(j) = X(g-J). 

q.e.d. 

5. PROOF OF THE UNIVERSALITY THEOREMS. 

5.1. Let n Elli. We write hU(n)(X) and HU(n)(X,Y) for the m-tuples 

of formal power series obtained from hu(X) and HU(X,Y) by substituting 

0 for all U(i,g) with I !@I I > n. Then we have 

(5.1.1) hu(X) = hu(n)(X) + rn+ 1 (X) mod (total degree n+2) 

where rn+ 1(X) is the following m-tuple of homogeneous forms of degree 

n + 1 in x1' ... ' x m 

(5.1.2) r n+1 (X) = 

where the notation is as in (2.3). This follows immediately from (2.3.6). 

It follows that we have for 8u(X,Y) that 
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mod (total degree n+2) 

where rn+1 is as in 5.1.2. 

5.2. Let 

(5.2.1) ffu(X,Y) = (ffu( 1) (X,Y), ••. , Bu(m) (X,Y)) 

and write 

(5.2.2) H __ (i)(X Y) = X. + Y. + L e (i)X~Y£ 
--u ' 1 i 11 ~II , 11£11~1 ~ ,£ 

Let for all g. with I lgl I > 2 

(5.2.3) 

where the A(g,~) are as in 4.2. 

Lemma. The y(i,d) are a polynomial basis for 7l [U]. 
= 

I.e. every element of 7l [U] can we written uniquely as a polynomial 

in the y( i ,g.). 
This follows from (5.1.3) together with (4.2.1). 

5.3. Proof of Theorem 2.5 (Universality of ffu(X,Y)) 

Let G(X,Y) be a commutative m-dimensional formal group over a ring A. 

Write G(X,Y) = (G(i)(X,Y), ... , G(m)(X,Y)) and let 

(5.3.1) G(i)(X,Y) = X. + Y. + 
i i 

E a (i)X~Y£ 
II !s II , 11 & II> 1 ~ ·~ - - -

Now define the homomorphism $ 7l [U] ~ A by the requirement that 

(5.3.2) 

This is a well defined homomorphism because of lemma 5.2. And certainly 

~ is the only possible homomorphism such that ~(X,Y) = G(X,Y). It 
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remains, therefore, to prove that ~(e (i)) = ak t(i) for all 
!5,,2: ='= 

~,g. with 11~1 I, I lg.I I > 1. The case I l~+g,11 = 2 follows directly 

from (5.3.2) because both G(X,Y) and I\J(X,Y) are commutative, i.e. 

ek 2(i) =et k(i) and ak i(i) =at k(i). 
='= ='= ='= ='= 

Associativity of I\J(X,Y) and G(X,Y) means that the coefficients 

ek t(i), ~ i(i) must satisfy some universal relations. These 
='= ='= 

are easily seen to be of the form 

(5.3.3) 

where the Pk £ m i are certain universal polynomials in the es t 
='='='= ='= 

(resp. as t) with I lg+~I I < ~+£+m. 
='= 

Now use induction on and 

lemma 4.3 to prove that ~(ek i(i)) = 
='= 

q.e.d. 

5.4. Corollary. (Lazard's comparison lemma, cf [6]). 

Let F(X,Y), G(X,Y) be two m-dimensional formal groups over a ring A, 

and suppose that F(X,Y) = G(X,Y) mod (total degree n). Then there 

is an m-tuple of homogeneous forms r of degree n with coefficients 

in A and a m x m matrix M with coefficients in A such that 

(5.4.1) F(X,Y) - G(X,Y) - r(X) + r(X+Y) - r(Y) + M(v(n)- 1 ((X+Y)n-~_yn)) 

mod (degree n+1) 

If one adds the restriction that r(X) may- contain no terms of the 

form at:1, a EA then the rand Min (5.4.1) are unique. 
i 

This follows from theorem 2.5 and (5.1.2). 

5.5. Give each U(i,g) ~exicographic degree~· 

Let g <2 ~ stand for g is lexicographically smaller than ~· and let 

~egree be short f·or lexicographic degree. Let hU(:g,)(X) and I\J(~)(X) 



be obtained from 11J(X) and Hu(X) by substituting zero for all 

U(i,g) with g ~£ g. Then one has from (2.3.6) that 

(5.5.1) 

and hence 

(5.5.2) 

5.6. Lexicographic Comparison Lemma. 
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Let F(X,Y), G(X,Y) be two m-dimensional formal groups over a ring A, 

and suppose that F(X,Y) = G(X,Y) mod (£degree n), then there is 

a unique vector a= (a(1), ... ,a(m)), a(i) EA such that 

F(X,Y) = G(X,Y) - a(v(~)- 1 ((X+Y)g-~_yg)) mod (£degree>£~). 

This follows immediately from (5.5.2) and theorem 2.5. 

5.7. Proof of Theorem 2.9. 

Let F(X,Y) be p-typical m-dimensional formal group over a ring A. 

There is a unique homomorphism tji : 'll [U] +A such that tt&cx,Y) = F(X,Y). 

We are going to prove that tji(U(i,g)) is zero for all multiindices 

g not of the form pi~(j). Suppose this is not true. Let g be the 

lexicographically smallest multiindex for which tji(U(i,g)) # 0 for 

some i E { 1, ... ,m}. Let \)! = tji .. K where K is the natural inclusion 

'll[V]-+ ?l [U], cf. just above 2.10above. Let G(X,Y) = F~(X,Y). Then 

(5.7.1) F(X,Y) 
-1 d d d _ G(X,Y) - a(v(g) ((X+Y)=-A=-Y=)) mod (£degree >£ ~) 

where a(i) = tji(U(i,g)). 

First suppose that g is not of the form d ~(j). Then, because at 

least two di are different from zero we can find r 1 , ... , rm EJN 

such that 

(5.7.2) 

(5.7.3) 

r 
d p 1 

1 

r 
+ ••• + dmp m is divisib' e by two primes different from p 

(To see to it that (5.7.3) holds it suffices to take r 1 , ... , rm 



rm-1 r 
such that p > p md 

m' 

r 
+ m-1d 

p m-1' . . . ' 
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r 1 r 
p > P md + ... + 

m 

r2 
p d2). 

r r 
Let q # p be a prime nwnber dividing d1p 1 + ••• + dmp m = d and let 

y(Z) be the curve y(Z) = (zPr1 , ... ,zPrm). Then, writing Y for z 1/q, we 

obtain from (5.7.1) and (5.7.3). 

(5.7.4) G d1 

- (f y)(Y) + aqZ 
=q 

mod (degree > d1) 

But the formal group FV(X,Y) is p-typical, hence G(X,Y) = Ft(x,Y) 

is p-typical and F(X,Y) was supposed to be p-typical. Therefore 

(5.7.4) gives that aq = 0. There are at least two different primes 

q # p dividing d and it follows that the vector a is equal to 0. 

Next suppose that@ is of the form d ~(j). Let q be a prime number 

dividing d different from p. (Such a prime number q exists because 

~ # pr~(j), j = 1, ... , m, r = 0,1,2, ... ). 

Because dis not a power of p we can find r 1 , •.. ,r such that (5.7.3) 
r r m 

holds and such that d' = d 1p 1+ ... +dmp n is divisible by a prime# p. Let 

r 1 rm 

y (Z) = (zP , ... ,zP ); we obtain again 

(5.7.5) fFy(Y) 
=q 

If d is a power of q. Then because ~~y(Y) = O = ~~y(Y) we get 

a = O, and if d is not a prime power there are two different primes 

# p dividing d1
• Hence a = 0 also in that case. This proves the 

existence of a x : Z'.. [V] +A such that F~(X,Y) = F(X,Y). The 

homomorphism x is also unique, for otherwise there would be two 

different homomorphisms ~ : Z'.. [U] +A (both zero on the ~(i,~) with 

g # pr~(j) such that ~(X,Y) = F(X,Y). This proves the theorem. 

6. ISOMORPHISM THEOREMS. 

6.1. Proof of Theorems 2.6 and 2.10 and Part of Theorem 2.12. -- -- -- -- --- --
These theorems are proved in the standard way. The logarithms of 

HU(X,Y) and ~(X,Y) both satisfy functional equations of type (3.1.1) 



for all prime numbers p (both ·with U. instead of V.). Now apply 
l. l. 

p 

part (ii) of the functional equation lemma to conclude that 

h~ 1 (~(X)) E 7l (p)[U][[X]] for all prime numbers p, hence 

~1~hy(X)) E 7l [U][[X]]. 

Similary the logarithms of FV(X,Y) and FV T(X,Y) both satisfy 
' 
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functional equations of type (3.1.1) for the fixed prime number p. 

Hence Fy(X,Y) and .FV,T(X,Y) are strictly isomorphic over 7l (p)[V,T]. 

the only denominators which can occur in f; 1(fv T(X)) are powers 
' of p. Hence the isomorphism is actually over 7l [V ,T]. 

Finally the logarithms of F~K(X,Y) and H~(X,Y) also both satisfy 

functional equations of type (3.1.1) for the (fixed) prime number p 
AK A 

FV (X,Y) and H{j(X,Y) are (both with U. instead of V.). Hence 
J.. J.. 

p 
strictly isomorphic over 7l (p) [U]. 

6.2. Lemma. 

Let y(Z) and c(Z) be two p-typical curves in a formal group F(X,Y) 

over a ring A, which is either a 7l ( )-algebra or a characteristic 
. p r 

zero ring. Then if y(Z) = c(Z) mod (degree p n), we have 

y(Z) - c(Z) mod (degree n+1) unless n is a power of the prime p. 

Proof. Let n be not a power of the prime number p. Let q ~ p be a 

prime number dividing n. There is a unique vector a E A such that 

y(Z) _ o(Z) + Zna mod(degree n+1) 

Applying f to this we find, because f y(Z) = f c(Z), that aq = 0. =q -q -q 

But 

As A is a characteristic 0 ring or a ?l(p)-algebra it follows that a= 0 

6 . 3 . LeDJID.a . 

Let a: F(X,Y) + G(X,Y) be an isomorphism of formal groups, and let 

G(X,Y) be a p-typical formal group. Then a- 1(y(Z)) is a p-typical 

curve in F(X,Y) for all p-typical curves y(Z) in G(X,Y). 
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6.4. Let 71. [U;S] be short for 7l [U(i,g); S(i,g); i = 1, ... , m, I lg! I ?:_ 2]. 

Let d(q1 , ••• ,~) = n(q1 , •.. ,<lt_)n(q2 ,. •• ,qt) ... n(~)p~ 1 p; 1 ••• p~ 1 , 

where the n(q1 , ••• ,~)are as in 

(U(i,~(j)) .. , S(i,~(k)) ... 

2.3. Let U ,S denote the matrices 
q q 

- 1. ,J - l ,J 

Let U(i,~(j)) = 0 = S(i,~(j)) if i ¥ j and U(i,e(i)) = 1 = S(i,~(i)). 
Finally let Ud, Sd be the column vectors (U(1,@), 

(s(1,g), ... ,=scm:g)). 

We now define for all multiindices ~· I lg! I ?:_ 1 

(6.4.1) 

( q1 ) 
+ l: d(q1, ... ,qt)U U 

(q,, ... ,~.~) q1 q2 

I lgl 1=1 

... ' 

where the sums are over all sequences ( q1, ... ·~ ,@), qi 

pi a prime number, q1 , •.. , ~~ = n, 11~1 I > 1. 

(NB t = 0 is allowed). Let 

(6.4.2) ~,S(X) = 

6.5. Proposition. 

E a r= 
llnll?:_1 g 

/ 

U(m,g), 

~ 8 (X,Y) is a formal group over :?Z [U;S] and it is strictly isomorphic 
' over 7l [U,S] to the formal group Ru(X,Y) of (2.3.7). 

This is proved in the usual way by means o. the functional equation 

lemma. The strict isomorphism from Ru(X,Y) to ~ 8(X,Y) is 
-1 ' 

hu,s(hu(X)) = aU,S(X). Let aU,S(n)(X) stand for the power series 

obtained from aU,S(X) by substituting zero for all S(i,g) with I lgl I > n. 
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Then one has immediately from (6.4.1) that 

ll 
(6.5.1) au 8 (x) = a. ( ) (x) + E snx-

' u 's n I I It I I =n = 
mod(degree n+1) 

Using this one proves easily (in the same way as the corresponding 

theorem is proved in the one dimensional case in [4]): 

6.6. Theorem. 

The triple (~(X,Y), aU,S(X), liu,s(X,Y)) is univer-sal for triples 

consisting of two formal groups and a strict isomorphism between them. 

6. 7. Proof of theorem 2. 12. 

That FV(X,Y) and FV T(X,Y) are strictly isomorphic has already , 
been shown in 6.1 above. Now let (F(X,Y), a(X), G(X,Y)) be a 

triple of two formal groups and a strict isomorphism over a ring A 

which is a characteristic zero ring or a 7L (p)-algebra. By theorem 

6.6. There is a unique homomorphism <f>: 7L [U;S] -+A such that 

~(X,Y) = F(X,Y), a0,s(X) = a.(X) and rr0,T(X,Y) = G(X,Y). We are 

going to prove that cji(U(i,g)) = 0 = <f>(S(i,,~)) for all g, I lgl I > 

which are not of the form pr ~ (j ) , r E JN, i E { 1 , .•. , m} . We already 

know that cp(U(i,~)) = 0 for these~ because of' 5.7. (Proof of 

p-typical universality of FV(X,Y)). Suppose that there is g with, 

I lg! I > 1, g not of the form pr~(j) such that <f>(S(i,g)) =a 'f 0. 

Choose r 1 , ••• , rm EJN" such that 

r r 
m (6.7.1) d 1+ 

1P ... + d p lS not a m 

(6.7.2) 
r1 r 

+ d p m 
d1p + ... < 

m 

r1 
Let y(Z) be the curve y(Z) = (zP 

r1 
e1p + 

' . . . , 

power of' p 

r 
m . .. + e mP if d < ~ 9., 

r 
m 

zP ) in G(X,Y). Let 

ij; : Zl [V;T] + A be the composition of <I>: 7L [U;S] -+ A with the 

canonical embedding ZZ [V;T] + Zl [U;S]. Let S(X) = a.l)i (X) where 
V T ' 

aV,T(X) = f;:T(fV(X)) is the strict iso7:1.orphism f'rom' 

FV(X,Y) to FV ,T(X,Y). Then we have two isomorphisms 

F(X,Y) a.(X)-+ G(X,Y) 

(6.7.3) 



and 

(6.7.4) 
g 

a(X) - S(X) + aX- mod( degree >£ g) 

By lemma (6.3) the curves a- 1(y(Z)) and s- 1(y(Z)) are both 

p-typical in F(X,Y). And from (6.7.4) we see that 

(6.7.5) 

But this contradicts lemma 6.2 in view of (6.7.1) 

q.e.d. 

7. CURVILINEAR FORMAL GROUPS. 

7.1. Proof of Curvilinearity of ~(X,Y) and FR(X,Y) 

The proofs are identical for these two casei More generally 
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let A be a characteristic zero ring and let G(X,Y) be a formal group 

over A with a logarithm of the form 

(7.1.1) g(X) = X + 
00 

I a.X1 

i=2 l 

where the ai are m x m matrices vith coefficients in A ~7Z.:Q. Then 

G(X,Y) is a curvilinear formal group. Indeed, write 

(7.1.2) G(i)(X,Y) 

Suppose that there are ck £ :f: 0 vith ~·~ = 0 and 11~1I,11~1 I -=:_ 1 _,_ 
such that ck£ :f: O. Choose-a et£# 0 with I 1~+£1 I minimal. Then looking 

='= ~ ! -'= 
at the coefficient of X-Y- on both sides of 

g(G(X,Y)) = g(X) + g(Y) 

we see (7.1.1) that we must have a relation of the form 

(7.1.3) 
r1 = I b (c (j 1 )) . 

. • . k. ,£. =i, =i, 

r 
(ck. £ (j J) s 

=1 '=i "' 
s s 
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with j 1 = .•. = j . Here the multiindices k. and£. must satisfy 
s =i =i 

These last two relations imply that k. t. 
=i . =i . 

Hence by induction ck. t. 
=i . ·=i . 

J J 

J J 

= 0 unless k. =i. 
J 

= r 1t. + ... + r £. =i s=i 
1 s 

= 0 for all j = 1, ... , s. 

= 0 or i. 
=1. 

J 

= 0. Because 

j 1 = = Js = J and G(j)(X,O) = Xj' G(j)(O,Y) = Yj the products 

under the sum sign on the right (of 7.1.3) are nonzero if only if 

for all t = 1, .•. , s,~i = ~(jt) = ~(j) and ~i =~or vice versa 
t t 

but this is impossible because~·£= 0 and I l~I I > 1, I l~I I~ 1. 

q.e.d. 

7.2. Comparison lemma for curvilinear formal groups. 

Let F(X,Y), G(X,Y) be curvilinear formal groups over a ring A, and 

suppose that F(X,Y) = G(X,Y) mod degree n. Then there is a unique 

matrix a with coefficients in A such that 

This follows directly from the general comparison lemma 5.4. 

7.3. Integrality of FR(X,Y), HR(X,Y). 

This is proved in the usual way by showing that fR(X), hR(X) satisfy 

functional equationspf the type ( 3. 1 .. 1 ) and applying the functional 

equation lemma. 

7.4. Universality of FR(X,Y) and ~(X,Y) 

This follows directly from (7.2.) and the formulae for fR(X) and 

~(X). 

7. 5. Proof of Theorems 2 . 1 5 and 2. 18. 

Most of this has already been proved in 7.1, 7.3, 7.4 above. It 

remains to prove the strict isomorphism statements. These are proved 

in the standard way, i.e. via the functional equation 3.1 (Cf. also 

6. 1). 
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8. CONCLUDING REMARKS. 

The universal more dimensional formal group 11J(X,Y) constructed here 

is the analogue of the one dimensional universal formal group 

flu(X,Y) of [4]. I do not know of a more dimensional analogue for 

the one dimensional universal formal group FU(X,Y) of [4] except 

the curvilinearly universal formal group FR(X,Y) constructed above. 

There are also more dimensional analogues of the p-typically 

universal one dimensional formal groups FS(X,Y) of [3]. 

If one chooses the n(q 1, ... ,qt) of (2.3) in the special way 

described in [3] (and [5]) one finds recursion formulae for the U(i,~) 

in terms of the a (U) similar to the formulae in [3] and [5). 
n 
= 
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